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Preface

This book provides a fundamental introduction to numerical analysis suitable for ur.
dergraduate students in mathematics, computer science, physical sciences, and eng:-
neering. It is assumed that the reader is familiar with calculus and has taken a struc-
tured programming course. The text has enough material filed modularly for either a
single-term course or a year sequence. In short, the book contains enough material s
instructors will be able 1o select topics appropriate o their needs.

Students of various backgrounds should fird numerical methods quite imeresting
and useful, and this is kept in mind throughout the book. Thus, there is a wide vari-
ety of examples and problems that help to sharpen one’s skill in bath the theory and
practice of numerical analysis. Computer calculations are presented in the form of ta-
bles and graphs whenever possible so that the resulting numerical approximations are
easier 10 visualize and interpret. MATLAB programs are the vehicle for presenting the
underlying numerical algorithms.

Emphasis is placed on understanding why numerical methods work and their lim-
itations. This is challenging and involves a balance between thecry, error analysis,
and readability. An error analysis for cach method is presented in a fashion thar is
appropriate for the method i hand, yet does not arn off the reader. A mathematica)
derivation for each method is given that uses elementary results and builds the student’s
understanding of calculus. Computer assignments using MATLAB give students an
opporamity to practice their skills at scientific programzning.

Sherter numerica! exercises can be carried out with a pocket calculator/computer,
and the longer ones can be done using MATLAB subroutines. It is left for the instruc-
tor 1o guide the students regarding the pedagogical use of numerical computatiors.
Each instructor can make assignmenis thal are appropriate to the available comput
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vill PREFACE

ing resources. Fxperimentation with the MATLAB subroutine libraries is encouraged.
These. materials can be used 1o assist students in the completion of the numercal anal-
ysis component of computer Jaboratory exercises.

This Third Edition grows out of much polishing of the narrative for the Second
Edition. For example. the ¢ R method has been added to the chapter on Eigenvalues
and Eigenvectors. New 1o this edition is the explicit use of the software MATLAB.
An appendix gives an introduction to MATLAB syntax. Examples have been added
throughaut the text with MATLAB and complete MATLAB programs are given in
each section. An instructor’s disk is available upon request from the publisher.

Previously we took the attitude that any software program that students mastered
would work fine. However, many siudents entering this course have yet to master a
programming anguage (computer science students excepted). MATLAR has become
the tool of neariy all engineers and applied mathematicians, and its newest versions
have improved the programming aspects. 5o we think that studen:s will have an easier
and more productive time in this MATLAB version of our text.
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Preliminaries

Censider the function fix} = cos(x). its derivative f'(x) = —sin(x). and its an-
liderivative F(x) = sin(x) + . These formulas were studied in calculus. The former
is used to determine the slope m = ['(xn) of the curve y = f(x}atapoint (xy, f(xg}).
and the latter is used 10 compute the area under the curve fora =< 1 < b.

The slope at the point {7/2,0)is m = f['(7/2} = -1 and can be used to find the
tangent line at this point (see Figure 1.1(a)):

_y,an=m(x—%) +O=_f’(g)(x—%)=—x+£.

e

Figure 1.1 {a) The tangent hine to
the curve v = cos(x) at the poini
{x/2.0).




2 CHaP 1 PRELIMINARIES

Figure 1.1 (h) The area under the
curve y — cos{x) over the interval
0. 7t/2).

The area under the curve for 0 < x < 7/2 is computed using an integral (see Fig-
ure 1.1(b)):

o fom costrdr = F (3) - FO =sin(Z) 0=

These are some of the resulis that we will need to use from calculus.

Review of Calculus

It is assumed that the reader is tamiliar with the notation and subject matter covered in
the undergraduate calculus sequence, This should have included the topics of limits.
continuity, differentiation, integration, sequences, and series. Throughout the book we
refer to the following results.

Limits and Continuity

Definition 1.1.  Assume that f(x) is defined on a set § of real numbers, Then f is
said to have the Emif L a1 x = xq, and we write

(L) lim fixy=1.
I —=sip

if. given any € = 0, there exists a § > 0 such that, wheneverx € §,0 < {x — xgl < §
implies that | f(1) — L] < ¢. When the A-increment notation x — xp + & is used,
equation (1) becomes

(2) lim f(xp+h) = L. A
h'ﬂn
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Definition 1.2,  Assume that f(x) is defined on a set S of real numbers and let xg € §.
Then f is said 10 be comtinuous af x = xp it

3) Jim 7 = fx).

The function f is said tu be continuous on § if it is continuous at each point x € S.
The notation C"(S) stands for the set of all funciions f such that f and its first n
derivatives are continuous on S. When § is an interval, say [a. k). then the notation
C"la. b] is used. As an cxample, consider the function f(x) = x*? on (he inter-
val [—1,1). Clearly, f{x) and f'(x) = (4/3)x'/3 are continuous on [—1, 1], while
FPix) = (4/93x =23 s not continuous at x = 0, A

Definition 1.3. Supposc that {x,}72 | is an infinite sequence. Then the sequence is

n=]

said to have the limit I, and we write

(4 lim x, — L.

-y OC
if, given any ¢ > (), there exists a positive integer ¥ = N(¢) such that s = & implies
that [x, — L| < €. A

When a sequence bas a limit, we say that it is a convergent sequence. Another
commeonly used notation is “x, » L asn — 20" Equation (4) is eguivalent to

(5) im (x, L)=0.
n=o00

Thus we can view the sequence {ea]72, = {x, — L}2, as an error sequence. The

following theorem relates the concepts of continuity and convergent seqtience.

Theorem 1.1, Assume that f(x) is defined on the set § and xg € S. The following
statements are equivalent;

(a) The function f is continuous at xg.

(6) ) If "kjfnm x, — Xy, then nll{l‘cl’c Flxn) = flxp.

Theorem 1.2 (Intermediate Value Theoremt)j, Assume that /' € Cfa, 8] and £ is
any number hetween f(a) and f(b), Then there exists a number ¢, with ¢ € (g, b).
such that f{c) = L.

Example 1.1.  The function f(x) = cos(x — 1) 1s continuous over [0, 1), and the constant
L — 0.8 € (cos(D), cos{})). The solution to f(x) = 0.8 aver [(. 1] is ¢1 = 0.356499.
Similarly, f(x} is continucus over {1, 2.5], and L = 0.8 € (cos(2.5}, cos(1}). The solution
to f(x) =0.8 over[1,2.5)is cz — 1.643502. These two cases ate shown in Figure 1.2. m
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y=flx)
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0.4

0.2 Figure 1.2 The intetmediate vshs
theorem applied to the function
X f{x) = cos{x — 1) over [0, 1] and

, 20 25 over the interval [1, 2.5].
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(a, fla))

40 4 y=f{x)

30 | (b, f(b))

20
Figure 1.3 The extreme vainc
theorem applied to the funct:
. . . , T — X f(x) =35+ 59.5x — 66.5x°
over the interval [0, 3].

10 1

Theorem 1.3 (Extreme Value Theorem for a Continuous Function). Assume that
f € Cla, b]. Then there exists a lower bound M,, an upper bound M;, and two
numbers x|, x3 € {a, b] such that

(N My = f(x1) < f(x) < f{xa) = M2  whenever x € [a, b]
We sometimes express this by writing

(8 M) = flx) = argigb{f(X)} and Mz = f(x2) = angb{f(X)}.

Differentiable Functions

Definition 1.4,  Assume that f(x) is defined on an open interval containing xg. Then
f is said to be differentiable at xp if

lim fx) = fixo)

xS X —Xg

9
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exists. When this limit exists, it is denoted by f'(xo) and is called the derivative of f
at xp. An equivalent way 1o express this limit 1s 10 use the k-increment notation:

. flxg+hy— fixe)
m-———=

(10} i

Jim p Sixo).

A function wrat has a derivative at each point in a set § is said to be differentiable
on 5. Note that, the number m = f’(x3) is the slope of the tar.gent lipe to the graph of
the function y = f{x) at the point (xy, f(xp)). A

Theorem 1.4. If f(x) is differentiable at x = xp. theo f(x) is continuous at x = x;.

It follows from Theorem 1.3 that, if a function f is differentiable on a closed
interval |a, £], then its extreme values occur at the end points of the interval or at the
critical points (sofutions of f'(x) = 0) ia the open interval {a, b).

Example 1.2, The function f(x) = 15x —66.5x%--59.5x +-35 is differentiable on [0. 3].
The solutions 1o f'{x) = 45r2 — 123x + 59.5 = O are x1 = 0.54955 and x» = 2 40601
The maximum and minimum values of f on [0, 3] are:

min{ £(0), £{3), f{x1}, fix2)} = min{35. 20. 50.10438, 2.11850] = 2.11850
and
max{ f(0). f(3), f(x)). fix2)] = max{35,20,50.10438, 2.1 1850} = 50.10438. =
Theorem 1.5 (Rolle’s Theorem). Assume that 1 € Cla, byand that {(x} exists {or

allx € (a, b). If fia) = f(b) = 0, then there exists 2 number ¢, with ¢ € (a. b), such
that f'(c) = 0.

Theorem 1.6 (Mean Value Theorem). Assume that f € Cla, &] and that f'(x)
exists forall x € (a, b). Then there exists a number ¢, with ¢ € {a. b), such that

(1n fey= M_
b—a

Geometrically, the Mean Value Theorem says that there is at least one nember
c € {a. b} such that the slope of the tangent line 1o the graph of ¥ = f(x) at the pont
(¢, f(c)) equals the siope of the secant line through the points (a. f(a)) and (6. [ (B)).

Example 1.3. The function f(x) = sin{x) is continuous on the closad interval [0.], 2.1]
and differentiable on the open interval (0.1, 2.1). Thus, by the Mean Value Theoresm, there
is a number ¢ such that

S - f10.1) 0863209 - 0.095833

oy - = (.381688,

SO =10 21 -0.1 0381688
The solution to f'{¢) = cosie) = (1L.381688 in the interval (L1, 2.1)is ¢ = 1.179174.
The graphs of f{x). the secant line y = 0.381688x + (.099833, and the tangent line
'=0.381688x + 0.474215 arc shown in Figure 4. u
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m=f'(c)

1.0 4 (¢, F(e))
f(b} 1

-
-
-

P O ()
0.5 -

“{a. fa))

T 1 T T
a 0.5 1.0 ¢ 1.5 2.0b

HER

X

Figure 1.4 The mean value theorem applied to f(x) =
sin{x ) over the interval {0.1, 2.1].

Theorem 1.7 {Generalized Rolle’s Theorem). Assume that f € Cla, b] and that
Fxy, £, ..., F0x) exist over (a, b) and xp, x1, ..., X € [a. B]. If Sfixp) =0
for j =0, 1,.. ., n, then there exists a number ¢, with ¢ € (a, b), such that "¢y = 0.

Integrals
Theorem 1.8 (First Fundamental Theorem). If f is continuous over [a, b] and F
is any antiderivative of fon [a, #], then

b
(12) f f(x)dx = F(b) — F(a) where F'(x) = f(x).

Theorem 1.9 (Second Fundamental Theorem). If f is continuous over [a, b} and
x € {(a, b), then

(13) dif fdt = f(x).
X a

Exampie 1.4. The function f(x} = cos(x} satisfies the hypotheses of Theorem 1.9 over
the interval {0, 7r/2], thus by the chain rule

2
;;— f cos(f) dt = cos(x)(x2) = 2x cos(x?). =
0

Theorem 1.1¢ (Mean Value Theorem for Integrals). Assume that f € Cla, b].
Then there exists a number ¢, with ¢ € (a, b}, such that

1 b
b—"_[ f(x) dx = f((.‘)
—a J,

The value f(c) is the average value of f over the interval [a, &].

Sec. 1.1 REVIEW OF CALCULUS 7

wl X

0.6

0.4

0.2 Figure 1.5 The mean value

theorem for integrals applied to
1 X f(x) =sin(x) + 31- sin(3x) over the
0.0 0.5 1.0 1.5 2.0 2.5 interval {0, 2.5}.

0.0

Example 1.5. The function f(x) = sin(x} + 31; sin(3x) satisfies the hypotheses of The-
orem 1.10 over the interval [0, 2.5]. An antiderivative of f{x) is F(x) = — cos(x) —
% cos(3x). The average value of the function f(x) over the interval [0, 2.5] is:

1 2-5f( ydx = F@5) — FO) _ 0.762629 - (~1.111111)
25-0f T T s T 25
1.873740
= ——— =0.7494%..
2.5

There are three solutions to the equation f(c) = 0.749496 over the interval [0, 2.5]:
¢1 = 0.440566,¢; = 1268010, and ¢3 = 1.873583. The area of the rectangle with
base b —a = 2.5 and height f(c;) = 0.749496 is f(c;)(b — a) = 1.873740. The area
of the rectangle has the same numerical value as the integral of f(x) taken over the inter-
val [0, 2.5]. A comparison of the area under the curve y = f(x) and that of the rectangle
can be seen in Figure 1.5. L]

Theorem 1.11 (Weighted Integral Mean Value Theorem). Assume that f, g <
Cla, b] and g{x) = 0 for x € [a, b]. Then there exists a number ¢, with ¢ € (a, &),
such that

b b
(14) f f(x)g(x)dx:f(c)f g(x)dx.

Example 1.6. The functions f(x) = sin(x) and g(x) = x2 satisfy the hypotheses of
Theorem 1.11 over the interval [0, xr/2]. Thus there exists a number ¢ such that

S x%sin(x)dx _ 1.14159

= = 0.883631
P2 dx 1.29193

sin(¢c) =

or ¢ = sin~!(0.883631) = 1.08356. "
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Series
Definition 1.5, Let [a, )72 be a sequence. Then 3_2° | a, is an infinite serics. The

nth partial sum is 8§, = ) ;_, ax. The infinitc scries converges if and only if the
sequence {5,)3° | converges to a limig S, that is.

1
(15) “gpgosn=nlizg°§a;=s_
If a series does not converge, we say that it diverges. A

l e o
Example 1.7. Consider the infinite sequence {a,}32, = { ] . Then the ath
partial sum is nln+ 1)

S_X";_‘_-,_j:(l__l_)_,_ !
Ukt D T S\ k+1/) T A+l

Therefore, the sum of the infinite series is

S$= lim $n= lim (I L ):l. =
n—=>C oo ntl

Theorem 1.12 (Taylor’s Theorem). Assumc that f € C"*'[a.b] and let xo €
[ee. b]. Then, for every x € (a.b), there exists a number ¢ = c(x) (the value of ¢
depends on the value of x} that lies between xg and x such that

(16} f(x) = Pa(x) + Rpix).
where
Py~ 3 LN

an ) = 3 s - x0)

k=0 :
and

f‘”‘*”(c‘) "
18 a(x) = ——L(x = xg)"t
{ Rutx}) Ty {x — xp)

Example 1.8. The function f{x) = sin(x) satisfies the hypotheses of Theorem 1.12. 1.
Taylor polynamial P, (x) of degree n = 9 cxpanded about xn = 0 is obtained by evaluatr

SBC. 1.1 REVIEW OF CALCULUS 9

1.0

¥ = P{x)

0.5 f

0.0

——
[

-1.0

Figure 1.6 The graph of f(x) = sin(x) and the Tayloz
polynomial P(x) — x — x3/3' 4+ x3/5' - x7/7 4+ x% /90,

the following derivatives at x = 0 and substituting the numerical values into formula (171

fx)=sin{x), Fih =0,
I (x) = cos(x), So=1,
F(x) = —sin(x). Flio =0,

FO) — —costxy,  FPO) = —1.

FP) = cos(x), Fo =1

13 IS 17 19
el TR T T T

A graph of both f and Py over the interval [0. 2] is shown in Figure 1.6, ]
Corollary L.1.  If P,(x) is the Taylor polynomial of degree n given in Theorem 1.12.
then

(1% PR gy - fPg)  for k—0,1, ..., n.

Evaluation of a Polynomial
Let the polynomial P(x} of degree r have the form

20 P(x) — anx" + ap_jx" ' 4 -+ a2x? + ayx 4 ap.
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Horner’s method or synthetic division is a technigue for evaluating polynomials, It
can be thought of as nested multiplication. For example, a fifth-degree polynomial can
be written in the nested multiplication form

Ps(x) = ({{(asx + ag)x + a3)x + a3)x — ap)x + ay.

Theorem 1.13 (Horner’s Method for Polynomial Evaluation). Assume that P(x)
is the polynomial given in equation (20) and x = ¢ is a number for which 2(¢) is to be
evaluated.

Set b, = a, and compuie

2nh be=ay+chi,y dork=n—-1,n-2, ..., 1 0

then by = P(c¢). Moreover, if

) Qo(x) = bnx" "+ by 1 X" oo b3i? ~ bax + by.
then
23 P(x) = (x — ¢}Qo(x) + Ro.

where Jo(x) is the quotient polynomial of degree r — | and Ry = &y = P(c) is the
remainder.

Procf. Substituting the right side of equation (22) for Qg (x) and by for Ry in equa-
tion (23) yields

Px) = (x — Hbpx" " by 1" b 4 s 4 byx 4+ by) + By
(24) = bpx" + (b1 ~ B - (B — cb3)x?
+ (b — cb)x + (B — cby).
The numbers &, are determined by comparing the coefficients of x* in equations (20)
and (24), as shown in Table 1.1.

The value P{(c} = by is easily obtained by substituting x = c into equation {22)
and using the fact that By = by:

(25) Plc)=(c - c)Pglc) + Ro = by. .

The recursive formula for by given in (21) is easy to implement with a computer.
A simple algorithm is

bin) = ain);
fork=n—-1:-1:0

bik) = alk)y + ¢ x bk ~ 1);
end

SEC. 1.1 REVIEW OF CALCULLS 11

Table 1.1 Coefficients by, for Homer's Method

x* Comparing (20) and (24) Sciving for b
x" an = by by =an

o=l An_) =by_j—Cbn by_| =ay_y+chy
o : :

x* ! ap =bg —chpy by =a;+cbyy
%0 ‘ ag=by — cb| by =ag +ch|

Table .2 Homer's Table for the Synthetic Division Process

Input ] an  dp—| dn—3 v aj EE &1 aj ag
x | xby  xbpoy - xbeyy - xby xb xby
bn bpol Ba—z - by by b b= Plx)

Output

When Horner's method is performed by hand, it is easier ta write the coefficieats of
£{x) on a linc and perform the calculation &; = a; + chy+) below a; 1 a columa.
The format for this procedure is illustrated in Table 1.2

Example 1.9. Use synthetic division (Homer’s method) to find P(3) for the polyaomiz!

P(x) = x7 = 6x* 4+ 823 — 8x% + dx — 40,

as a4 a3 as a ag
Input 1 -6 8 8 4 —40
x=3 3 -9 -3 15 57
< 1 -3 -1 5 19 17 = P(3) = by
bs by b3 b b Output )
Thercfore, P(3) = 17 .
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Exercises for Review of Calculus

1. (a) Find L = limy .y fdn + 13/{2n - 1). Then deterimine {¢,. } = {L - x,} and find
My aoc €4-
(b) Find L = kmyesoo(2n? <60~ 1)/(4n2+2n+1). Then determine {¢,} = {£L—xn}
and finé limy, ¢ €.
2. Let {x,}X | be a sequence such that lima—00 X5 = 2.
(8) Find limn_. 5 5in(x,). (b) Find iy, In{x2).
3. Finc the number(s) ¢ referred to in the intermediate value theorem for each function
over the indicated interval and for the given value of 1.
(a) fixy= —x% 4 2x + 3 over [--1.,0]using L = 2
(b} fiv)= Vx? 2 5x - 2 over [6, 8] using L =3
4. Find the upper and lower bounds referred to in the extreme value theorem for cach
function over the indicated interval.
{a)  f(x)=x%~3x 4+t over[—1.2]
h fix)= cosz(x) — sin{x) over {0, 21}
5. Find the number(s} ¢ referred to in Rolle’s theorem for each function over the indi-
cated interval,
@) fixy=x*—4x%over|—2.2]
(b)  f{x} =sin{x) + sin(2x) over [, 2]

6

Find the number(s) ¢ referred 1o in the mean value theorem for each function over the
indicated interval.

(a) fix)= /xover[0,4]
2
(b) fix)=

7. Apply the generalized Rolle’s theorem to f(x) = x{(x — 1)(x — 2) over [0, 3].

X

: over [0, 1]

X -

8. Apply the first fundamental theorem of calculus to each function over the indicated

interval,
(a} fix)=uxe' overiQ 2]
r}
(h) fix)= x;-f_—i- overi—1.1]

9. Apply the second fundamental theorem of calculus to each function.
(a) % o 12 coste) di (b} (ft flxj e dr
10. Find the number(s} ¢ referred to in the mean valce theorem for integrals for each
function, vver the indicated interval.
ja)  fix)=6x" over[-3.4
{b) Fix) = xcos(x) over {0, 3m/2]

11. Find the sum of each sequence or series.

1.2
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@) { 2".}11:{) (b) l 3_"}.’1;]

3 : 1
(© Z T d) 24.{-2'—1

n=] k=1

12. Find the Taylor polynomial of degree n =- 4 for each functicn expanded about !«
given value of xgp.
(®) fly=+x,x0=1
M) fi=x'4+ax 43 +1x=0
{€) fxy=coslx}, xo=0
13. Giventhat f(x) = sin{x) and P(x) = x —x?/3!+ x* /5! — x7 /71 +x%/91. Show 11: -
PO = FOO) fork=1,2,....9
14. Use syothetic division (Homner's method) to find P(c).
@ P =x*+x"-13x1—x—-12,c=3
M P)=2T+x0 4+ x5 -2t - 423, c=—1
15. Find the average area of all circles centered at the origin with radii between 1 and 3.

16. Assume that a polynomial, P{x), has n real roots in the interval [a, b]. Show tha
P5=1)(x) has al least one real root in the interval [a, B].

17. Assume that f, f'. and f" are defined on the interval [z, b); fla) = F(b) = 0; anc
f(c) > Ofor ¢ € (a, b). Show that there is a number d € (a, &) such that f"(d) < 0

Binary Numbers

Human beings do arithmetic using the decimal (base 10) number system. Most com
puters do arithmetic using the binary (base 2) number system. It may seem otherwise
since commiun:cation with the computer {input/output) is in base 10 numbers. Thi;
transparency ¢oes not mean that the computer uses base 10. In fact, it converts input:
to base 2 (or perhaps base 16), then performs base 2 arithmetic, and finally translate
the answer into base 10 before it displays a result. Some experimentation is requirec
to verify this. One computer with nine decimal digits of accuracy gave the answer

100,000
1) Y 0.4 =9999.99447,
k-1

Here the intent was to add the number 1-'5 repeatedly 100, 000 times. The mathematica
answer is exactly 10, 000. One goal is 1o understand the reason for the computer’s ap
parently flawed calculation. At the end of this section, it will be shown how somethin;
is iost when the computer transtates the decimal fraction -]JD into a binary number.
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Binary Numbers

Base 10 numbers are used for most mathematical purposes. For illustration, the number
1563 is expressible in expanded form as

1563 = {1 x 10%) ~ (5 x 10%} + (6 x 10') + (3 x 10°).

In general, let N dencte a positive integer; then the digits ag. ay. ..., g exist so that
N has the base 10 expansion

N = (a; x 10%) + CT 10*"1)+~'-1-(a1 % 101 + {ap x ]00).

where the digits gy are chosen from [0, 1, ..., & 9}. Thus & is expressed in decimal
notation as
(2) [ = dgly—1 " - - G28] Ay (decimal)

I it is understood that 10 is the base, then (2) is written as
N =agag_y - - ararag.

For example, we understand that 1563 = 1563,,.
Using powers of 2, the number 1563 can be written

1562 =12+ (1x 2+ 0x 25+ (0x 2") + (0 x 25
(3) +OxP)+IxMH+ (A x2)+0Ox2)+1 x2)
+ (1 x 2%,

This car be verified by perfarming the calculation
1563 =1024 4+ 512+ 16 +8+2+ 1.

In generel. let N denote a positive integer; the digits bp, by, ..., b exist so that N
has the base 2 expansion

4) N=(by x 2D+ (b x 277 4 4 (3 x 2 + (bp x 29,
where each digit &, is cither a0 or 1. Thus ¥ is expressed in binary notation as
(5} N=bsbj_i bbby, (pinary).
Using the notatior. {3) and the result in (3) yields

1563 = 11000011011 ye.

Remarks. The word “two™ wili always be used as a subscript at the end of a binary
number. This will enzble the reader to distinguish binary numbers from the ordinary
2ase 10 usage. Thus 111 means one hundred eleven, whereas 111, stands for seven.
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It is usually the case that the binary representation for N will require more digits
than the decimal representation. This is due 10 the fact that powers of 2 grow much
more slowly than do powers of 10.

An efficient algorithm for finding the base 2 represeriation of the integer N can be
derived from cquation {4). Dividing both sides of (4) by 2 yields
®; ; = x2 e x 2wy x 2+ g‘-’

Hence the remainder, upon dividing N by 2, is the digit by, Now determire &y, 1{ (6
is written as N /2 = Qg + by/2, then

(7 Qo= x 2! N bry x27 %+ 4 (6> x 2N + () x 29,
Now divide both sides of (7) by 2 to get

b
% =(b; x 2"“2) ~(by. = 27N+ (b x My 4 ,)—]
Hence the remainder, upon dividing Qg by 2, is the digit b;. This process is continued
and generates sequences { ¢} and {b;} of quotients and remainders, respectively. The
process 1s terminated when an integer J is found such that 0, = 0. The sequences
ohey the followirg formulas:
N=20y~ by
Co=20 ~ b
(8) :
Qs 2=20)1+bs
Qi-1=20;+by (@ =0).
Example i.10. Show how to obtain 1563 = 1100001101 1y,
Start with N = 1563 and construct the guotients and remainders according to the
eguations in (8):
1563=2xT781+1, =1
T81=2x2300+1, b =1
390=2x195+0 b2=0
195=2x%x 97+1, bh3=1
97=2x 483+1. ba=1
48=2x 2440, be=0
4=2x 12+0, bsg=0
12=2x 640, k=0
6=2x 340, bg=0
3=2x 141, b=
l=2x 0+1. bip=_.



16 CHAP. 1 PRELIMINARIES

Thus the binary representation for 1563 is

1563 = biobaby - - - bab1boyye = 1100001101 1y, ]

Sequences and Series

When rational numbers are expressed ir. decimal form, it is often the case tha: infinitely
mary cigits are reguired. A familiar example is
1

(% 3= 0.3.

Here the symbol 3 means that the digit 3 is repeated forever to form an infinite repeating
decimal. Tt is understood that 10 is the base in (9). Mareover, it is the mathematical
intent that (9} is the shorthand notation for the infinite series

S=0GBx10H+Bx107H~ . +B =107+

(10} = P
= 3 =L,
k; (10) 3

[ only a finite number of digits is displayed, then an approximation to 1/3 is cbtained.
For example, 1/3 &= 0.333 = 333/1000. The eror in this approximation is /3000,
Using (10), the reader can verify that 1/3 = 0.333 -~ 1/3000.

It is important to understand the expansion in (10). A naive approach is to multiply

borh sides by 10 and then subtract.

05=34+Gx10 H+Gx107Y+ - +3x 107+ ...
—S= —(3x107h -3 x__lo-z)—---—(:s x 1077y — ...

S =3+ @0 x 10 N+Ox0H+...+Ox10")+-.-

Therefore, § = 3/9 = 1/3. The theorems necessary to justify taking the difference
between two infinite series car be found in most calculus books. A review of a few of
the concepts foliows. and the reader may wart to refer to a standard text on caleulus 10
fill 1n all the details.

Definition 1.6 (Geometric Series). The infinite series

oc
(1n Zcr":c.'-%-cr+cr7‘-1------cr"+---

n=0
where ¢ # O and r # 0, is called a geometric series with rato r. A
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Theorem 1.14 (Geometric Series). Tne geometric series has the following proper-
ties:

X5
c
a2 If!r;<1.l.hen"z=(:)cr"= -
(13} If [r| = 1, then the series diverges.

Proof. The summation formula for a finite geometric series is

. A (1 — pit* 1
(14) S,.=c+cr4-cr‘+---+cr"=ﬂl—rm2 for r #1.
-r
To establish {12), observe that
{15) lr. <1 implies that lim r"*! = 0.
=0

Taking the timit as n — oo, use (14) and {15) to get

B _ c S n+ly __ <
nLF}cS"_l—r(l rllibngor )-]—r.
By equation (15} of Section 1.1, the limit above establishes (12).

When r| = |, the sequence {r"~!} does not converge. Hence the sequence {5}
in (14) does not tend to a limit. Therefore, (13) is established. »

Equation (12) in Theorem 1.14 represents an efficient way to convert an infinite
repeating decimal into a fraction.

Example 1.11.

_ o oc
03 = Z 310y = -3~ " 3010)
k=1 k=({ -

3 10 1
-— —3+' 1 ='—3+“?-= - u
= 373

Binary Fractions

Binary (base 2) fractions can be expressed as sums imvolving negative powers of 2. I
R is a real number that lies in the range 0 < R < 1, there exist digits 4y, 4. .. .,
dn, ... sothat

(16) R=(@ x27)~(dax2 4 iy x 2™ e,

where d; € {0, 1}. We usually express the quantity on the right side of (16) in the
binary fraction notation

(17) R=0d1d2--dn e
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There are many real numbets whose binary representation requires infinitely many
digits. The fraction 7/10 can be expressed as 0.7 in base 10, yet its base 2 representa-
tion requires infinitely many digits:

7 ——
(18 — =0.101 .
)] 10 1011 0we

The binary fraction in (18) is a repeating fraction where the group of four digits 0119
is repeated forever.

An efficient algorithm for finding base 2 representations can now be developed. If

both sides of {16} are muitiplied by 2, the resuit is
{19) R=di+(dz x 27 ) v (dy x 27 4y,

The guantity in parentheses on the right side of (19) is a positive number and is less
than 1. Therefore 4, is the integer part of 2R, denoted d) = irn1 (2R). To contince the
process, take the fractional part of (19) and write

(20 Fi =fraci2R) = (d; x 2 4+ (dy x 277 D oo,

where [rac(2ZR) is the fractional part of the real number 2R. Multiplication of both
sides of (20) by 2 results in

(21) i=dy+ (s x 2 v ldy x 27 4,

Now take the integer part of (21) and obtain d» = int(2 Fy).

The process is continued, possibly ad infinitum (if R has an infinite nonrepeating
base 2 representation), and 1wo sequences {dy} and {F } are recursively generated:

dy = int(2F_ ).
Fp = frac(ZF,_y),

where dy = int(2R) and F| = frac{ZR). The binary decimal representation of R is
then given by the convergent geometric series

= :
R=Y d;7.
J=1

Example 1.12.  The binary decimal representatian of 7/10 given in (18} was found using
the formulas in (22). Let R = 7/10 = 0.7; then

QR =14 dy =int(1.4) =1 Fy =frac(1.4) = 04
2F = 0.8 dr = in0.8)y =0 Fr = fraci0.8) = 0.8
2Fr=1.6 di=mi(1.6)=1 Fy = fracil.6) = 0.6
=12 ds = int{1.2) = 1 Fg=Trac(1.2) = 0.2
21 =04 ds = in(0.4) =0 Fs =frac(0.4) =04
IFs =038 de = int(0.8)y =0 Fo — frac(G.8) = 08
=106 dr=im(l6)=1 F7 = fraci1.6) = 0.6
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Note that 2F; = 1.6 = 2F;. The patierns dy = di—q and Fy = Fyyq will occurfork = 2,
3.4, .. Thus7/10 = 0.101 101ye. ]

Geometric series can be used to find the base 10 rational number that a binary
number represents.

Example 1.13. Find the base !0 rational number that the binary number 0.01 . repre-
sents. In expanded form,

00 o =0x 2" H+Ux2=Ox2 D41 =x27 .
(2] e 5]
=Y e =143 @7
k=1 k=0

=—1+ el oy =
= - - =

1
-2

W=

Binary Shifting

1f a rationat nurmber that is equivalent w an infinite repeating binary expansion is to be
found, then a shift in the digits can be helpful. For example, let § be given by

(23 S = 0.000001 1000w

Muitiplying both sides of (23) by 2° will shift the binary point five places to the right.
and 328 has the form

{24} 328 = 0.11000 0.

Simifarlv. multiplying both sides of (23) by 21 will shift the binary poinit ten places to
the right und 102485 has the form

{(2%) 10245 = 1100011 (00w

The result of naively taking the differences between the lefi- and right-hand sides of

(2 and (25) 15 99285 = 11000, or 9925 = 24, since 1000w, = 24. Therefore.
8§ — 8/33.

Scientific Notatien
A ssandand way to present a real number, called scientific notation, is obtained by
shilung tiie decimal point and supplying an appropriate power of 10. For example,
0.0000747 = 7.47 % 1075,
31.4159265 = 3.14159265 x 10.

9,700,000,000 = 9.7 x 10°.

In chemistry, an important constant is Avogadro’s number, whick: is 6.02252 x 102, I
is the number of atoms in the gram atomic weight of an element. In computer science,
PE . 1.024 x 103,
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Table 1.3  Decimal Equivalents for a Set of Binary Numbers with 4-Bit Mantissa and
Exponent of n = -3, -2,...,3,4

Exponent:

Mantissa n=-3 n=-2 n=-1 n=0|nr=1|n=2n=3{n=4
0.1000mwo | 0.0625 0.125 0.25 0.5 1 2 4 8
0.10014wo | 0.0703125 | 0.140625 | 0.28125 05625 | 1.125 | 2.25 4.5 9
0.1010pwo | 0.078125 | 0.15625 | 0.3125 0.625 1.25 2.5 5 10
0.1011pwo | 0.0859375 | 0.171875 | 0.34375 | 0.6875 | 1.375 | 2.75 55 11
011000 | 0.09375 0.1875 0.375 0.75 1.5 3 6 12
0.1101wo | 0.1015625 | 0.203125 | 0.40625 | 0.8125 [ 1.625 | 3.25 6.5 13
0.1110mo | 0.109375 0.21875 0.4375 0.875 1.75 35 7 14
O.lillgwe | 0.1171875 | 0.234375 | 0.46875 | 09375 ] 1875 | 3.75 7.5 15

Machine Numbers

Computers use a normalized floating-point binary representation for real numbers.
This means that the mathematical quantity x is not actually stored in the computer.
Instead, the computer stores a binary approximation to x:

(26) x = tg x 2",

The number g is the mantissa and it is a finite binary expression satisfying the inequal-
ity 1/2 < g < 1. The integer n is called the exponent.

In a computer, only a small subset of the real number system is used. Typically, this
subset contains only a portion of the binary numbers suggested by (26). The number
of binary digits is restricted in both the numbers ¢ and #. For example, consider the
set of all positive real numbers of the form

20N 0.d\d2d3dage x 27,

where d; = 1 and d3, d3, and dj are either Oor 1, andn € {3, -2,-1,0,1,2,3,4).

There are eight choices for the mantissa and eight choices for the expenent in (27), and
this produces a set of 64 numbers:

(28)  {0.1000p0 x 272, 0.1001 e x 272, ..., 0.11 10w x 2%, 0.11 1 Lo % 2%}

The decimal forms of these 64 numbers are given in Table 1.3. It is important to learn

that when the mantissa and exponent in (27) are restricted the computer has a limited

number of values it chooses from to store as an approximation to the real number x.
What would happen if a computer had only a 4-bit mantissa and was restricted

to perform the computation (1—10 + %) + é? Assume that the computer rounds all real

numbers to the closest binary number in Table 1.3, At each step the reader can look at
the table to see that the best approximation is being used.
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%~ 011010 x 273 0.01101 0 x 277
(29) 3 = 0110l x272 = 0.1100g x272
0.001 11y x 272,

= o

The computer must decide how to store the number 0.00111,,, x 272, Assume that il
is rounded t0 0.1010y x 2~ 1. The next step is

F & 0100w x 271 = 0.1010m, x27
(30) b o™ 01011 x 272 = 0.010111 x 27!
& 0.1111 1y x 271

The computer must decide how to store the number 0.1111 1o x 27!, Since rounding
is assumed to take place, it stores 0.10000.,, x 2°. Therefore, the computet’s solution
to the addition problem is

(31D % = 0.10000m0 % 2°.
The error in the computer’s calculation is
7
(32) I 0.10000h,, = 0.466667 — 0.500000 ~= 0.033333.

Expressed as a percentage of 7/15, this amounts to 7.14%.

Computer Accuracy

To store numbers accurately, computers must have floating-point hinary numbers with
at least 24 binary bits used for the mantissa; this translates to about seven decimal
places. If a 32-bit mantissa is used, numbers with nine decimal places can be stored.
Now, again, consider the difficulty encountered in (1) at the beginning of the section,
when a computer added 1/10 repeatedly.

Suppose that the mantissa ¢ in (26) contains 32 binary bits. The condition 1/2 < ¢
implies that the first digit is &) = 1. Hence g has the form

(33) g =0.1dzd3 - - - d31d3ztwo.

When fractions are represented in binary form, it is often the case that infinitely
many digits are required. An example is
1

(34) o= 0.0001 1 ryo.
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When the 32-bit mantissa is used, truncation occurs and the computer uses the internal
approximation

(35) T16 ~ 0.11001100110011001100110011001 100, x 2.

The error in the approximation in (35), the difference between (34) and (35) is
(36) 0.1100p0 x 277 & 2.328306437 x 10~}

Because of (36), the computer must be in error when it sums the 100,000 addends
of 1/10 in (1}. The error must be greater than (100,000)(2.328306437 x 10~ =
2.328306437 x 1079, Indeed, there is a much larger error. Occasionally, the partial
sum could be rounded up or down. Also, as the sum grows, the latter addends of 1/10
are small compared to the cumrent size of the sum, and their contribution is truncated
more severely. The compounding effect of these errors actually produced the error
10,000 — 9999.99447 = 5.53 x 1077,

Computer Floating-point Numbers
Computers have both an integer mode and a floating-point mode for representing num-
bers. The integer mode is used for performing calculations that are known to be integer
valued and has limited usage for numerical analysis. Floating-point numbers are used
for scientific and engineering applications. It must be understood that any computer
implementation of equation (26) places restrictions on the number of digits used in the
mantissa ¢, and that the range of possible exponents » must be limited.

Computers that use 32 bits 1o represent single-precision real numbers use 8 bits
for the exponent and 24 bits for the mantissa, They can represent real numbers with
magnitudes in the range

2938736E -39 to 1.701412E 438

(i-e.. 27128 t0 2'?) with six decimal digits of numerical precision (e.g., 272 = 1.2 x
1077).

Computers that use 48 bits to represent single-precision real numbers might use
8 bits for the expenent and 40 bits for the mantissa. They can represent real numbers
in the range

2.9387358771E -39 w0 1.7014118346F 38

('1..3.,22leg to 2/27) with 11 decimal digits of numerical precision (e.g., 27 = 1.8 x
10712y,

If the computer has 64-bit double-precision real numbers, it might use 11 bits for
the exponent and 53 bits for the mantissa. They can represent real numbers in the range

5.562684646268003F — 309 to  8.988465674311580F + 307

(i.e., 271024 10 21023y with about 16 decimal digits of numerical precision (e.g., 2772 =
22 % 10716,
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Exercises for Binary Numbers

1. Use a computer to accumulate the following sums. The intent is to have the computer
do repeated subtractions. Do not use the multiplication shortcut.

(@ 10,000 — ;%0 () 10,000 — T4 125
Use equations {4) and (5) to convert the following binary numbers to decimal
(base 10) form,
(a) 10101po (b) 1110000
{c} 11111110, {(d)} 100000011 Lo
3. Use equations (16) and (17) to convert the following binary fractions to decimal
{base 10) form.
(a} 0.1101 1o (b) 0.101014wo
() 0.1010101¢mo (d) 0.110110110,

Convert the following binary numbers to decimal (base 10) form.

(a) 1.0110101wo (b) 11.00100100014o

5. The numbers in Exercise 4 are approximately +/2 and 7. Find the error in thesc
approximations, that is, find

@ V2 - 10110100y, (Use ~/2 = 1.41421356237309 - - -)

(b) m — 11.0010010001, (Use m = 3.14159265358979 . - -)

il

e

6. Follow Example 1.10 and convert the following to binary numbers.
(a) 23 by 87 (€) 378 d) 2388

7. Follow Example 1.12 and convert the following to a binary fraction of the form
0.d1ds - - 'dmwo-
(a) 7/16 (b) 13/16 (e} 23/32 (d) 757128

8. Follow Example 1.12 and convert the following to an infinite repeating binary frac-
tion.
(@ 1/10 ) 1/3 © 177

9. For the following seven-digit binary approximations, find the error in the approxima-
tion R — 0.d dzdrdadsdsdr .

(@) 1710 ~ 0.0001100y, (b) 1/7 = 0.0010010m,

Show that the binary expansion /7 = 0.001 1y is equivalentto § = 3 + & + 55 +
.- .. Use Theorem 1.14 to establish this expansion.

10

h

11. Show that the binary expansion 1/5 = 0.001 1, is equivalent to % = ]% + 2%3 +
25 + - -- Use Theorem 1.14 to establish this expansion.
12. Prove that any number 2N where N is a positive integer, can be represented as a

decimal nurnber that has N digits, that is, 27V = O.didzds -+ -dn. Hint. 1/2 = 0.5,
1/4=025,....
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i3. Use Table 1.3 to determine what happens when a computer with a 4-bit mantissa
performs the following calculations.
@ (%+%)+% (b) (ﬂ‘j+§)+§
© (F+4)+4 @ (F+3)+1

14. Show that when 2 is replaced by 3 in all the formulas in {8) the result is a method for
finding the base 3 expansion of a positive integer. Express the following integers in
base 3.
(@ 10 (M) 23 (c) 421 (dy 1784

15. Show that when 2 is replaced by 3 in (22) the result is a method for finding the base 3
expansion of a positive pumber R that lies in the interval 0 < R < 1. Express the
following numbers in base 3.
(a) 1/3 M 172 ey 1/10 @ 11727

16. Show that when 2 is replaced by 5 in all the forraulas in (8) the result is a method for
finding the base 5 expansion of a positive integer. Express the following integers in
base 5. ‘
(a) 10 M) 35 {e) 721 )y 734

17. Show that when 2 is replaced by 5 in (22) the result is a method for finding the base 5
expansion of a positive number R that lies in the interval 0 < R < 1, Express the
following numbers in base 5.
(@) 1/3 ) 172 (e) 1/10 (d) 154/625

Error Analysis

Ir the practice of numerical analysis it is important to be aware that computed solutions
are not exact mathematical solutions. The precision of a numerical solution can be
diminished in several sybtle ways. Understanding these difficulties can often guide the
practitioner in the proper implementation and/or development of numerical algotithms.

Definition 1.7. Suppose that P is an approximation to p. ‘The absolute error is
Ep = |p — P\, and the relative error is R, = (p — Pl/ip). provided that p £ 0. A

The error is simply the difference between the true value and the approximate
value, whereas the relative error is a portion of the true value.

Example 1.14. Find the error and relative error in the following three cases. Let x =
3.141592 and ¥ = 3.14; then the error is

(la) E; = |x — X1 = |3.141592 — 3.14} = 0.001592,
and the relative error is

_ =3 _ 0001592

Re = =5 = 3121392 = 00057,
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Let ¥y = 1,000,000 and ¥ = 999,996; then the error is
(1b) Ey = |y — ¥ = |1,000,000 — 999, 996| = 4,

and the relative error is

_ly=-3 4
¥ =TT T Tooogoo = 0000004
Let z = 0.000012 and 7 = 0.000009; then the error is
(1c) E; = |z — %] = |0.000012 — 0.000009| = 0.000003,
and the relative error is
lz—21 0.000003
R, = = ——— =0.25.
= T T 0.000012 .

In case (1a), there is not too much difference between E, and R,, and either could
be used to determine the accuracy of ¥. In case (1b), the value of y is of magnitude 106,
the error E;, is large, and the relative error R, is small. In this case, ¥ would probably
be considered a good approximation to y. In case (ic), ¢ is of magnitude 107° and
the etror E; is the smallest of all three cases, but the relative error R, is the largest.
In terms of percentage, it amounts to 25%, and thus Z is a bad approximation to z.
Observe that as | p| moves away from 1 (greater than or less than) the relative error R
is a better indicator of the aceuracy of the approximation than E,. Relative ervor is
preferred for floating-peint representations since it deals directly with the mantissa.

Definition 1.8. The number P is said to approximate p to d significant digits if 4 is
the largest positive integer for which

lp—pF 1077

L m—, A

¥ 2

2

Example 1.15. Determine the number of significant digits for the approximations in
Example 1.14.

(3a) If x = 3.141592 and ¥ = 3.14, then |x - ¥j/|x| = 0.000507 < 10~2/2. Therefore,
X approximates x o two significant digits.

(3b) I y = 1,000,000 and 3 = 999,996, then |y — 51/ly} = D.000004 < 10752,
Therefore, ¥ approximates y to five significant digits.

(3c) If z = 0.000012 and 7 = 0.000009, then |z — Z|/{z] = 0.25 < 10~%/2. Therefore, 7
approximates z to no significant digits. u
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Figure 1.7 The graphs of y =
X fix)=e, y = Py(x), and the ares
onder the curve for 0 < x < 4.

Truncaticn Error

The notiea of truncation error nsnally refers to errors mtroduced whea a more com
plicated mathematical expression is “replaced” with a more elememary formula, This
terminology originates from the technique of replacing a comphicated function with a
truncated Taylor serics. For exampie, the infinite Taylor series

N s 4 1’6 ‘8 2n
| ; .
= —_— -— — 4 -
€ l+x+2'+%{+4! +n'+

might be replaced with just the first tive terms 1 + x° + 35; + 3— f,— This might be
done when approximating an integral numericaly.

Example §.16. Given that /2 ¢’ dx = 0544987104184 = p, determine the accuracy
of the approximation obtmned by replacmg tbc integrand f(x) = &* * with the truncated

Taylot series Pg{x) — 1 ~xi4 5 = + 3 1-; +4
Term-by-term integration produces

172 2 -l xg. x-'| ,1'9 x=I,2
DU SR Nl
f (' aefeled 5(2'1 * 760 Te@n)
.
T2
2

1 1
ﬁ*ﬁ) 5376 110,592
109,491

= = 086720817 = 5
= Trvo = 0544986720817 = .

Since 107372 > |p—pl/Ip| = 7.03442x 10~ > 107%/2, the appruxitmation F ayrees with
the true answer p = 0.544987104184 to five significant digits. The graphs of f(x) — ¢’
and ¥y = Pr(x) and the area under the curve for0 < 1 < 1/2 are shown in Figure 1.7, =
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Round-Off Error

A computer's representation of real numbers is limited to the tixed precision of the
mantissa. True values are sometimes not stored exactly by a computer’s represen-
tavon  This is calied round-off error. In the preceding section the real number
210 - 0.0001 Lwo was truncated when it was stored in a computer. The actual num-
ner that is stored in the computer may underge chopping or rounding of 1he last digsr.
Therefure, since the computer hardware works with only a limited number of digits in
machize comibers, rounding errors are introduced and propagated in successive com-
LU RGHES

Chopping off Versus Rounding Off
Consider any real number p that is expressed in a normalized decimal form:
4 p=x0didads. . dpdiyp ... x 10",

where | <d) <9and{) < d; =9 for j > 1. Suppose that & is the maximum aumber
w7 decimal digits carried in the float:ing-point computations of a computer: then the real
namber p is represented by flone, (p). which is given by

i) Hlopop(Py = 20.didads .. dy x 10".
where <y < 9and 0 < d; = 9for b « j = & The number fig,,(p) is called
tne chopped floating-point representation of p. In this case the &th digit of flpe,(p)

ggrees with the &th digit of p. An alternmative k-digit represcntation is the rounded
Sfloating-point representation f1,,,,4(p). which s given by

) Floumalp) — £0adads . ore % 1.

where | < ) <9and 0 < d; < 9forl < j < & and the tast digit. ry. is obtained
bv rounding the number didy s ydp—2 - - - o the nearest mteger. For example, the real
numher

22
p= 7= 3.14285/142857142857 . ..

has the followirg six digit representations:

Flenop(p) = 0.314285 = 104,
Fleounal p) = 0.314286 = 10"
For commem pumposes the chopping and rounding would be writlen as 3.14285 and

3.14286. respectively. The reader should note that essentially all computers use some
form of the rounded floating point representatior: method.
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Loss of Significance

Consider the two numbers p = 3.1415926536 and ¢ = 3.1415957341, which are
nearly equal and both carry 11 decimal digits of precision. Suppose that their differ-
ence is formed: p — g = —0.0000030805. Since the first six digits of p and ¢ are
the same, their difference p — g contains only five decimal digits of precision. This
phenomenon is called loss of significance or subtractive cancellation. This reduction
in the precision of the final computed answer can creep in when it is not suspected.

Example 1.17. Compare the results of calculating £{500) and g(500) using six digits
and rounding. The functions are f(x) = x (vx + 1 — /x) and g(x) = m For the
first function,,

£(500) = 500 (Jsol - Jsoo)
= 500(22.3830 — 22.3607) = 500(0.0223) = 11.1500

For g(x),

500
500) = ———
& 301 + /500
500

3 500
T 2238304223607 44.7437

=11.1748.
The second function, g(x), is algebraically equivalent to f(x), as shown by the computa-
tion
s (Vx+T—x) (Ve + T+ /7)
Vit T+ /x

* (VA1) = (v9))

V140

X

=m+ﬁ'

The answer, g(500) = 11.1748, involves less error and is the same as that obtained by
rounding the true answer 11.174755300747198 . .. to six digits. =

fl)y=

The reader is encouraged to study Exercise 12 on how to avoid loss of significance
in the quadratic formula. The next example shows that a truncated Taylor series will
sometimes help avoid the loss of significance error.

Example 1.18. Compare the results of calculating f{0.01) and F(0.01) using six digits
and rounding, where

et —1—x 1 x x?
f(x)_T and P(x)—§+g+ﬁ-
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The function P(x) is the Taylor polynomial of degree n = 2 for f(x) expanded about
x=0.
For the first function
% -1-001  1.010050-1-0.01 _

J(0.01) = 0012 = 0.001 =0.35.

For the second function

1 . 0.
P(0.01) = 54—%4— %

= 0.5 +0.001667 + 0.000004 = 0.501671.

The answer P(0.01) == 0.501671 contains less error and is the same as that obtained by
rounding the true answer 0.50167084 168057542 . . . to six digits. =

For polynomial evaluation, the rearrangement of terms into nested multiplication form
will sometimes produce a better result.

Example 1.19, Let P(x) = x* = 3x2 + 3x — L and Q(x) = ((x — 3)x + 3)x ~ I.
Use three-digit founding arithmetic 1o compute approximations to P(2.19) and Q(2.19).
Compare them with the true values, P(2.19) = 0(2.19) = 1.685159.

P(2.19) & (2.19)° = 3(2.19)% 4+ 3(2.19) — 1
=10.5-1444+6.57-1=1.67.
02.19) =~ ((2.19-3)2.19+ 3)2.19 -1 = i.69.

The errors are 0.015159 and —0.004841, respectively. Thus the approximation £(2.19) =
1.69 has less error. Exercise 6 explores the situation near the root of this polynomial. =

O (#") Order of Approximation
o0 o0
Clearly the sequences [ ,,l—z] 1 and {nl] 1 are both converging to zero. In addition, it
n= n=
should be observed that the first sequence is converging to zero more rapidly than the
second sequence. In the coming chapters some special terminology and notation will
be used to describe how rapidly a sequence is converging.

Definition 1.9. The function f{k) is sald to be big Ok of gth), denowed fih) =
& (g(h)), if there exist constants C and ¢ such that

Q) [f(h)] < Clgth)]  whenever & <c, A

Example 1.20. Consider the functions f(x) = x2+1 and g(x) = x°. Since x* < x> and
| < x3 forx = 1, it follows that x2 + 1 < 2x? for x = 1. Therefore, f(x) = O(g(x)). =
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The big Oh notation provides a useful way of describing the rate of growth of a function
in terms of well known elementary functions (x", x'/". a*, log, x, etc.).

The rate of convergence of sequences can be described in a similar manner.
Definition 1.10. Let {x,}72, and {yn}}2 | be two sequences. The sequence (x,} is

said to be of order big Oh of {y,}. denoted x, — O(y,). if there cxist constants C
and & such that

(8) |xn| < Clysl  whenever n > N, A
z_ ‘ 1_ 2
Example 1.21. ";;L =0 (;’;) since -3t = i D whenevern 2 1. [

(Mien a function f (k) is approximated by a function p(#) and the error bound is
known to be M|h"). This leads to the following definition.

Definition 1.11. Assume that f{k) is approximated by the function p(A) and that
there exisi a real constant M = 0 and a positive inieger # so that

Lf— el _

(9) ] for sufficiently small A.
We say that p(h) approximates f (f} with order of approXimation £ (k") and write
(10) f(hYy= p(h)+ O(R"). A

When relation (9) is rewnitten in the form | f(h) — p(h)l < M|h"|, we see that the
netation O(k") stands in place of the error bound Mi#%|. The following results show
how to apply the definition 1o simple combinations of two functions.

Theorem 1.15.  Assume that f(h) = ph) + OR"). g(h) = g(h) + O(R™). and
r = min{m. n}. Then

{11} Flh)y 4+ pth) = plhy + glh)y+ OR7),

(12) Fth)gth) = p(hyg(h) + O(k"),

and

(13) [k ph) b O(h")y  provided that g(h) #0 and g(h) £ 0.

glh) gk

It is instructive to consider p{x) 1o be the nth Taylor polynumial approximation
of £(x); then the remainder term is simply designated @(h"*1), which stands for the
presence of omitted terms starting with the power "% 1. The remainder term converges
10 zero with the same rapidity that 2™ converges to zero as h approaches zero, as
expressed in the relationship

f("+”_(f2hn+|

143 Oh") = ME™H =
(14 ( ) 1 D
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for sufficientty small A, Hence the notation O (A"} stands in place of the quantiry
MRt where M is a constant or “behaves like a constant.”

Theorem 1.16 (Taylor’s Theorem). Assume that f € C #+11a, b]. If both xp and
X -- xy + /t lie in [a, b], then

n 114]
(
(1) flxo+h) = k;o f E"—")h* + OG™).

The following example illustrates the above theorems. The computations use the
addition properties (i) O(h?) + OhP) = O(hP), (i) OWF) + O = O,
where r — minp, g}, and the multiplicative property (iii) @(RPYQ (A7) = O(h*).
wheres =p t q.

Example 1.22. Consider the Taylor polynomial expansions
h 2 3 hz I

5 . R 4 . 6
e—1+h-r§+i-:-0(h) and cos(h)=1——2—!-+z!——-—0(h}

Determine the order of approximation for their sum and product.
For the sum we have

L hal Lk el oae
Lcos(h)y =1+ +5§+0( )+ —E-FZ* ()
# I
=2 +h+ ?+0(h“)+ T + Oh%).

Sinee O(hY) + & = O(RY) and O(h™) + Q%) = O (h*). this reduces to
E)
3

h.
ef +costh) =2+ h + 7 o,

and the order of approximation is O(h*).
The product is reated similarly:

f P . / 2 e "
+ l+h+'é!4‘3‘! oh°) + 1'———!+'a—!‘ o)
+ OO (RS
_— T SO +h5 N K
R N YU ¥ R T AV I

L OGS + ORY) + O(HHO(RO).
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Since MO = Q') and

5][4 _£+h6 +£_ o h5 o hé) 0(}210 O(hd\
27 " t@E T tO T oG+ )= "

the preceding equation is simplified to yield

ﬁ3
eeosthy =1+ h — T any,

and the order of approximation is 0 (R*), n

Order of Convergence of a Sequence

Numerical approximaiions are often arived at by computing a sequence of approxi-
mations that get closer and closer to the desired answer. The definition of big Oh for
sequences was given in Definition 1.10, and the definition of order of convergence for
2 sequence is analogous {o that given for functions in Definition 1.11.

Definition 1.12.  Suppose that limg_, oo %, = x and {r,J7%, is a sequence with
limysoofn = 0. We say that {x,}32, ‘converges to x with the order of conve:-
gence OF(ry), if there exists a constant K > 0 such that

1%y ~ x|

7l

=< K for n sufficiently large.

This is indicated by writing x, = x + Ofr,), or X, — x with order of conver-
gence O{ry). 'y

Example 1.23. Letx, = cos(n)/n? and r, = 1/n?; then lim,, oo %y = 0 with a rate of
convergence (1) n?). This follows immediately from the selavion

2

I—C%%%ln—[ =icos{n) <1 for all . ¥

Propagation of Errer

Let us investigate how ervor might be propagated in successive computations, Con-ider
the addition of two numbers p and ¢ (the true values) with the approximate values
and §. which contain errors €, and ¢, respectively. Starting with p = 7 + ¢ and
g =g + €4, the sum is

(16) PHg=(FHep)+@+e)=(F+q) +€+eh

Hence, for addition, the error in the sum is the sum of the errors in the addends.

8gc. 1.3 EREOR ANALYSIS 3
The propagation of error in maltiplication is mare complicaied. The produc: is

(n Pg = AP+ €0 + €4) = PG + Peg + Gep + € ey,

Hence. if 'and § are larger than 1 in absolute value. terms fe, and §¢ , show that there

is a possibifity of magnification of the original errors €, and ¢, . Insights are gained if
we loak at the relative error. Rearrange the terms in (17) 1o get

(18 pg — P = Peg + Gep + €peg.

Suppose 1hat p 4 0 and ¢ # 0: then we can divide (18) by pg to obiain the re'ative
error in the product pg:

(19) Rm = pq - Pq = Péq + l]("p +E‘”Eq = P_Fq + ﬁ + _Epéq .
ra rq Pe  pqa P4

Furthermor@, suppose that p and § are good approximations for p and g: then
Brp= LG~ 1, and RyRy = {es/P)eg/q) = O (R, and R, are the relative errors
in the approximations p and §). Then making these substitutions into (19) yields thw
simplified relaticnship

20 pq — g

€ €
Rpg = 24 L4 0=R,+R,.

°q q P

This shows that the relative error in the product pq is approximately the sum of the
relative errors in the approximations p and .

Often an inihal error will be propagated in a sequence of calculations. A quality
that is desira e tor any numerical process is that a small error in the initial conditions
will produce ~m::ll changes in the final result. An algorithm with this feature is called
stable; otherwise. it is called unstable. Whenever possible we shall choose methocs
that are stabie. The following definition is used 10 describe the propagation of error.

Definition 1.13.  Suppose that € represents an initial error and e{n) represents the
growth of e error after #1 steps. If le (n)) = ne, the growth of error is said 1o be linear.
I 1 ‘m)! = K"¢. the growth of error is called exponential. If X = 1, the exponential
greor grows without bound as n —» oc, and if 0 < K < 1, the exponential error
dinumshes to 7oroas n — oC, A

“he next two examples show how an initial error can propagate in eitiier a stable
ot an wnstable fashion. In the first example, three algorithms are introduced. Each
algonithm recursively generates the same sequence. Then. in the second example, small
changes will be made to the initial conditions and the propagation of error will bhe

analyzed,
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Table 1.4  The Sequence {x,} = {1/3"} and the Approximations {r,}, {pr} and {g,}

n Xn l n Pn ] qn
0 1= 1,0000000000 | 0.9999600000 10000000000 16000000000
1 1=03333333333 | 0.3333200000 0.3333200000 0.3333200000
2 %:0.111]111]11 0.1111066667 0.1110933330 0.1110666667
3| 4 =00370370370 | 00370355556 | 0.0370177778 0.0369022222
41 §r=00123456790 | 0.0123451852 0.0123259259 0.0119407407
5| ghy=00041152263 | 00041150617 | 0.0040953086 0.0029002469
6| ghg=0.0013717421 | 0.0013716872 0.0013517695 | —0.0022732510
7| ey =00004572474 | 0.0004572291 0.0004372565 | —0.0104777503
8| iy =0.0001524158 | 0.0001524097 0.0001324188 | —0.0326525834
9 | yokyy =0.0000508053 | 0.0000508032 0.0000308063 | —0.0983641945
10 | ghap=0.0000169351 | 0.0000169344 | —0.0000030646 | —0.2952280648

Example 1.24. Show that the following thre¢ schemes can be used with infinite-precision
arithmetic to recursively generate the terms in the sequence {1/3%}2%,,.

1

(21a) ro=1 and rp= §r,._1 forn=1,2,...,
1 4 1

2Ly po=1,p1 = 3 and p,,=§p.,_1 -—Ep,,_z forn=2,3,...,
1 10

2la) qgo=1.q1 = 3 and gn = ?q,,_l — Gn-2 forn=23,....

Formula (21a) is obvious. In (2ib) the difference equation has the general solution p, =
A(1/3") 4+ B. This can be verified by direct substitution:

4 1 4/ A 1/ A
—Pn-1 " s Pn=-2= 73 ——+B8]—-= __+B)
E R L (3n-l ) 3 (3"—2

4 3 4 1 1
=] — = — A~ -—= - B:A—-{-Bﬁ .
(3" 3") (3 3) 3 Pr

Setting A = 1 and B = 0 will generate the desired sequence. In (21c) the difference
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Table 1.5 The Error Sequences {xp ~ rn}, (¥ — pn}. and {x — g5}

[ Xn —'tn Xn — Pn Xn — qn
0 0.0000400000 0.0000000000 0.0000000000
1 0.0000133333 0.0000133333 0.0000013333
2 0.0000044444 0.0000177778 0.0000444444
3 0.0000014815 0.0000192593 0.0001348148
4 0.0000004938 0.0000197531 0.0004049383
3 0.0000001646 0.0000199177 0.0012149794
6 0.0000000549 0.0000199726 0.0036449931
7 0.0000000183 0.0000199909 0.0109349977
8 0.0000000061 0.0000199970 0.0328049992
4 0.0000000020 0.0000199990 0.0984149998
i 0.0000000007 0.0000199997 0.2952449999

equation has the general solution g, = A(1/3")+ B3". This too is verified by substitution:

10 10/ A ~ A e
= Gn—1 —Gn-2= — ( + B3" ') - (3"_2 + B3 2)

3 3 \3n-1
= (;_2 - 3—9") A—(10-1)3""?R
= A% + B3 =4,
Ssfting A = 1 and B = () generates the required sequence. u

Example 1.25. Generate approximations to the sequence {x,} {1/37} using the

schemes

122a) rg=0.99996 and r, = érbl forn=12, ...,
22b) po=1,p1 =033332, and p,= gp,,,1 - %pn._z forn=2,3, ...,
22¢) go=1,¢41=033332, and gn= %Qn—i —gn2 forn=23, ...

in (22a) the initial error in rg is 0.00004, and in (22b) and (22¢) the initial errors in p;
imd gy are 0.000013. Investigate the propagation of error for each scheme.

Table 1.4 gives the first ten numerical approximations for each sequence, and Table 1.5
zivesthe error in each formula. The error for {r,} is stable and decreases in an exponential
mannet. The error for { pp} is stable. The error for {g,} is unstable and grows at an expo-
nential rate, Although the error for {p,] is stable, the terms p, — 0 as n — ©0, so that
the error eventually dominates and the terms past pg have no significant digits. Figures 1.8,
1.9, and 1.10 show the errors in {r,}, {pn}. and {g, ], respectively. [ ]
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x" -,
0000015 .
0.000010
0.000005 .
— - s o= n
2 4 6 8 10

Figure 1.8 A stable decreasing error sequence {x, — ry).

Lp = Pa
0.000020 P S
0000015
0.000010
0.000005
- n
2 4 6 8 10

Figure 1.9 A stable error sequence {x, — p,}.

Uncertainty in Data

Data from real-world problems contain uncertainty or error. This type of error is re-
ferred to as noise. It will affect the accuracy of any numerical computation that is based
on the data. An improvement of precision is not accomplished by performing succes-
sive computations using noisy data. Hence, if you start with data with 4 significant
digits of accuracy, then the result of a computation should be reported in o significant
digits of accuracy. For example, suppose that the data p; = 4.152 and p; = 0.07931
both have four significant digits of accuracy. Then it is tempting to report all the digits
that appear on your calculator (i.e., p; + p2 = 4.23131). This is an oversight, because

*n " n
0.3 .
0.2

0.1 *

2 4 & 8 1o

-

Figure 1.10  An unstable increasing error sequence {x, — gn}.
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you should not report conclusions from noisy data that have more significant digits
than the original data. The proper answer in this situation is p; + p; = 4.231.

Exercises for Error Analysis

L. Find the error E; and relative error R;. Also determine the number of significant

M

6

¥

digits in the approximation.

(a) x=271828182,x =2.7182
(b) y =98, 350, ¥ =98, 000

(e} z =0.000068, 7 = 0.00006

Complete the following computation

s 1/4 R
dx = l+x°+=+=Vdx=5
fu e dx [0 ( +x° + 20 + 3 x=p

State what type of error is present in this situation. Compare your answer with the
true value p = 0.2553074606.

. (a) Consider the data p; = 1.414 and p» = 0.09125, which have four significant

digits of accuracy. Determine the proper answer for the sum p; + p; and the
product py pa.

{b) Consider the data p; = 31.415 and py = 0.027182, which have five significant
digits of accuracy. Determine the proper answer for the sum p; 4+ p> and the
product p p3.

Complete the following computation and state what type of error is present in this

situation.
sin {§ +0.00001) —sin () _ 070711385222 — 0.70710678119 _

@ 0.00001 0.00001
®) In(2 +0.00005) —In(2) _ 0.69317218025 — 0.69314718056 _
0.00005 N 0.00005 o
. Sometimes the loss of significance error can be-avoided by rearranging terms in the

by

function using a known identity from irigonometry or algebra. Find an equivalent
formula for the following functions that avoids a loss of significance.

(a} In(x + 1} — In(x) for large x

(b} +x2 4+ 1 — x for large x

(©) cos?(x) ~ sin?(x) for x = x/4

{d) ‘/—l—-%s(i) forx =

Polynomial Evajuation. Let P(x) = x* —3x24+3x— 1, Q(x) = ((x —3x+3)x ~ 1,

and R(x) = (x — 1),

(a) Use four-digit rounding arithmetic and compute P(2.72), ((2.72), and R{(2.72).
In the computation of P(x), assume that (2.72)° = 20.12 and (2.72)% = 7.398.
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{b) Use four-digit rounding arithmetic and compute F(0.975), 0(0.973), and
R{D.975), In the computation of P(x), assume that (0.975)> = 0.9268 and
(0.975)% = 0.9506.

7. Use three-digit rounding arithmetic to compute the following sums (sum in the given

order):

@ Tik ) Tioi i

8. Discuss the propagation of error for the following:

{a) The sum of three numbers:

prag+r=0+e)+@+e)+F+e)

p+ep

b) The quotient of two numbers
® 4 q g +eq

(c¢) The product of three numbers:
par = (F+ )@+ )T+ ).

9. Given the Taylor polynomial expansions

l—l—h=1+h+h2+h3+0(h4)

and
2 h4
cos(h) =1— h— + — -+- G(h).

Determine the order of approximation for their sum and product.

10. Given the Taylor polynomial expansions

RT K3 At
e"—1+h+§T+ +—-+0(h)
and
h}
sin(h) =k — — R o).

Determine the order of approximation for their sum and product.

11. Given the Taylor polynomial expansions

L
cos(h)y =1 - TR T+ o5
and
h3 hS
sm(h)—h—-a—1+5+0(h ).

Determine the order of approximation for their sum and product.
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12. Improving the Quadratic Formula. Assume that a # 0 and 5% —4ac > 0 and consider

13

E

the equation ax?+bx +c = 0. The roots can be computed with the quadratic formulas

. —b + Vb? ~dac —b — /b2 —dac
(1) XN = and X= -
2a 2a

Show that these roots can be calculated with the equivalent formulas

. —2c —2c
(ii) XN=—- and xz=-—
b+ b2 — dac b — b% — dac

Hint. Rationalize the numerators in (i). Remark. In the cases when |b| &~ +/82 — dac,
one must proceed with caution to avoid loss of precision due to a catastrophic can-
cellation. If b > 0, then x; should be computed with formula (ii) and x> should be
computed using (i). However, if b < 0, then x| should be computed using (i) and x;
should be computed using (ii).

Use the appropriate formula for x; and x2 mentioned in Exercise 12 to find the roots
of the following quadratic equations.

(@) x?—1,000.00lx+1=0

b) x?—10,000.0001x + [ =0

(© x*-100,000.00001x+1=0

d) x?-1,000,000.000001x+1 =0

Algorithms and Programs

1. Use the results of Exercises 12 and 13 to construct an algorithm and MATLAB pro-

gram that will accurately compute the roots of a quadratic equation in all situations,
including the troublesome ones when |b| =.+/b? — 4ac

. Follow Example 1.25 and generate the first ten numerical approximations for each

of the following three difference equations. In each case a small initial error is in-
troduced. If there were no initial error, then each of the difference equations would
generate the sequence {1/2"}2 .. Produce output analogous to Tables 1.4 and 1.5 and
Figures 1.8, 1.9, and 1.10.

(a) rg=09%andr, = %rn_l, form=1,2,...

() po=1.p;=0497, and pp = 3pp_1 — pn-2, forn=23,...

© qo=1,4=0497, and g, = 3gn-1 — qn—2z, forn=2,4,. ..



The Solution of Nonlinear
Equations f(x) =0

Consider the physical problem that involves a spherical ball of radius r that is sub-
merged to a depth d in water (see Figure 2.1). Assume that the ball is constructed from
a variety of longleaf pine that has a dersity of p = 0.638 and that its radius measures
r = 10 cm. How much of the bali will be submerged when it is placed in water?

The mass My, of water displaced when a sphere is submerged to a depth d is

d 2
f w:f Jr(rzv(x—r)z)dx—_:m—(?’;—_-@,
i}

and the mass of the ball is M, = 4nr%0/3. Applying Archimedes’ law M, = M,,
produces the following equation that must be solved:

m(d® —3d% +4r3p)

3 0.

2.1

Figure 2.1 The portion of a
L sphere of radius r that is to be sub-
merged o a depth 4.
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Figure 2.2 The cubic y = 2552 — 30d% + &°.

In our case (with r == 10 and p = 0.638) this equation becomes

(2552 — 30d2 + d) _
: =

0.

The graph of the cubic polynomial y = 2552 — 30d> + 4° is shown in Figure 2.
from it one can see that the solution lies near the value 4 = 12.

The goal of this chapter is to develop a variety of methods for finding nume
approximations for the roots of an equation. For example, the bisection method ¢
be applied to obtain the three roots d; = —8.17607212, d; = 11.86150151
d3 = 26.31457061. The first root d; is not a feasible solution for this problem, be«
d cannot be negative. The third root @ is larger than the diameter of the sphere :
is not the desired solution. The root d> = 11.86150151 lies in the interval {0, 20
is the proper solution. Its magnitude is reasonable because a little more than on¢

of the sphere must be submerged.

Iteration for Solving x = g(x)

A fundamental principle in computer science is iteration. As the name sugge
process is repeated until an answer is achieved. Iterative techniques are used t
roots of equations, solutions of linear and nonlinear systems of equations, and soh
of differential equations. In this section we study the process of iteration using reg
substitution.

A rule or function g(x) for computing successive terms is needed, together
starting value pg. Then a sequence of values {p;] is obtained vsing the iterativ
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Pi+1 = g(p1). The sequence has the pattemn

2] (starting valug}
1 = glpo}
p2 = g(p1}

il) H
Pr = g{pr—:)
Pe—t = g(m)

What can we learn from an unending sequence of numbers? 1f the numbers tend
10 a limit, we feel that something has been achieved. But what if the numbers diverge
or are periodic? The next example addresses this situation.

Example 2.1.  The iterative rule pg = 1 and pyyq = 1001 p fork = 0, 1. ... produces
a divergent sequence. The first 100 terms look as follows:

p1=1001pp = {1.001)(1.000000) = 1.001000,
p2=1.001p; = {1L001)(1.001000) = 1.002001,
p3 = 1.001py = (1.001)(1.002001) = 1.003003,

oo = 1.001 pgy = (1.001){1.104012) = 1.1052 16.

The process can be continued indefintely, and it is easily shown that limy .o, p, = ~ .
In Chapter 9 we will see that the sequence {p;} is a numerical solution 10 the differential
equaton y’ = 0.001y. The solution is known to be v(x) = > Indeed, if we compare
ite 100th term :n the sequence with y(100), we see that pigg = 1.105116 = 110517 =
V1 = y(100). -

In this section we are concerned with the types of functions g(x) that preduce
convergent sequences { oy ).

Finding Fixed Points

Definition 2.1 (Fixed Point). A fixed point of a function g(x) is a real number #
such that £ = g(P). A

Geomertrically, the fixed points of a functior. y = g(x) are the points of intersectior:
of v = g{x}and y = x.

Definition 2.2 (Fixed-point Iteration). The eration pay = gi{p,) forn = 0,
1. ... is called fixed-point iteration. "
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Theorem 2.1.  Assume that g is a continuous function and that { Pl o 15 2 sequence
generated by fixed-point iteration. If lim,,_, ., p, = P, then P is a fixed point of g{x).

Frogf 1 lim,_, . p, = P, then lim,_, . p,y) = P. It follows from this result. the
cantnuily of g, and the relation p,y1 = g (p,) that

(2) siP =g (lim pa) = fim g(pn) = i puor = P.
Therefore, P is g fixed point of g{x). *

Example2.2. Censider the convergent iteration
po=05 and pigi=e? fork=0.1.
The firgt 10 terms are obiained by the calculations

pp = e P00 _ 606531
pa = e~ 0808521 _ g 545239
p3 = e~ 0345239 _ 0 579703

po = e 36409 _ 1y 567560
pro = 0307360 _ 0 566507

The sequence is converging, and further calculations reveai that

M pn = 0.567143. ...
A— 0

Thug we have found an approximation for the fixed point of the function v = ¢ ™%, L

The followirg two theorems establish conditions for the existence of a fixed point
and the convergence of the fixed-point lteration process to a fixed paint.

Theorem22. Assume that g € Cla, b,

{3) Ifthe range of the mapping y = g(xj satisfies y € {a. & forall v ¢ {a. &]. then
§ has a fixed pointin {a, b].

(4y Furthérmare, suppose that g'(x) is defined over (a, #) and that a positive constant
R < 1exists wath |g'(x} < K < 1forall x € (a, b). then g has a urique fixed
point Fin [a. b].



44 CHaAP. 2 THE SOLUTION OF NONLINEAR EQUATIONS f(x) =0

Proof of (3).  If gla) = a or g(b) = b, the assertion is true. Otherwise, the values
of g(a} and g(b) must satisfy g(a) € (a, b] and g(d) € [a, b). The function f(x) =
X — g{(x) has the property that

fla)=a—ga) <0 and f(B)=b-g(b)>0.

Now apply Theorem 1.2, the Intermediate Value Theorem, to f(x), with the constant
1. = 0, and conclude that there exists a number P with P € {(a, b) so that f(P) = 0.
Therefore, P = g(P) and P is the desired fixed point of g(x).

Proof of {4). Now we must show that this solution is unique. By way of contradic-
tion, let us make the additional assumption that there exist two fixed points P; and Ps.
Now apply Theorem 1.6, the Mean Value Theorem, and conclude that there exists a
number d € (a, &) so that

_ g(P) —glP)
= 5T

Next, use the facts that g(P;}) = P| and g(P2} = P to simplify the right side of
equation (5) and obtain

(5 gD

I PZ’_Pl
d=——'—=l.
g(d) P-P

But this contradicts the hypothesis in (4) that [g'(x)| < 1 over (g, b), s0 it is not
possible for two fixed points to exist. Therefore, g(x) has a unique fixed point P
in [a, b] under the conditions given in (4). .

Example 2.3. Apply Theorem 2.2 to rigorously show that g(x) = cos(x) has a unique
fixed point in [0, 1]

Clearly, g € CI0, 1]. Secondly, g{x) = cos(x) is a decreasing function on [0, 1}, thus
its range on [0, 1]is [cos(1). 1] € [0, 1]. Thus condition {3) of Theorem 2.2 is satisfied and

g has a fixed point in [0, 1]. Finally, if x € (0, 1), then |g'(x)| = | — sin(x)| = sin(x) <
sin(l) « 0.8415 < 1. Thus K =sin(1) < 1, condition (4) of Theorem 2.2 is satisfied, and
g has a unique fixed point in [0, 1]. L]

We can now state a theorem that can be used to determine whether the fixed-point
iteration process given in (1) will produce a convergent or divergent sequence.

Theorem 2.3 (Fixed-point Theorem). Assume that (i} g, g’ € Cla, b), (i) K is a
positive constant, (iii) pp € (a. b), and (iv) g(x) € [a, b] for all x € [a, b].

(6) If [g'{x)} < K < 1 forall x € [a,b], then the iteration p, = g{py—1)} will
converge to the unique fixed point P € [a, b]. In this case, P is said to be an
attractive fixed point.

(Y If |g'(x}} = 1 for all x € [a,d], then the iteration p, = g(p.—1) will not
converge to P. In this case, P is said to be a repelling fixed point and the iteration
exhibits local divergence.
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[~ 1P-p|—] 1P~ pol—1

P Py b

a I3

Figure 2.3 The relationship among P, po, p1, [P — pyl,
and | P — p1].

Remark 1. Tt is assumed that py # P in statement (7).
Remark 2. Because g is continuous on an interval containing P, it is permissible to use
the simpler criterion [g'(P)] < K < 1 and |g'(P)! > 1 in(6) and (7), respectively.

Progf.  We first show that the points { p, 122, all lie in (@, b). Starting with po, we
apply Theorem 1.6, the Mean Value Theorem. There exists a value ¢ € (a, ) so that

I[P~ pil = |g(P) — g(po)| = |g'(co)(P — pp)!

8
® = ' ()1 P — pol < K|P — gol < |P — pyi.

Therefore, p is no further from P than pg was, and it follows that p1 € (a, b) (see
Figure 2.3). In general, suppose that p, | € (a, b); then

[P =~ pul = [8(P} — g(pn-1)| = |g'(en-1)(P ~ pa—1)|

9) :
=18/ (cn—DIIP = pu—i| < KIP = pn_i] < |P = py-1l.

Therefore, p, € (a, b) and hence, by induction, all the points {p, mopliein (a. b).

To complete the proof of (6), we will show that
(10) Jim 1P — p,| = 0.
First, a proof by induction will establish the inequality
(11) [P — pal = K"|P — pol.

The case n = 1 follows from the details in relation (8). Using the induction hypothesis
[P — pa—i} < K"~ 1P — py| and the ideas in (9), we obtain

P —pal SKIP = puy| < KK 7P ~ py =K"P - pyi.

Thus, by induction, inequality (11) holds for all n. Since 0 < K < 1, the term K"
goes 1o zero as n goes to infinity. Hence

) _ . Mp o
(12) 0< lim |P pnlsﬂl_l)rgOKIP pol=0.

The limit of | P — p,| is squeezed between zero on the left and zero on the right, so we
can conclude that limp— oo | P — py| = 0. Thus limy—, o py = P and, by Theorem 2.1,
the iteration p, = g(pn—_1) converges to the fixed point P. Therefore, statement (6) of
Theorem 2.3 is proved. We leave statement (7} for the reader to investigate. .
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Figure 2.4 {a) Monotone convergence when 0 < g'(P) < 1.

\y:x
y =g

¥\ (.P[), S(PO))
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Figure 2.4 (b) Oscillating convergence when —1 < g’(P) < Q.

Corollary 2.1. Assume that g satisfies the hypothesis given in (6) of Theorem 2.3.
Bounds for the error involved when using p,, to approximate P are given by

(13) |P—ppl < K"|P — pol for all n > 1,
and

K"|py —
(1) P — pal < Klpr —pol g ati n> 1,

1 -
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¥y
y=2g(x) \/r
]
AR
Py 8(Pg)) Y
P =
[ Figure 2.5 {a) Monotone diver-
Po Py P2
gence when | < g'(P).
¥
PL
. -
A .
PPy P1Ps N Figure 2.5 (b} Divergent oscilla-
tion when g'(P) < —1.

Graphical Interpretation of Fixed-point Iteration

Since we seek a fixed point P 1o g(x), it is necessary that the graph of the curve
y = g{x) and the line y = x intersect at the point (P, P). Two simple types of
convergent iteration, monotone and oscillating, are illustrated in Figure 2.4(a) and (b),
respectively.

To visualize the process, start at pp on the x-axis and move vertically to the point
(po, P1) = (po, g(po)) on the curve y = g(x). Then move horizontally from (pg, p1)
to the point (p), p1) on the line y = x. Finally, move vertically downward to p; on
the x-axis. The recursion p,1 = g(p,) is used to construct the point (Pn, ppy1) ON
the graph, then a horizontal motion locates (p,|, py+1) on the line y = x, and then a
vertical movement ends up at py, . on the x-axis. The situation is shown in Figure 2.4.
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If |g'{ P}| > 1, then the iteration p,,, = g(p.) produces a sequence that diverges
away from P. The two simple types of divergent iteration, monotone and oscillating,
are illustrated in Figure 2.5(a) and (b), respectively.

Example 2.4. Consider the iteration p,; = g(p,) when the function g(x) = 1+x—x2/4
is used. The fixed points can be found by solving the equation x = g(x). The two solutions
(fixed points of g)are x = 2 and x = 2. The derivative of the function is g’(x) = 1-x/2,
and there are only two cases to consider.

Case (i); =—-2 Case {ii): P=2
Start with po= —2.05 Start with po=16
then get pr = — 2.100625 then get p1=19
P2 = — 220378135 2 = 1.999¢
pi= — 2.41794441 p3 = 1.99999996
ul_lpgo Pn= — 0. nl_i)ngo Pn=2

Since {g'(x}{ > # on [~3, —1], by The-
orem 2.3, the sequence will not converge
o P=-2

Since |g'(x)| < 4 on [1, 3], by Theo-
rem 2.3, the sequence will converge to
pP=2

Theorem 2.3 does not state what will happen when g’( P) = 1. The next example
has been specially constructed so that the sequence {p,} converges whenever pp > P
and it diverges if we choose pg < P.

Example 2.5. Consider the iteration p,,, = g(p,) when the function g(x) = 2(x — 1)1/
forx = 1is used. Only one fixed point P = 2 exists. The derivative is g’ (x) = 1/{x — l)'/ 2
and g'(2) = 1, so Theorem 2.3 does not apply. There are two cases to consider when the

starting value lies to the left or right of P = 2, .
Case {i): Start with py = 1.5, Case (1) Start with py = 1.5,
then get p1=1.41421356 then get pPr = 2.44948974
P2 =1.28718851 p2 =2.40789513
p3=1.07179943 £3=2.37309514
pa=0.53590832 Pa=2.34358284
o 12 i -
ps =2(—0.46409168)/2, Jim pr=2.
Since p; lies outside the domain of This sequence is converging too slowly
g(x), the term p5 cannot be computed. to the value P = 2; indeed, Pipop =
2.00398714.
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Absolute and Relative Error Considerations
In Example 2.5, case (ii), the sequence converges slowly, and after 1000 iterations the
three consecutive terms are

zionn = 2.00398714, Pl = 2.00398317, and Pz = 2.00397921.
This should not be disturbing; after all, we could compute a few thousand more terms
and find a better approximation! But what about a criterion for stopping the iteration?
Notice that if we use the difference between consecutive terms,

{proo1 — P1oozl = |2.00398317 — 2.00397921| = 0.00000396.
Yet the absolute error in the approximation pjo00 is known to be
[P~ prooo| = |2.00000000 ~ 2.00398714| = 0.00398714.

This is about 1000 times larger than [pioo1 — Piooz| and it shows that closeness of
consecutive terms does not guarantee that accuracy has been achieved. But it is usually
the only criterion available and is often used to terminate an iterative procedure.

Program 2.1 (Fi'xed-Point Iteration), To approximate a solution to tlie equation
x = g{x) starting with the initial guess pp and iterating p,41 = g{(p,).

function [k,p,err,P]=fixpt(g,p0,tol,maxl)
% Input - g is the iteration function input as a string ’g’

% - p0 is the initial guess for the fixed point

% - tol is the tolerance

% - maxl ig the maximum number of iterations

%0utput - k is the number of iterations that were carried out
% - p is the approximation to the fixed point

4 - err is the error in the approximation

%* - P contains the sequence {pn}

P(1)= p0;

for k=2:maxl
P(k)=feval(g,P(k-1));
err=abs (P(k)-P(k-1));
relerr=err/(abs(P(k))+eps);
p=P(k);
if (err<tol) | (relerr<tol),break;end
end
if k == max]
disp(’maximum number of iterations exceeded’)
end
=P ! H
Remark. When using the user-defined function fixpt, it is necessary to input the
M-file g.m as a string: 'g’ (see MATLAB Appendix).
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Exercises for Iteration for Solving x = g(x)

1. Determine rigorously if each function has a unique fixed point on the given interval
(follow Example 2.3).
fa) gx)=1—-x2/don[0, 1]
by gx)=2""onl0, 1]
(¢) gx)=1/xon[0.5,52]

Investigate the nature of the fixed-point iteration when

3

L)
glx) = —4+4x—5x .

(a) Solve g(x) = x and show that P = 2 and P = 4 are fixed points.
(b} Use the starting value py = 1.9 and compute p|, p2, and p3.
(¢) Use the starting value pgp = 3.8 and compute p), p2, and p;3.
(d) TFind the errors Ey and relative errors Ry, for the values pg in parts (b) and (c).
{e) 'What conclusions can be drawn from Theorem 2.37

3. Graph g(x), the line y = x, and the given fixed point £ on the same coordinate
system. Using the given starting value pg, compute p; and p;. Construct figures
similar to Figures 2.4 and 2.5. Based on your graph, determine geometrically if fixed-
point iteration converges.
(@ gx)=06+x"% P=3andpy=7
by gx)=1+4+2/x,P=2and po =4
(©) glx)=x%3,P=3and pp=3.5
(d) gx)=-x’+2x+2. P=2and pg=2.5

4, Letg(x) =x>+x—4. Can fixed-point iteration be used to find the solution(s) to the
equation x = g{x}? Why?
5. Let g{x) = xcos(x). Solve x = g(x) and find all the fixed points of g (there are in-

finitely many). Can fixed-point iteration be used to find the solution(s) to the equation
x = g{x)? Why?

6. Suppose that g(x) and g’(x) are defined and continuous on (g, b); py, p1, p2 € (a, b);
and p1 = g{po) and p; = g(p1). Also, assume that there exists a constant K such
that |g'(x)| < K. Show that |p» — p1| < K|p; — po|. Hint. Use the Mean Value
Theorem.

7. Suppose that g(x) and g’(x) are continuous on (a, #) and that |g’(x)| > | on this
interval. If the fixed point P and the initial approximations pg and p lie in the interval
(a, b), then show that p) = g(pg) implies that |E(| = |P — pt] > |P — pol = |Ey].
Hence statement (7} of Theorem 2.3 is established (local divergence).

8. Let g(x) = —0.0001x% + x and py = 1, and consider fixed-point iteration.

(a) Showthalpp > p1 > - > pn > Puyt > ---.
(b) Show that p, > 0forall n.
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{c) Since the sequence {py,} is decreasing and bounded below, it has a limjt. What

is the limit?
9. Let g(x} = 0.5x + 1.5 and pg = 4, and consider fixed-point iteration.

(a) Show that the fixed pointis P = 3.

(b) Showthat |P —~ p,| = |P — pp—y]/2f0rn =1,2,3, ...

(¢} Showthat 1P — p,| = |P — ppf/2" forn=1,2,3,....

10. Let g(x) = x/2, and consider fixed-point jteration.

(a) Find the quantity |pre1 — pel/| prs1l.

(b) Discuss what will happen if only the relative error stopping criterion were used
in Program 2.1.

11. For fixed-point iteration, discuss why it is an advantage to have g'(P) = 0.

Algorithms and Programs

1. Use Program 2.1 to approximate the fixed points (if any) of each function. Answers
should be accurate to 12 decimal places. Produce a graph of cach function and the
line y = x that clearly shows any fixed points.

(@) g(x)=x%-3x3—2x2+2
(b) g(x) = cos(sin(x))

(©) g0x)==x>—sin(x +0.19)
() glx) = x* o0

2.2 Bracketing Methods for Locating a Root

Consider a familiar topic of interest. Suppose that you save money by making regular
monthly depesits P and the annual interest rate is /; then the total amount A after N
deposits is

I I 2 7 N-1
n A P+P(1+12)+P(+12) + +P(1+12)

The first term on the right side of equation (1) is the last payment. Then the next-to-last
payment, which has earned one period of interest, contributes P (1 + 1—’2) The second-

from-last payment has earned two periods of interest and contributes P (1 + é)z and
so on. Finally, the last payment, which has earned interest for ¥ —1 periods, contributes
P(1+ ﬁ)N'_l toward the total. Recall that the formula for the sum of the ¥ terms of
a geotmetric series is

2 Ldr+ri+ri+o V1=
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We can write (1) in the form

b / 2 I N-1
N e |
and use the substitution r = (1 -+ [/12) in (2) to obtain
11—+
1-(+5)

This can be simplified to obtain the annuity-due equation,

3 a=2L_{(x i)N—l
) =1z (+12 :

The following example uses the annuity-due equation and requires a sequence of
repeated calculations to find an answer.

Example 2.6. You save $250 per month for 20 years and desire that the total value of
all payments and interest is $250, 000 at the end of the 20 years. What interest rate J is
needed to achieve your goal? If we hold N = 240 fixed, then A is a function of [ alone;
that is A = A(J). We will start with two guesses, fop = 0.12 and [} = 0.13, and perform a
sequence of calculations to narrow down the final answer. Starting with Jp = 0.12 yields

2 12 240
A@©.12) = —=0 ((1+01) — 1) =247,314.

0.12/12 BY3
Since this value is a little short of the goal, we nextiry [} = 0.13:
250 0.13\*%
. = mee 14+ — — 1} =282,311.
A013) 0.13/12 (( + 12) )
This is a little high, so we try the value in the middle /; = 0.125:
250 o.lzs)m
= — —_ —1] =264, 623.
AQ125) = s ((1 +-0

This is again high and we conclude that the desired rate lies in the interval [0.12, 0.125].
The next guess is the midpoint J; = 0.1225:

250 0,1225)2‘“J
== - — 1] = 255, 803.
A0.1225) 0.1225/12 ((1 T )

This is high and the interval is now narrowed to {0.12, 0.1225], Our last calculation uses
the midpoint approximation Iy = 0.12125:

250 0.12125)240
) =— [[14+ == — 1) =251,518.
AQ.12129) = 5555713 (( T2
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(a, flan (a, fla})

(e, fe))

y=f) )
(r, 0)
+ t v : 1
a \_j a c . 0)\ b
(¢, fc))
b, fB) (b, f(b))

(a) If f(a) and f(c) have
, opposite signs then
squeeze from the right.

(b) If f(¢) and f(b) have
opposite signs then
squeeze from the left.

Figure 2.6 The decision process for the bisection process.

Further iterations can be done to obtain as many significant digits as required. The
purpose of this example was to find the value of [ that produced a specified level L of the
function value, that is to find a solution to A(J) = L. It is standard practice to place the
constant L on the left and solve the equation A(f) — L = 0. n

Definition 2.3 (Root of an Equation, Zero of 2 Functien). Assume that fx)isa
continuous function. Any number r for which f () = 01is called a root of the equation
f(x) = 0. Also, we say r is a zero of the function f(x). A

For example, the equation 2x2 + 5x — 3 = 0 has two real roots r; = 0.5 and
ry = —3, whereas the corresponding function f(x) = 2x24-5x -3 = 2x — 1)(x + 3)
has two real zeros, ) = 0.5and r; = —3.

The Bisection Method of Bolzano

In this section we develop our first bracketing method for finding a zero of a continuous
function. We must start with an initial interval [a, &], where f(a) and f(b) have
opposite signs. Since the graph y = f(x) of a continuous function is unbroken, it will
cross the x-axis at a zero x = r that lies somewhere in the interval (see Figure 2.6). The
bisection methed systematically moves the end points of the interval closer and closer
together until we obtain an interval of arbitrarily small width that brackets the zero.
The decision step for this process of interval halving is first to choose the midpoint
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¢ = {a + b)/2 and then to analyze the three possibilitics that might arise:

(4} If fiayand f(c} have opposite signs. & zero lies in [a. ¢].
(5) If f{c)and f(b) have opposite s1gns, a Zero lies in [¢, b].
{6) iIf f(¢) =0, then the zero is ¢.

If either case (4) or (5) occurs, we have found an interval half as wide as the original
interval that contains the root. and we are “squeezing down on it” (see Figure 2.6). To
continue the process, relabel the new smaller interval {a. 5] and repeat the process until
the interval is as small as desired. Since the bisection process involves sequences of
nested intervals and their midpoints. we will use the following notation to keeg wack
of the details in the process:

1aq, bl is the staring interval and ¢y = ﬂ”—;ﬂ is the midpoint.

La1. b1 ]is the second interval, which brackets the zero r, anc ¢, is its mudpoint;
i7) the interval [a7. b ] is kalf as wide as [ao, bo).

After arriving at the nth interval {a,, by}, which brackets r and has midpoint
oy the interval [ay1. buy] is constructed, which also brackets r and is half
as wide as [ay,. bn].

It is left as an exercise for the reader to show that the sequence of left end points is
increasing and the sequence of right end points is decreasing; that is,

(8) @a S 2@y = Er = Shy =S b < by,

where ¢, = gi’%”l,andif Flang—1}f(bns1) < O, then

(9] [2ns1, bas1] = lan.€n]l  oF  [Gra1, o1l = [en. bn]  for all n.
Theorem 2.4 (Bisection Theorem). Assume rtha: /' € Cla, b] and that there exists
anumber r € [«.#] such that f(r} = 0. If f(a) and f(b) have opposite signs, and

iep )2, represems the sequence of midpoints generated by the bisection process of (8)
and {9}, then

b -a
(10 r"(""""z_n}T forn=10,1, ...,
and therefare the sequence {¢a) o converges to the zero x = r; that 15,
t1.) im c, =r
n—0od

Proof Since both the zero r and the midpoint ¢, lie in the interval {a,, bal, the dis-
lance between ¢, and r cannot be greater than half the width of this interval (see Fig-
ure 2.7). Thus

by —

(12) Ir—cal = for all n.
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n fo—1r =l — b,
]
M

L b, —a,l

bl
4

Ca

Figure 2.7 The root » and midpoint ¢, of fa,, b,] for the
bisection method.

Observe that the successive interval widths form the pattern

—a
bl—ﬂl=b‘o—21—21
by — _bi—a1 _bp—ao
PTmE T S Ty

It 35 left as an cxercise for the reader i¢ use mathematical induction and show that

by —a
(13) by =ty = ==
Combining (12) and (13) results in
by -
(i4) Ir—cn = —;;;;h for all .

Now an argumenit similar to the one g:ven in Theorem 2.3 can be used 10 show that
{14) implies that the sequence {c. 32 5 converges to 7 and the proof of the theorem is
complete. .

Example 2.7. The function A{x) = . sin{x) occurs in the study of undamped forced
oscillations. Find the value of x that lies in the interval [0. 2], where the functicn takes on
the value A(x} = { (the function sin(x) (s evaluated in radians).

We use the bisection method 10 find a zero of the function f(x) = x sin(x) - 1. Startirg
with ag = 0 and &5 = 2, we compuie

f0)y=-1.000000 and f{2) =0.818595,

so a root of f(x) = 0 lies in the interval [(. 2]. At the midpoint cg = 1, we find that
F({1) = —0.158529. Hence the function changes sign on [co. bo] = (1, 2].

To continue, we squeeze from the left and set a; = ¢ and by = by. The micpoint
iscy = 1.5and f(c1) = 0.496242. Now, f(1) = —0.158529 and £(1.5) = 0.496242
imply that the root lies in the imerval [a1. ¢|] = [1.0. 1.5]. The next decision is to squeeze
from the right and set @, = a; and b7 = ¢|. ln this manner we obtain & sequence {cx ) that
convergestor = 1.114157141. A sample calculation is given in Table 2.1. [ ]



{a, fla))

(c. fle))

y=f(xn %
b, F)

(a) If f(a) and f{c) have
opposite signs then
squeeze from the right.

(a. fla))
‘\\ {c, fle))

a

b, fio))

(b) If fie)y and fb) have
opposite signs then
squeeze from the left.

Table 2.1 Bisection Method Sotution of x sin(x) = | =0
Left Right Function value,

k end point, ag Midpoint, ¢ end point, by Flce)
0 0 1. 2. —0.158529
1 1.0 1.5 2.0 0.496242
2 1.00 1.25 1.50 0.186231
3 1.000 1.125 1.250 0.015051
4 1.0000 1.0625 1.1250 -0.071827
5 1.06250 1.09375 1.12500 —0.028362
6 1.093750 1.109375 1.125000 —0.006643
7 1.1093750¢ 1.1171875 1.1250000 0.004208
8 ; 1, 10937500 1.11328125 1.§1718750 —-0.001216

A virtue of the bisection method is that formula {10) provides a predetermined
estimate for the accuracy of the computed solution. In Example 2.7 the width of the
starting interval was by — ap = 2. Suppose that Table 2.1 were continued to the
thirty-first iterate; then, by (10), the emror bound would be (E31 < (2 — 0)/2% =~
4.656613 % 1071°, Hence c3; would be an approximation o 7 with nine decimal piaces
of accuracy. The number N of repeated bisections needed to guarantee that the Nth
midpoint ¢ is an approximation to a zero and has an error less than the preassigned
value 8 is

) . In(d — a) — In(&
(15 N =int (—_—ln(z) ) .

The proof of this formula is left as an exercise.

Anather popular algorithm is the method of false position or the regula falsi
method. 1t was developed because the bisection method converges at a fairly slow
speed. As hefore, we assume that f(a) and f(b) have opposite signs. The bisection
method used the midpoint of the interval fa, b as the next itarate. A better approxi-
mation is obtained if we find the paint (¢, 0) where the secant line L joining the points
(a, f(a)) and (b, f{b)) crosses the x-axis (see Figure 2.8). To {ind the value ¢, we
write down two versions of the slope m of the line L.

_f) - fla)
(16) m=

where the points (a, f{a}) and (b, f(b)) are used, and

an m=9:_‘£(_.b_)1
c—b

Yigare 2.8 The decision process for the false positior: mehod,

where the points (¢, 0) and (&, (b)) are used.
Ezuating the slopes in (16) and (17), we have

JBY = fl@) 0= fib)
b—a  c-b

which is easily soived for ¢ to get

I -a)
fiby— fa)

The three possibilities are the same as before:

(18)

(19) If f{a) and f (<) have apposite signs, a zero lies in [, ).
20) ¥ fic)and f{b) have opposite signs, a zerolies in ¢, b,
(3 ) If f{c) =0, then the zero is .

Convergence of the False Position Method

The decision process implied by (19} and (20) along with (18) is used to construc
a sequence of intervais {la., bz} eack of which brackets the zero. At each step the
approximation of the zero 7 is

f(bn)(bn — ar)
S} — f(an)’

(2 Cn=bp —
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Figure 2.9 The stationary endpoint for the false position
method,

and it can be proved that the sequence {c,} will converge to r. Bul beware; although
the interval width b, — a, is getting smaller, it is possible that it may not go o zero. If
the graph of y = f(x) is concave near (r, 0), one of the end points becomes fixed and
the other one marches into the solution (see Figure 2.9).

Now we rework the solution to x sin{x) — | = 0 using the method of faise posi-
tion and observe that it converges faster than the bisection method. Also, notice that
1B — an)i2 , does not go to zero.

Example 2.8. Use the false position method to find the root of x sin{x) — | = O that is
located in the interval {0, 2] (the function sin(x) is evaluated in radians).
Surting with ap = 0 and by = 2, we have f{0) = —1.00000000 and f(2) =
0.81859485, so a root ties in the interval [0, 2. Using formula (22), we get
0.81859485(2 —-0)
0.81859485 — (—=1)
The function changes sign on the interval [cg, g} = [1.09975017, 2], s0 we squesze from
the left and set a; = cp and by = bp. Formula (22) produces the next approximation:
0.81859485(2 — 1.0%975017)
0.81859485 — (—0.02001921)

o = = 109975017 and  f(co} = —0.02001921.

C[——"Z

= 1.12124074
and

Fler) = 0.00083461.

Next f(x} changes sign on {a;, c1]1 = [1.09975017. 1.12124074]. and the next decision is
10 squeeze from the right and set a2 = a1 and b; = ¢1. A sumtnary of the calculations is
given in Table 2.2, »

The termination criterion used in the bisection method is not useful for the false
position method and may result in an infinite loop. The closeness of consecutive iter-
ates and the size of | f(c,) are both used in the termination criterion for Program 2.3,
In section 2.3 we discuss the reasans for this choice.
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Table 2.2 False Position Method Solution of xsin{x) — 1 =0

Left Right Function value,
£ | endpoint o Midpoint, ¢4 end point, by Flex)
0 0.00000000 1.09975017 2.00000000 =0.02001921
1 1.09975017 - 1.12124074 2.00000000 0.00983461
2 1.09975017 1.11416120 1.12124074 0.00000563
3 1.08575017 1.11415714 1.11416120 (.00000000

Program 2.2 (Bisection Method). To approximate a root of the equation f(x) =0

in the interva) [a, b). Proceed with the method only if f(x) is continuous and f(a) !
i and f(b) have opposite signs. '
| PPO:

function [¢,err.ycl=bisect(f,a,b,delta)

%Input - f is the function imput as a string *f’

% - a and b are the left end right end points
% delta is the tclerance

%Cutput - ¢ is the zZero

% - ye=f(c}

A - err is the error estimate for ¢

ya=feval(f,a);
yb=feval(f,b);
if ya*yb>0,break,end
maxi=l+round((log{b-a}-logldelta})/log(2));
for k=1:maxi

c=(a+b)/2;

ye=feval(f,c);

if ye==0

elseif yb*yc>D

b=c;
yb=yc;
else
a=¢;
ya=yc;
end
if b-a < delta, break,end
end
c=(a+b)/2;
err=abs(b-a);
ye=feval(f,c),
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Program 2.3 (False Position or Regula Falsi Method). To approximate a root of
the equation f(x) = 0 in the interval [a, b]. Proceed with the method only if f(x)

is continuous and f(a) and f (&) have opposite signs. i

function [¢,err,ycl=regula(f,a,b,delta,epsilon,max1)

%Input - f is the function input as a string ’f’

% - a and b are the left and right end points

% - delta is the tolerance for the zero

% - epsilon is the tolerance for the value of f at the zero
% - maxl is the maximum number of iteratioms

%0utput - ¢ is the zero

% - ye=f(c)

% - err is the error estimate for ¢

va=feval(f,a);
yb=feval({f,b);
if yaxyb>0
disp(’Note: fla}*f(b)>0’),
break,
end
for k=1:maxl
dx=yb*(b-a) /(yb-ya);
c=b-dx;
ac=c-a;
yc=feval(f,c);
if yc==0,break;
elseif yba»yc>0
b=c;
yb=yc;
else
a=c;
ya=yc;
end
dx=min(abs(dx),ac};
if abs{dx)<delta,break,end
if abs{(yc)<epsilon,break,end
end
c;
err=abg(b-a)/2;
yc=feval(f,c);
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Exercises for Bracketing Methods

In Exercises 1 and 2, find an approximation for the interest rate 7 that wiil vield the total
annuity value A if 240 monthly payments P are made. Use the two starting values for /
and compute the next three approximations using the bisection method.
1, P =5$275, A =$250,000, [y = 0.11, [, = 0.12
2, P =8325, A =$400,000, Iy = 0.13, I; = 0.14
3. For cach function, find an interval [, b] so that f(a) and f(b) have opposite signs.
(@) fix)y=e¢" -2-x
(b) fix)=cos(x)+1—x
© fx)=hix)-5+=x
M f(x)=x2—10x +23
In Exercises 4 throiigh 7 start with [ao. bo] and use the false position method to compute
co. 1, ¢z, and ca.
4 ¢ —2—x =0,[ay, bo]l =[-2.4, ~1.6]
5. cos(x)+ 1 — x = 0, [ag, bo] = [0.8, 1.6]
6. In(x) —5+x =0, [ap, by] = {3.2,4.0]
7. x2 = 10x + 23 = 0, [ap, bo] = [6.0, 6.8]
8. Denote the intervals that arise in the bisection method by [ag, bol, [a1, b1, ...,
(@, by).
(8) Showthatag <a) <---<a, <---andthat .- < b, <--- < b| < by.
(b) Show that b, — a, = (bg — ap)/2".
(¢) Let the midpoint of each interval be ¢, = (a, + by)/2. Show that

lim g, = lim ¢; = lim b,.
n—=>00 =00 n=—+00

Hint. Review convergence of monotone sequences in your calculus book.
9. What will happen if the bisection method is used with the function f(x) = 1/(x —2)
and
(a) the interval is [3, 7)? (b} theinterval is [1, 7]?
10. What will happen if the bisection method is used with the function f(x) = tan(x)
and
(a) theintervalis [3,4]? (b) the interval is [1, 3]7
11. Suppose that the bisection method is used to find a zero of f{x) in the interval [2, 7].

How many times must this interval be bisected to guarantee that the approximation
cn has an accuracy of 5 x 10797

12. Show that formuia (22) for the false position method is algebraically equivalent to

. anf(bn) - bnf(an)
YT fba) = flan)
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13. Establish formula {15) for determining the number of iterations required in the bisec-
tion method. Hint. Use |b — a|/2"+! < § and take logarithms.

14. The polynomial f(x) = (x— 1)?(x —2)(x — 3) has three zeros: x = 1 of multiplicity 3
and x = 2 and x = 3, each of multiplicity 1. If ap and bp are any two real numbers
such that ag < 1 and &g = 3, then flag) f(bo) < 0. Thus, on the interval {ag, &y]
the bisection method will converge to one of the three zeros. If ag < 1 and by > 3
are selected such that ¢, = “"*ib" is not equal to 1, 2, or 3 for any » > 1, then the
bisection method will never converge to which zero(s)? Why?

15. If a polynomial, f(x), has an odd number of real zeros in the interval [ap, bp), and
each of the zeros is of odd multiplicity, then f{ap)f(bp) < 0, and the bisection
method will converge to one of the zeros. If ap < 1 and by > 3 are selected such that
=& “;b“ is not equal to any of the zeros of f(x) for any n > I, then the bisection
method will never converge to which zero(s)? Why?

Algorithms and Programs

1. Find an approximation (accurate to 10 decimal places) for the interest rate / that will
vield a total annuity value of $500, 000 if 240 monthly payments of $300 are made.

2, Consider a spherical ball of radius » = 15 cm that is constructed from a variety
of white oak that has a density of p = 0.710. How much of the ball {accurate to
8 decimal places) will be submerged when it is placed in water?

3. Modify Programs 2.2 and 2.3 to output a matrix analogous to Tables 2.1 and 2.2,
respectively (i.e., the first row of the matrix would be [0 ap co bg f (r_'o)]).

4. Use your programs from Problem 3 to approximate the three smallest positive roots
of x = tan{x) {(accurate to 8 decimal places).

5. A unit sphere is cut into two segments by a plane. One segment has three times the
volume of the other. Determine the distance x of the plane from the center of the
sphere (accurate to 10 decimal places).

Initial Approximation and Convergence Criteria

The bracketing methods depend on finding an interval [a, b] sothat f(a)and f (&) have
opposite signs. Once the interval has been found, no matter how large, the iterations
will proceed until a root is found. Hence these methods are called globally convergent.
However, if f{x} = 0 has several roots in [a, b], then a different starting interval myst
be used to find each root. It is not easy to locate these smaller intervals on which f(x)
changes sign.

In Section 2.4 we develop the Newton-Raphson method and the secant method for
solving f(x) = 0. Both of these methods require that a close approximation to the rool
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be given to guarantec convergence. Hence these methods are called locally convergenit.
They usually converge more rapidly than do global ones. Some hybrid algorithms start
with a globally convergent methed and switch to a locally convergent method when
the iteration gets close to a root.

If the computation of reots is one part of a larger project, then a leisurely pace
is suggested and the first thing to do is graph the function. We can view the graph
¥ = f(x) and make decisions based on what it looks like (concavity, slope, oscillatory
behavior, local extrema, inflection points, etc.). But more important, if the coordinates
of points on the graph are available, they can be analyzed and the approximate location
of roots determined. These approximations can then be used as starting values in our
root-finding algorithms. '

We must proceed carefully. Computer software packages use graphics software of
varying sophistication. Suppose that a computer is used to graph y = f(x) on [a, b].
Typically, the interval is partitioned into N + 1 equally spaced points: a = xp <

X] < .-+ < xy = b and the function values y; = f (x;) computed. Then either a
line segment or a “fitted curve” are plotted between consecutive points (xg_j, yr—1)
and (xg, ) for k = 1, 2, ..., N. There must be enough points so that we do not

miss a root in a portion of the curve where the function is changing rapidly. If f(x)
is continuous and two adjacent points (re—y, ye—1) and (xg, y¢) lte on opposite sides
of the x-axis, then the Intermediate Value Theorem implies that at least one root lies
in the interval [x¢—1, x;]. But if there is a root, or even several closely spaced roots,
in the interval [xx—;, x¢] and the two adjacent points (xy.-1, y¢—;) and (xz, ) lie on
the same side of the x-axis, then the computer-generated graph would not indicate a
situation where the Intermediate Value Theorem is applicable. The graph produced by
the computer will not be a true representation of the actual graph of the function f.
It is not unusual for functions to have “closely” spaced roots; that is, roots where the
graph touches but does not cross the x-axis, or roots “close” to a vertical asymptote.
Such characteristics of a function need to be considered when applying any numerical
root-finding algorithm.

Finally, near two closely spaced raots or near a double root, the computer-generated
curve between (xg-|, yr—1) and (x¢, y4) may fail to cross or touch the x-axis. If
| f{xg)! is smaller than a preassigned value € (i.e., f(xy) = 0), then x; is a tentative
approximate root. But the graph may be close to zero over a wide range of values near
xi, and thus x; may not be close to an actual root. Hence we add the requirement that
the slope change sign near (x, yi); thatis, m,_, = i:i;i:} and my = i::::i: must
have opposite signs. Since x; — xz—1 > 0 and xp41 — xx > 0, it is not necessary to use
the difference quotients, and it will suffice to check to see if the differences yr — yr—
and yg11 — y; change sign. In this case, x; is the approximate root. Unfortunately,
we cannot guarantee that this starting value will produce a convergent sequence. If the
graph of y = f(x} has a local minimum (or maximumy} that is extremely close to zero,
then it is possible that x; will be reported as an approximate root when f(xg) = 0,
although x; may not be close to a root.
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Table 2,3  Finding Approximate Locations for Roots

Function values Differences in y
Significant changes
% |y Y Yk = Yk-1 | Yk+l— Y in f(x)or f/x)
—-12 | -3.125 | —0968 2.157 1.329
~0.9 1 —0.968 0.361 1.329 0.663 f changes sign in [xg_1, x3]
-0.6 0.361 1.024 0.663 0.159
-0.3 1.024 1.183 0.159 -0.183 ' changes sign near x;
0.0 1.183 1.000 —0.183 —0.363
0.3 1.000 0.637 —0.363 —0.381
0.6 0.637 0.256 -0.381 -0.237
0.9 0.256 0.019 —0.237 0.069 F' changes sign near x;
1.2 0.019 0.088 0.069 0.537

Figure 2.18 The graph of the cu-
-10 bic polynomial y = x7 —x% — x + |

Example 2.9, Find the approximate location of the roots of x> — x2 — x + 1 = 0 on the
interval [—1.2, 1.2]. For illustration, chcose N = 8 and look at Table 2.3.

The three abscissas for consideration are —1.05, —0.3, and 0.9. Because f{x) changes
sign on the interval [—1.2, —0.9], the value —1.05 is an approximate root; indeed,
f(=1.05) = -0.210.

Although the slope changes sign near —0.3, we find that f(—0.3) = 1.183; hence
—0.3 1s not near a root. Finally, the slope changes sign near 0.9 and f(0.9) = 0.019, 50 0.9
is an approximate root (see Figure 2.10) | |
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Figure 2.11 (a) The horizontal convergence band for locating a solution to
flx)y=0.

Figure 2.11 (b) The vertical convergence band for locating a solution to f(x) =0.

Checking for Convergence

A graph can be used to see the approximate location of a root, but an algorithm must be
used to compute a value p, that is an acceptable computer solution. Heration is often
used to produce a sequence {p;} that converges to a root p, and a termination criterion
o1 strategy must be designed ahead of time s0 that the computer will stop when an
accurate approximation is reached. Since the goal is to solve f(x) = 0, the final value
P should have the property that | f(p,)] < e.

The user can supply a tolerance value ¢ for the size of | f(p,)| and then an iterative
process produces points P, = (pk, f(pe)) until the last point P, lies in the horizontal
band bounded by the lines y = +¢ and y = —e, as shown in Figure 2.11{a). This
criterion is useful if the user is trying to solve £{(x) = L by applying a root-finding
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algorithm to the function f(x} = h(x) — L.

Another termination criterion involves the abscissas, and we can try to ¢
the sequence | p;} is converging. If we draw the vertical lines x = p+8 anc
on each side of x = p, we could decide to stop the iteration when the p:
between these two vertical lines, as shown in Figure 2.11(b),

The latter criterion is often desired, but it is difficult to implement because it in-
volves the unkmown solution p. We adapt this idea and terminate further calculati
when the consecutive iterates p, | and p, are sufficiently close or if they agree wit
M significant digits.

Sometimes the user of an algorithm will be satisfied if p, = p,_; and other tim
when f(p,) = 0. Cormect logical reasoning is required to understand the con
quences. If we require that |p, — p) < § and | f{ps)| < €, the point P, will
located in the rectangular region about the solution (p, (), as shown in Figure 2.12(
If we stipulate that |p, — p| < § or {f{p,)| < €, the point P, could be loca
anywhere in the region formed by the union of the horizontal and vertical stripes, 2
shown in Figure 2.12(b). The size of the tolerances & and ¢ are crucial. If the tci-
erances are chosen too small, iteration may continue forever. They should be chosen
about 100 times larger than 10~ where M is the number of decimal digits in the
computer’s floating-point numbers. The closeness of the abscissas is checks: with onz
of the criteria

{Pn — pn-1] <&  (estimate for the absclute error)

or
2lpn — pr—1l <d

{estimate for the relative error).
|Pal + |Pr-1l

The closeness of the ordinate is usually checked by | f (pn)| < €.

Troublesome Functions

A computer solution to f(x} = O will almost always be in error due i
and/or instability in the calculations. If the graph ¥y = f(x) is steep n=z
(p, 0), then the root-finding problem is well conditioned (i.e., a solution with s :
significant digits is easy to obtain). If the graph y = f(x) is shallow near (p, 0), ther:
the root-finding problem is ill conditioned (i.e., the computed root may hav ‘a few
significant digits). This occurs when f(x) has a multiple root at p, This ¥ iscussed
further in the next section.
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Figure 2,12 {a) The rectangular region defined by |x — p] < § AND |y| < e.

Figure 2.12 (b} The unbounded region defined by |x — p| < OR |y| < ¢.
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Program 2.4 (Approximate Location of Roots). To roughly estimate the loca-
tions of the roots of the equation f(x) = 0 over the interval [a, b], by using the
equally spaced sample points {xg, f(x¢)) and the following criteria:

(i) (-1 (¥x) < 0, 01

(i) |yel < € and (v = Yu—1)(Vr+1 — 3) < 0.
That is, either f(x,—1) and f(x;) have opposite signs or | f(xz)| is small and the
slope of the curve y = f(x) changes sign near (xg, f (xz)).

function R = approot (X,epsilon)

% Input - f is the object function saved as an M-file named f.m
% - X is the vector of absecissas

% - epsilon is the tolerance

% Output - R is the vector of approximate roots

¥=f(X};

yrange = max(Y¥)-min(Y);
epsilon2 = yrange*epsilon;
n=length(X};

m=0;

X(n+1)=X(n);

Y{p+1)=Y(n);

for k=2:n,
if Y(k-1)*¥(k)<=0,
m=m+1;
R{m)=(X(k-1)+X(k))/2;
end
s=(Y(x)-Y (k-1 *(Y{k+1)-Y(k));
if (abs(Y(k)} < epsilon2) & (s<=0),
m=m+1;
R(m)=X{(k};
end
end

Example 2.10. Use approot to find approximate locations for the roots of f(x) =
sin(cos(x?)) in the interval [—2, 2]. First save f as an M-file named f.m. Since the results
will be used as initial approximations for a root-finding algorithm, we will construct X so
that the approximations will be accurate to 4 decimal places.

>>X=-2:.001:2;

>>approot (X,0.00001)

ans=

-1.9875 -1.6765 -1.1625 1.1625 1.67656 1.9875
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Comparing the results with the graph of f, we now have good initial approxirnations for
one of our root-finding algorithms. [ ]

Exercises for Initial Approximation

In Exercises | through 6 use a computer or graphics calculator to graphically determine
the approximate location of the roots of f(x) = 0 in the given interval. In each case,
determine an interval {a, #] over which Programs 2.2 and 2.3 could be used to determine
the roots (i.e., f(a)f (&) < 0).

1. f(x) = x%—¢& for -2 <=x=2

2, f(x)=x—cos(x)for -2<x <2

3. f(x) = sin(x) —2cos{x}for—2 <x <2

4. f(x) = cos(x) 4 (I +x)lfor-2<x=<2

5 fO)=(x—-2?—In(x) for0.5<x <45

6. flx)=2x—tan(x)for—14 <x <14

Algorithms and Programs

In Problems 1 and 2 use a computer or graphics caleulator and Program 2.4 10 approximaie
the real roots, to 4 decimal places, of each function over the given interval. Then use
Program 2.2 or Program 2.3 to approximate each root to 12 decimal places.
L. f(x) = 1,000,000x* — 111,000x2 + 1110x — 1 for —2 < x <2
2. fix)=5x"0 — 38x% 4+ 21x% — Sx® —3mx® — 5% £ 8x —3for—15 < x <15,
3. A computer program that plots the graph of y = f(x) over the interval [a, b] using
the points (xg, o), (X1, ¥1), - .., and (xn, yn) usually scales the vertical height of
the graph, and a procedure must be written to determine the minimum and maximum
vahues of f over the interval.
(a) Construct an algorithm that will find the values Yiyax = max{y¢} and Y =
ming {yx}.
(b) Write a MATLAB program that will find the approximate location and value of
the extreme values of f(x) on the interval {a, b].
(¢) Use your program from part (b} to find the approximate location and value of
the extreme values of the functions in Problems I and 2. Compare your approx-
imations with the actual values.
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Newton-Raphson and Secant Methods
Slope Methods for Finding Roots

If fix), f'(x), and f"(x) are continuous near a root p, then this extra information
regarcing the namre of f{x) can be used to develop algorithms that will produce se-
quences { p, } that converge faster to p than either the bisection or false position method.
The Newton-Raphson (or simply Newton's) method is one of the most useful and best
known algorithms that rebes on the continuity of f'{x) and f”(x). We shall inwreduce
it graphically and then give a more rigarous treatment based on the Taylor polynomial.

Assumne that the initial approximation pg is near the root p. Then the graph of
¥ = f(x) intersects the x-axis at the point (p, 0). and the point { po. f(pg)) lies on the
curve niear the point { p, 0) {see Figure 2.13). Define p; to be the point of intersection of
the x-axis and the line rangent w the curve at the point (pg. f(po)). Then Figure 2.13
shows that p; will be closer to p than pj in this case. An equation relating p) and po
can be found if we write down two versions for the slope of the tangent line L:

- fipo)
(1 m=———
- P

which is the slope of the line through {p;. () and (py, f'(po)), and
(2) m= f'{po)

which is the slope at the point (pg. f(po)). Eguating the values of the slope m in
equations (1} and (2) and solving for p; results in
_ S

' (po)

(3; g1 =

)
[.p]-ﬂfﬂ)l

.-

Py S

Figure 2.13 The geometric construction of py and po for
the Newton-Raphson method.
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The process above can be repeated 1 obtain 4 sequence {p;} that converges to p.
We row make these ideas more precise.

Theorem 2.5 (Newton-Raphson Theorem). Assume that f & C%a. b) and ‘here
exists a number p & [a, b], where f(p) = 0. [f f'{p) # 0, then there exists 2§ > 0
such that the sequence {p};% , defined by the iteration

flpe-1)
S e

will converge to p for any initial approximation py € [p — &, p + §].

(4 pe=g(px-1) = px 1 — for k=12, ...

Reinark. The function g{x) defined by formuia

_ . fx)
(3) glxy=x 0

is called the Newion-Raphson iteration function. Since f{p) = 0, it is easy 10 see
that g(p) = p. Thus the Newton-Raphson iteration for finding the root of the equation
f(x) = 0 is accomplished by finding a fixed point of the function g(x).

Progf. The geometric construction of p shown in Figure 2.13 does not help ir un-
derstanding why pg needs to be close to p or why the continuity of £”(x) is essential.
Our analysis starts with the Taylor polynomial of degree n = 1 and its remainder term:

Fleyx — po)?

(6) FCy= f{pe) + f (po)x - po) + o7

where c lies somewhere between py and x. Substituting x = p into equation (6) and
using the fact that f{(p) = 0 produces

, L S p = po)
(7) 0= fipo) + f (pm(p—poﬁ#'

Il g i5 close enough o p, the last term on the right side of (7) will be small com-
pared to the sum of the first two terms. Hence it can be neglected and we can use the
approximation

(8) 0= fipo)+ f'{poMp — po).

Soiving for p in equation (8), we get p = po — f(po)/f {py). This is used to define
the rext approximation p; to the root

fipo)
Fipay

When pg. ; is used in place of pg in equation (9), the general rule (4) is established. For

9 Pr=Ppo—

-most applications this is all that needs to be understood. However, to fully comprehend-
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what is happening, we need to consider the fixed-point iteration function and apply
Theorem 2.2 in cur situation. The key is in the analysis of g'(x):
F =1 Fof' )= faf'x) _ fo)f"x)
(f(x)? (f'(x)?

By hypothesis, f{p} = 0; thus g’(p} = 0. Since g’(p) = 0 and g(x) is continuous, it
is possible to find a § > 0 so that the hypothesis |g'(x}| < 1 of Theorem 2.2 is satisfied
on (p — &, p + &). Therefore, a sufficient condition for pp to initialize a convergent
sequence {pe )2 . which converges to arootof f(x) = 0,isthat pg € (p — 8, p+ )
and that & be chosen so that

Lf () f(x)]
[fr )1

(o <1 forallxe(p—8,p+H) .

CoroHary 2.2 (Newton’s Iteration for Finding Square Roots), Assumethat A > 0
is a real number and let pp > 0 be an initial approximation to +/A. Define the sequence
1273 yal using the recursive rule

A
Pi—1+ —

an Pk=——2'-'££——l for k=1, 2, ....

Then the sequence {py ]S, converges to ~ A; that is, limy o0 pr = VA.

OQutline of Proof.  Start with the function f(x) = x* — A, and notice that the roots of
the equation x2 — A = 0 are £+/A. Now use f(x) and the derivative f'(x) in formula
(5} and write down the Newton-Raphson iteration formula

f® x2—A

x —

N 2%

(12) glx)=x

This formula can be simplified to obtain

x+%

(13) glx) =

When g(x) in (13) is used to define the recursive iteration in (4), the result is formula
{11). It can be proved that the sequence that is generated in (11) will converge for any
starting value pg > 0. The details are left for the exercises. °

An important point of Corollary 2.2 is the fact that the iteration function g{x)
involved only the arithmetic operations +, —, x, and /. If g(x) had involved the cal-
culation of a square root, we would be caught in the circular reasoning that being able
to calculate the square root would permit you to recursively define a sequence that will
converge to +/A. For this reason, f(x) = x? — A was chosen, because it involved only
the arithmetic operations.
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Example 2.11.  Use Newton's square-root algorithm to find /5.
Starting with pg = 2 and using formula (11}, we compute

= 2+25/2 =215

- 3_35_%5_1222 =2.236111111
Py = w = 2236067978
g, 236067978 + 25/2.236067‘3""8 = 2.236067978.

Further iterations produce p; ~ 2.236067978 for k > 4, so we see that convergence
accurate to nine decimal places has been achieved, ]

Now let us turn to a familiar problem from elementary physics and see why de-
termining the location of a root is an important task. Suppose that a projectile is fired
from the origin with an angle of elevation g and initial velocity vy. In elementary
courses, air resistance is neglected and we learn that the height y = v(¢) and the dis-
tance fraveled x = x(¢), measured in feet, obey the rules

(14) Y= vyt — 16:2 and x = v,

where the horizontal and vertical components of the initial velocity are v, = vy cos{bg)
and v, = wgsin(bp), respectively. The mathematical model expressed by the rules
in (14} is easy to work with, but tends to give too high an altitude and too long a range
for the projectile’s path. If we make the additional assumption that the air resistance is
proportional to the velocity, the equations of motion become

(15) y=f() = (Cvy +32¢% (1 - e“/Q) _ R
and
(16) x = r(t) = Cu, (1-€7€),

where € = m/k and k is the coefficient of air resistance and m is the mass of the
projectile. A larger value of C will result in a higher maximum altitude and a longer
range for the projectile. The greph of a flight path of a projectile when air resistance is
considered is shown in Figure 2.14. This improved model is more realistic, but requires
the use of a root-finding algorithm for solving f(t) = 0 to determine the elapsed time
until the projectile hits the ground, The elementary model in (14) does not require a
saphisticated procedure to find the elapsed time.
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300'} (x, ) = (r{8), f02)

200

x Figure 2.14 Path of a projectile

200 400 600 800 1000 with air resistance considered.

Table 2.4  Finding the Time When the Height £(1} Is Zero

k Time, py Pr+t — Pk Height, f(p)
1] 2.00000000 0.79773101 83.22097200
1 8.79773101 —0.05530160 —6.68369700
2 8.74242941 —0.00025475 —0.03050700
3 8.74217467 —0.00000001 —0.00000100
4 8.74217466 0.00000000 0.00000000

Example 2.12. A projectile is fired with an angle of elevation by = 45°, vy = vy =
160 ft/sec, and C = 10. Find the elapsed time until impact and find the range.

Using formulas (15) and (16), the equations of motion are y = f(r) = 4800(1 —
e™"/1%) — 320t and x = r(1) = 1600(1 — ¢~"/1%)_ Since f(8) = 83.220972 and f(9) =
—31.534367, we will use the initial guess py = 8. The derivative is /() = 48Q¢™"/10 —
320, and its value f'(pg) = £'(8) = —104.3220972 is used in formula (4) 10 get

83.22097200

~ Si0a3220973 = 8.797731010.

p1=8

A summary of the calculation is given in Table 2.4.
The value py has eight decimal places of accuracy, and the time until itmpact is ¢ ~
8.74217466 seconds. The range can now be computed using r(¢), and we get

F(8.74217466) = 1600 (1 - e*G—“"’“”“ﬁ) = 932.4986302ft .

The Division-by-Zero Error

One obvious pitfall of the Newton-Raphson methed is the possibility of division by
zero in formula (4), which would occur if f'(py— ) = 0. Program 2.5 has a procedure
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to check for this situation, but what use is the last calculated approximation pg_; in
this case? It is quite possible that f(ps._;) is sufficiently close to zero and that p;
is an acceptable approximation to the root. We now investigate this situation and will
uncover an interesting fact, that is, héw fasi the iteration converges.

Definition 2.4 (Order of a Root). Assume that f{x) and its derivatives f'(x),
oor f™)(x) are defined and continuous on an interval about x = p. We say that
f{x) = 0 has aroot of order M at x = p if and only if

(17)
fpy=0, fip=0. ..., M Up =0 ad Mo

A root of order M = 1 is often called a simple root, and if M > 1, itis called a
multiple root. A root of order M = 2 is sometimes called a double reot, and so on.
The next result will illuminate these concepts. A

Lemma 2.1. If the equation f(x} = 0 has a root of order M at x = p, then there
exists a continuous function A(x) so that f(x) can be expressed as the product

(18) Fxy=(x— pMh(x),  where h(p) #£ 0.

Example 2.13. The function f(x) = x> — 3x + 2 has a simple root at p = —2 and a
double root at p = 1. This can be verified by considering the derivatives f'(x) = 3x% — 3
and f"(x} = 6x. At the value p = -2, we have f(—2) = Qand f(-2) = 9, so

M = 1 in Definition 2.4; hence p = —2 is a simple root. For the value p = 1, we have
F) =0, (1) =0, and f"(1) = 6, so M = 2 in Definition 2.4; hence p = 1 is a double
root. Also, notice that f(x) has the factorization f{x} = (x + 2)(x — 1}%. =

Speed of Convergence

The distinguishing property we seek is the following. If p is a simple oot of f(x) = 0,
Newton’s method will converge rapidly, and the number of accurate decimal places
(roughly) doubles with each iteration. On the other hand, if p is a multiple root, the
error in each successive approximation is a fraction of the previous error. To make
this precise, we define the order of convergence. This is a measure of how rapidly a
sequence converges.

Definition 2.5 (Qrder of Convergence). Assume that {p,}°°,, converges to p and
set £, = p — p, for n = (. If two positive constants A # 0 and R > 0 exist, and

- E
o el n+li=A‘

(19) im0 [p— palR  n—oc |EplR
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Table 2.5 Newton’s Method Converges Quadratically at a Simple Root

{Ep1l
k - Ey=p— —t
Pk P+l — Pk E=P— Pk EL L2

o —2.400000000 0.323809524 0.400000000 0.476190475
1 —2.076190476 0.072594465 0.076190476 0.619469086
2 ~2.003596011 0.003587422 0.003596011 0.664202613
3 —2.000008589 0.000008589 0.000008589

4 —2.000000000 0000000000 0.000000000

then the sequence is said to converge to p with order of convergence R, The num-
ber A is called the asymptotic error constant. The cases R = 1, 2 are given special
consideration.

20 If R = 1, the convergence of {p, ;:‘_’__0 is called linear.
2n If R = 2, the convergence of | p,,}ff__ﬂ is called quadratic. A

If R is large, the sequence { p, } converges rapidly to p; that is, relation (19) implies
that for large values of n we have the approximation {E,4 | = A|E, [%. For example,
suppose that R = 2 and |E,| =~ 1072; then we would expect that | E,4 1] &~ 4 x 1074,

Some sequences converge at a rate that is not an integer, and we will see that the
order of convergence of the secant method is R = (1 + +/5)/2 = 1.618033989.

Example 2.14 (Quadratic Convergence at a Simple Root). Start with pg = ~2.4
and use Newton-Raphson iteration to find the root p = —2 of the polynomial f(x) =
£* — 3x + 2. The iteration formula for computing {px} is

2p3 -2
(22) i = glpi-1) = ————.

3pi, - 3

Using formula (21} to check for quadratic convergence, we get the values in Table 2.5. =

A detailed look at the rate of convergence in Example 2.14 will reveal that the error
in each successive iteration is proportional to the square of the error in the previous
iteration. That is,

lp — prsil = Alp — pil?,
where A = 2/3. To check this, we use

Ip — p3l = 0.000008589 and |p — p2I? = [0.003596011}% = 0.000012931

and it is easy to see that

2
|p = ps3| = 0.000008589 ~ 0.000008621 = Z|p — .
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Table 2.6 Newton's Method Converges Linearly at a Double Roat

£ T P Pyt — Pk 7 Ey=p—py il
[

] 1.200000000 —0.096969697 ~-0.200000000 0.515151515
1 1.103030303 —0.050673883 —0.103030303 0.508165253
2 1.052356420 —0.025955609 —0.052356420 0.496751115
3 1.026400811 —0.013143081 ~0.02640081 1 0.509753688
4 1013257730 —0.006614311 ~0.013257730 0.501007775
5 1.006643419 —0.003318055 ~0.006643419 0.500550093

Examtple 2.15 (Linear Convergence at 2 Double Root).  Siart with pp = 1.2 and use
Newton-Raphson iteration to find the double root p = 1 of the polynomial f(x) = x> —
Ix + 2.

Using formula (20) to check for linear convergence, we get the values in Table 2.6. =

Notice that the Newton-Raphson method is converging to the double root, but at
a slow rate. The values of f(py) in Example 2.15 go w zero faster than the values
of f'(pe), so the quotient f(pe)/f’ (pe) in formula (4) is defined when pe # p.
The sequence is converging linearly, and the error is decreasing by a factor of approx-
imately 1/2 with each successive iteration. The following theorem summarizes the
performance of Newton’s method on simple and double roots.

Theorem 2.6 (Convergence Rate for Newton-Raphson Iteration). Assume that
Newton-Raphson iteration produces a sequence {p,}i—, that converges to the root p
of the function f(x). If p is a simple root, convergence is quadratic and

1P _
23 |E R ————[F, for n sufficiently large.
rr+!' 2|f’(P)| n! Yy larg
If p is a multiple root of order M, convergence is linear and
M—1 .
(24 JEsys) % ——~|Ex]  for n sufficiently large.
Pitfalls

The division-by-zero error was easy to anticipate, but there are other difficulties that
are not so easy to spot. Suppose that the function is f(x)} = x% — dx + 5; then the
sequence {p;} of real numbers generated by formula (4) will wander back and forth
from left to right and not converge. A simple analysis of the situation reveals that
f{x) = O and has no real roots.
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Figure 2,15 (a) Newton-Raphson iteration for f(x) =
xe~* can produce a divergent sequence.

Sometimes the initial approximation py is too far away from the desired root and
the sequence (p;} converges to some other root. This usually happens when the slope
F'ipo) is smail and the tangent line to the curve y = f(x) is nearly horizontal. For
example, if f(x) = cos(x) and we seek the root p = 7/2 and start with po = 3,
calculation reveals that p, = ~4.01525255, p, = —4.85265757, ..., and {pe} will
converge to a different root —3x/2 ~= --4.71238898.

Suppose that f(x) is positive and monotone decreasing on the unbounded interval
[a, >0) and pg > a; then the sequence {p;} might diverge to +o0, For example, if
f(x) =xe ¥ and py = 2.0, then

pi=40. p2=5333333333, ..., pis= 19723549434, .

and {py} diverges slowly to +oo (see Figure 2.15(a)). This particular function has
another surprising problem. The vatoe of f(x) goes 1o zero rapidly as x gets large, for
example, f(p15) = 0.0000000536, and it is possible that p1s could be mistaken for
a root. For this reason we designed stopping criterion in Program 2.5 to involve the
relative error 2| pgy1 — pi|/(|pei+107%), and when k = 135, this value is 0.106817, so
the tolerance 5§ = 10~ will help guard against reporting a false root.

Another phenomenon, cyeling, occurs when the terms in the sequence {p ) tend to
repeat or almost repeat. For example, if f(x) = x*—x —3 and the initial approximation
is po = 0, then the sequence is

p1=-3.000000, p2=-1961538, p3=-1.147176, p,; = -0.006579,
ps = —3.000389, ps=—1.961818, p7=—1.147430,

and we are stuck in a cycle where pri4 = pg fork =0, 1, ... (see Figure 2.15(b)).
But if the starting value py is sufficiently close to the root p ~ 1.671699881, then { p;}
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Figure 2.15 (b) Newton-Raphson iteration for f(x) =
x3 — x — 3 can produce a cyclic sequence.

¥
1 o
‘__-:::_ ! )
P Sty ' H
e L7 ! 1
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’ -1
y = arctan(x)

Figure 2.15 (c) Newton-Raphson iteration for f(x) =
arctan(x) can produce a divergent oscillating sequence.

converges. If po = 2, the sequence converges: p; = 1.72727272, ps = 167369173,
p3 = 1.671702570, and py = 1.671699881.

When |g’(x)| = 1 on ap interval containing the root p, there is a chance of di-
vergent oscillation. For example, let f(x) = arctan{x); then the Newton-Raphson
iteration function is g(x) = x — (1 + x%) arctan(x), and g’(x} = —2x arctan(x). If the
starting value pp = 1.45 is chosen, then

p1 = —1.550263297,  p; = 1.845931751,  p3 = —2.889109054,

etc. (see Figure 2.15(c)). But if the starting value is sufficiently close to the root p = 0,
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Figure 2.16 The geometric construction of ps for the se-
cant method.

a convergent sequence results. If pg = 0.5, then
p1 = ~0.079559511,  p», =0.000335302,  p3 = 0.000006000.

The situations above point to the fact that we must be honest in reporting an answer.
Sometimes the sequence does not converge. It is not always the case that after ¥
iterations a solution is found. The user of a root-finding algorithm needs to be wamed
of the situation when a root is not found. If there is other information concerning
the context of the problem, then it is less likely that an erroneous root will be found.
Sometimes f(x) has a definite interval in which a root is meaningful. If knowledge
of the behavior of the function or an “accurate” graph is available, then it is easier to
choose po.

The Secant Method

The Newton-Raphson algorithm requires the evaluation of two functions per iteration,
S{pe—1Yand f'(pr—1). Traditionally, the calculation of derivatives of elementary func-
tions could involve considerable effort. But, with modem computer algebra software
packages, this has become less of an issue. Still many functions have nonelementary
forms (integrals, sums, etc.), and it is desirable to have a method that converges almost
as fast as Newton’s method yet involves only evaluations of f(x) and not of f'(x).
The secant method will require only one evaluation of f(x) per step and at a simple
root has an order of convergence R == 1.618033989. It is almost as fast as Newion’s
method, which has order 2.

The formula involved in the secant method is the same one that was used in the
regula falsi method, except that the logical decisions regarding how to define each
succeeding term are different. Two initial points (pp, f (po)) and (py, f(p1)) near
the point (p, 0) are needed, as shown in Figure 2.16. Define p» to be the abscissa
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Table 2.7 Convergence of the Secant Method at a Simple Root

& Pr PR+l — Px Ey=p—p ﬁﬁ%
0 —2.600000000 0.200000000 0.600000000 0.914152831
1 —2.400000000 0.293401015 0.400000000 0.469497765
2 —2.106598985 0.083957573 0.106598985 0.847290012
3 —2.022641412 0.021130314 0.022641412 0.603608922
4 —2,001511098 0.001488561 0.001511098 0.825841116
5 —2.000022537 0.000022515 0.000022537 0.727100987
6 —2.000000022 0.000000022 0.000000022

7 —2.000000000 0.000000000 0.000000000

of the point of intersection of the line through these two points and the x-axis; then
Figure 2.16 shows that p; will be closer to p than to either pp or p;. The equation
relating pa, py, and py is found by considering the slope
- 0—
_fen-feo 0= f)
o1 — Po Pr— Pl

The values of m in (25) are the stope of the secant line through the first two approxi-
mations and the slope of the line through (p1, f(p1)) and (pa, 0), respectively. Set the
right-hand sides equal in (25) and solve for p» = g(pi, po) and get

fe)p) — po)
Fon~ o)

The general term is given by the two-point iteration formuia

F () pe — pr—1)

(25)

(26) P2 =g{pi, po) = pr ~

27 k+1 = 8(Pr, Pe—1) = Pk — :

Pk+1 = & k—1 p ) — f )
‘Example 2.16 (Secant Method at a Simple Root). Start with pp = —2.6 und
Pt = —2.4 and use the secant method to find the root p = —2 of the polynomial function

Flo)=x3—3x 42
In this case the iteration formula (27) is

(P} =3Pk + D(pr — pe—1)
Pi— Pi_y =3P+ 3pi

{28) Pir1 = 8(pr, pe—1) = px —

This can be algebraically manipulated to obtain

pipe1+ prpi_ -2
PE+pepioi+pi_ -3

(29) Pr+1 = g(Pk, Pr—1) =

The sequence of iterates is given in Table 2.7. n
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There is a relationship between the secant method and Newton’s method. For a
polynomial function f(x), the secant method two-point formula pg41 = g(pk. px-—1)
will reduce to Newton's one-point formula prq = g(pi) if py is replaced by py_).
Indeed, if we replace pg by pi_; in (29), then the right side becomes the same as the
right side of (22) in Example 2.14.

Proofs about the rate of convergence of the secant method can be found in advanced
texts on numerical analysis. Let us state that the error terms satisfy the relationship

.f”(P) 0618

30 Epy1| = | Ex| 618
(30 | Ex-1l & | Eg| 27 (P

where the order of convergence is R = (1 + +/5)/2 2 1.618 and the relation in (30) is
valid only at simple roots.
To check this, we make use of Example 2.16 and the specific values

|p — ps| = 0.000022537
ip — pal6'% = 0.001511098" %% = 0.000027296,

and
A= |~ /21 (~2){%5"® = (2/3)0518 = 0,778351205.

Combine hese and it is easy to see that

(p — psi = 0.000022537 ~ 0.000021246 = A|p — p4| 618,

Accelerated Convergence

We could hope that there are root-finding techniques that converge faster than linearly
when p is a root of order M. Qur final result shows that a modification can be made to
Newton’s method so that convergence becomes quadratic at a multiple root.

Theorem 2.7 {(Acceleration of Newton-Raphson Iteration). Suppose that the
Newton-Raphson algorithm produces a sequence that converges linearly to the root
x = p of arder M > 1. Then the Newton-Raphson iteration formula

Mf(pr-1}

3 = Pr| —
(31) Pk = Pk 7 (oe)

will produce a sequence { py ;2 , that converges quadratically to p.
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Table 2.8  Acceleration of Convergence at a Double Root

1Ek41
k P P41 — P Ex=p—px —
1Eg|?
0 1.200000000 —0.193939394 —0.200000000 0.151515150
1 1.006060606 —0.006054519 —{.006060606 0.165718578
2 1.000006087 —0.000006087 —0.000006087
3 1.000000000 0.000000000 0.000000000
Table 2.9 Comparison of the Speed of Convergence
Special Relation between
Method considerations successive SITor tlerms
Bisection Epy1 =~ %|Ek{
Regula falsi Epy =~ A|E|
Secant method Multiple reot Epy = A|Eg|
Newton-Raphson Multiple root Epy = A|E;|
Secant method Simple root Epy] =~ A|E;|1618
Newton-Raphson Simple root Ep 1~ A|E; |2
Accelerated Muttiple root Ep. = A|E?
Newton-Raphson

Example 2.17 {Acceleration of Convergence at a Double Root).  Start with pp = 1.2
and use accelerated Newton-Raphson iteration to find the double root p=1tof f(x) =
©-3x+2

Since M = 2, the acceferation formula (31} becomes

o= poy — 27D Pii+3p-1 -4
- F(pe) 3pf_, -3

and we obtain the values in Table 2.8. =

Table 2.9 compares the speed of convergence of the various root-finding methods
that we have studied so far. The value of the constant A is different for each method.
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Program 2.5 {(Newton-Raphson Iteration). To approximate a root of f(x) =0 |
given one initial approximation py and using the iteration ‘

S (-1
——— for k=1,
o o > |

function [p0,err.k,y]l=newton(f,df,p0,delta,epsilon,maxl)
%Input ~ f is the object function imput as a string I’
o ~ df is the derivative of f inmput as a string ’&f’

Pk = Pi—1—

% - p0 is the initial approximation to & zero of f

% ~ delta is the tolerance for p0

% - epsilon is the tolerance for the function values y
4 - max1 is the maximuw pumber of iteratioms

%0utput - p0 is the Newton-Raphson approximation to the zero
% - err is the error estimate for p0

% - k is the number of iterations

% - y is the funmction value £(p0)

for k=l:paxi

pl=pO-feval{f,p0}/feval (df,p0);

err=abs (pl-p0);

relerr=2»err/(abs(pl)+delta);

po=pl;

y=feval(f,p0);

if (err<delta)|{relerr<delta}! (abs{y)<epsilon),break,end
end

Program 2.6 (Secant Method). To approximate a root of f(x) = 0 given two |
initial approximations pg and p; and using the iteration ‘

J

FP (e — br—1)
) — fFlpe-1)

function [pl,err,k,yl=secant(f,pl,pl,delta,epsilon,maxl)
%Input - f is the object function input as a string ’f°

P41 = Pk — for k=12, ....

% - p0 and pl are the initia] approximations to a zZero
% - delta is the tolerance for pl

% - epsilon i8 the tolerance for the function values y
% - maxl is the maximum number of jiteratioms

%ODutput - pl is the secant method approximation to the zero

% - err is the error estimate for pl

4 - k is the number of iterationms

% - y is the function value f(pl)

for k=1:maxl
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p2=pi-feval (f,p1)*(pl-p0}/(feval(f,pld-fevall(f,pl));

err=abs (p2-pl);

relerr=2*err/ (abs(p2)+delta);

pO=p1;

pl=p2;

y=feval (f,pl);

if (err<delta)|(relerr<delta) | (abs(y)<epsilon),break,end
end

Exercises for Newton-Raphson and Secant Methods

For problems involving calculations, you can use either 2 calculator or computer.

1. Let f{x) =x—x+2
(a) Find the Newton-Raphson formula p; = g(pk-1).
(b) Start with py = —1.5 and find p1, pz, and p3.

2. Let f(x) =x%—x 3.
{a) Find the Newton-Raphson formula p; = g(pr—1).
{b) Start with pp = 1.6 and find p;, p>, and p3.
{¢) Start with po = 0.0 and find p|, p3. p3, and ps. What do you conjeciure about

this sequence?

3. Let f(x) = (x ~ 2)*.
(a) Find the Newton-Raphson formula py = g{pt—1).
(b) Start with po = 2.1 and find py, p2, p3, and pa.
(¢) Isthe sequence converging quadratically or linearly?

4, Let f(x) =x>—3x —2.
{(a) Find the Newton-Raphson formula py = g(px—1).
(b) Start with pp = 2.1 and find p,, p2, p3, and pa.
(¢} Is the sequence converging quadratically or linearly?

3. Consider the function f(x) = cos{x).
(a) Find the Newton-Raphson formula pr = g(pe—-1).
() We want to find the root p = 37 /2. Can we use pp = 37 Why?
(8 We want to find the root p = 37/2. Can we use pg = 57 Why?

6. Consider the function f(x) = arctan{x).
(a) Find the Newton-Raphson formula p; = g(pr-1).
(b} If po = 1.0, then find py, p2. p3. and ps. What is limp_, o0 pi?
(&) If pg = 2.0, then find p), p2. p3, and ps. What is lim, 00 Pr?



86 CHaP. 2 THE SOLUTION OF NONLINEAR EQUAT]ONS f().’) =0 SEC. 2.4 NEWTON-RAPHSON AND SECANT METHODS 87

7. Consider the function f(x) = xe™", Since p is a zero of f(x), we set x = p and obtain
{a) Find the Newton-Raphson formula p; = g(py_1). {
(b} 1f pp = 0.2 then find p1. p2, p3, and ps. What is limy—o0 pi? 0= flp+ f'(p)(p — pi) + Ef”(ck)([? - )t

(¢) If pg = 20, then find py(, p2, p3. and ps. What is limy,_, oo pr?
(d) What is the value of f(p4) in part (c)?

In Exercises 8 through 10, use the secant method and formula (27} and compute the next

(a) Now assume that f’'(x) # 0 for all x near the root p. Use the facts given above
and f'(px) # 0 to show that

flp) _ —f ()

two iterates ps and pa. P—pit+ oo = 20 (P~ p)’.
8. Let f(x) = x? — 2x — I. Start with py = 2.6 and p; = 2.5. Pe Pk
9. Let f(x) = x% — x — 3. Start with pg = 1.7 and p1 = 1.67. (b) Assume that f'(x} and f”(x} do not change too rapidly so that we can use the
approximations f’ 2 f'(pyand f"(ck) = f"(p). Ni art (a) to ge
10. Let f(x) = x3 — x + 2. Start with po = 1.5 and p; = —1.52. PP Fipo = f'(p) and f7(ce) = J"(p). Now use part (a) 10 g1
11. Cube-root algorithm, Start with f(x) = x> — A, where A is any real number, und Epyr =~ —f’ (p) Ef
derive the recursive formula 2f'(p)
5 Al 19. Suppose that A is a positive real number.
= MEIA for k=12, .... (a) Show that A has the representation A = ¢ x 22", where 1/4 < ¢ < landm is

k= 3 G

an iteger,

(b) Use part (a) to show that the square root is A2 = g!/2 « 2™ Remark. Let
po = (2g + 1)/3, where [/4 < g < 1, and use Newton’s formula (11). After
three iterations, p3 will be an approximation to g'/2 with a precision of 24
binary digits. This is the algorithm that is often used in the computer’s hardware

12. Consider f(x) = x¥ — A, where N is a positive integer.
(a} What real values are the solution to f(x) = 0 for the various choices of N and
A that can arise?

(b) Derive the recursive formula 10 Compute SQUATE TOOLS.
(N=Dpe_y + A/ p}i\’*l 20. (a) Show that formula (27) for the secant method is algebraically equivalent to
PE = =1 for k=12, ....
N _ B f{p) — pe S (pi-1)
Prt+l = -

Flpe) — Fipe-1)

(b) Explain why loss of significance in subtraction makes this formula inferior for
computational purposes to the one given in formula (27).

for finding the Nth root of A.

13. Can Newton-Raphson iteration be used to solve f(x) = 0if f(x) = x2 — 14x + 507
Why?
14. Can Newton-Raphson iteration be used to solve f(x) = 0if f(x) = x!/3? Why?
15. Can Newton-Raphson iteration be used to solve f(x) = 0if f(x) = (x — 3}!/2 and
the starting value is po = 47 Why? i = pyy — 2L SPE-1)
2
16. Establish the limit of the sequence in (11). f'(Pe-1)

17, Prove that the sequence {p;} in equation (4) of Theorem 2.5 converges to p. Use the
following steps. 22. Halley’s method is another way to speed up convergence of Newton’s method. The

Halley iteration formula is

21. Suppose that p is a root of order M = 2 for f{x) = 0. Prove that the accelerated
Newton-Raphson iteration

converges quadratically (see Exercise 18).

(a) Show thatif p is a fixed point of g(x} in equation (5) then p is a zero of f(x).

(b) If pisazeroof fix)and f'(p) # O, show that g'(p) = 0. Use part (b) and £ FOOF(x) -1
Theorem 2.3 to show that the sequence { pr} in equation (4) converges to p. glx)=x~— 00 (1 EETTTE )

The term in brackets is the modification of the Newton-Raphson formula. Halley’s
method will yield cubic convergence (R = 3) at simple zeros of f(x).
1 (@) Start with f{x} = x? — A and find Halley’s iteration formula g(x) for find-
- / Y N
Sxy= flpd+ Fpdx — p)+ Ef”(ck)(x PeY ing v/A. Use pg = 2 to approximate +/5 and compute p1, ps, and p3.

18. Prove equation (23) of Theorem 2.6. Use the following steps. By Theorem 1.11, we
can expand f(x) about x = py to get
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23.

24.

(b} Start with f(x) = x° — 3x + 2 and find Halley’s iteration formula g(x). Use
po = —2.4 and compute py, pz, and p3.

A modified Newton-Raphson method for multiple roots. If p is a root of multiplic-

ity M, then f(x) = (x — p)Mq(x), where ¢(p) # 0.

(a) Show that h(x) = f(x)/f'(x) has a simple root at p.

(b) Show that when the Newton-Raphson method is applied to finding the sitnple
root p of A{x) we get g(x) = x — h{(x)/k(x), which becomes

ff'x)
(f100N = fe)fr(x)

glxy=x—

(c) The iteration using g(x) in part (b) converges quadratically to p. Explain why
this happens.

(d) Zero is a root of multiplicity 3 for the function f(x) = sin(x?). Start with
po = 1 and compute p|, pz, and p3 using the modified Newton-Raphson
method.

Suppose that an iterative method for solving f(x) = 0 produces the following four
consecutive error terms (see Example 2.11): Eg = 0.400000, E| = 0.043797, E; =
0.000062, and E; = 0.000000. Estimate the asymptotic error constant A and the
order of convergence R of the sequence generated by the iterative method.

Algorithms and Programs

1.

el

Modify Programs 2.5 and 2.6 to display an appropriate error message when (i) di-
vision by zero occurs in (4) or (27), respectively, or (ii) the maximum number of
iterations, max1, ts exceeded.

. It is often instructive to display the terms in the sequences generated by (4) and (27}

(1.e., the second column of Table 2.4). Modify Programs 2.5 and 2.6 to display the
sequences generated by (4) and (27), respectively.

Modify Program 2.5 to use Newton’s square-root aigorithm to approximate each of
the following square roots to 10 decimai places.

(a) Start with py = 3 and approximate JE.

(b) Start with py = 10 and approximate /91.

(¢) Start with pp = —3 and approximate —+/8.

Modify Program 2.5 to use the cube-root algorithm in Exercise 11 to approximate
each of the following cube roots to 10 decimal places.

(a) Start with pp = 2 and approximate 7173,

{b) Start with pg = 6 and approximate 200'/3.

{¢) Start with pg = —2 and approximate (-7)!/3.
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5. Modify Program 2.5 to use the accelerated Newton-Raphson algorithm in Theo-

16.

rem 2.7 to find the root p of order M of each of the following functions.
(@ flx)=(x—2)°.M =35, p=2;start with pg = 1.

(b) fix)=sinfx3), M =3, p = 0; start with pg = 1.

€) flor=x-Dklx), M =2, p=1;stast with pg = 2.

. Modify Program 2.5 to use Halley’s method in Exercise 22 to find the simple 7er0 of

Fx) =x% — 3x + 2, using pp = ~2.4.

. Suppose that the equations of motion for a projeciile are

y = f{t) = 9600(1 — e™*/'3) — 480¢
X = r{t) = 240001 — e '/15),

(a) Find the elapsed time until impact accurate to 10 decimal places.

(b) Find the range accurate to 10 decimal places.

. (8) Find the point on the parabola y = x? that is closest to the point (3, 1) accurate

to 10 decimal places.

{(b) Find the point on the graph of y = sin(x — sin(x)) that is closest to the point
(2.1,0.5) accurate to 10 decimal places.

(¢} Find the value of x at which the minimum vertical distance between the graphs
of Fix) = x2 + 2 and g{x) = (x/5) — sin(x) occurs accurate to 10 decimal
places,

. An open-top box is constructed from a rectangular piece of sheet metal measuring 10

by 16 inches. Squares of what size (accurate to0 0.000000001 inch) should be cut from
the corpers if the volume of the box is to be 100 cubic inches?

A catenary is the curve formed by a hanging cable. Assume that the lowest point is
(0, 0); then the formula for the catenary is y = C cosh{x/C) ~ . To determine the
catenary that goes through (+a. b) we must solve the equation b = C cosh({a/C) —C
for C.

(@) Show that the catenary through (£10,6) is ¥ = 9.1889 cosh(x/9.1889) —
9.1889.

(h) Find the catenary that passes through (12, 5).
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2.5 Aitken’s Process and Steffensen’s and Muller’s Table 2.10  Linearly Convergent Sequence {p,}

Methods (Optional) E,
n Pn En=pn—p Ap = E
In Section 2.4 we saw that Newton’s method converged slowly at a multiple root and T T 060053 o 58661n_1
the sequence of iterates {pg} exhibited linear convergence. Theorem 2.7 showed how -606530660 0.039387369 | —0. 6609
. . . 2 0.545239212 | —0.021904079 | —0.556119357
to speed up convergence, but it depends on knowing the order of the root in advance. 3 | 0.579703095 0.012559805 | —0.573400269
4 0.560064628 | —0.007078663 | —0.363596551
s 5 0.571172149 0.004028859 | —0.569155345
?
Aitken’s Process 6 | 0564862947 | —0.002280343 | —0.566002341

A technique called Aitken’s A? process can be used to speed up convergence of any
sequence that is linearly convergent. In order to proceed, we will need a definition.

=5}

Definition 2.6. Given the sequence {p.};- . define the forward difference Ap, by
0 App = put1 - pn  fornz=0.

Higher powers A p,, are defined recursively by

) A pp = &Y (Ap,)  for k> 2. A

Theorem 2.8 (Aitken’s Acceleration). Assume that the sequence { Pﬂ}zio con-

verges linearly to the limit p and that p — p, # O forall n > 0. If there exists a
real number A with |A| < 1 such that

P — Pn+i1 -

{3) lim A,
AOC P Pn
then the sequence {g,}52, defined by
(APn)z (Pr+i — Pn)z

(4) Gn = pn — Pn —
"= P " pri2— 2pns + pa

converges (o p faster than {pa}}° . in the sense that

(5) lim |2 — %"

n—=00 p - pﬂ

=10.

Proof. We will show how to derive formula (4) and will leave the proof of {5) as an
exercise. Since the terms in (3) are approaching a limit, we can write

(6) PZPril on ang BTPn¥2 4 when n is large
P — Pn P — Pn+l

The relations in (6) imply that

@) (P — Pnt1)? = (P = pra2) (P ~ pu) .

Table 2.11 Derived Sequence {g,} Using

Aitken’s Process

n an gn—p

1 0.567298939 0.000155699
2 0.567193142 0.000049852
3 0.567159364 0.000016074
4 0.567148453 0.000005163
5 0.567144952 0.000001662
6 0.567143825 0.000000534

When both sides of (7) are expanded and the terms p2 are canceled, the result is

_ 2
P2 T Prt =g, forn=0,1,. ...
P42 = 2Pny1 + Pr
The formula in (8) is used to define the term g,. It can be rearranged algebraically to
obtain formula (4), which has less error propagation when computer calculations are
made. .

8

Example 2.18. Show that the sequence { p,} in Example 2.2 exhibits linear convergence,
and show that the sequence {g,} obtained by Aitken’s A2 process converges faster.

The sequence {p,} was obtained by fixed-point iteration using the function g(x) =
€™* and siarting with pg = 0.5. After convergence has been achieved, the limit is P =
0.567143290. The values p, and g, are given in Tables 2.10 and 2.11. For illustration, the
value of g1is given by the calculation

o=y - P2 P’
ps—2p2+pm
_ 2
= 0.606530660 — M = (0.567298989, [
0.095755331
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Figure 2.17 The starting approximations pg, p;, and p; for Mulier’s method, and the
differences hg and 4.

Although the sequence [g,} in Table 2.11 converges linearly, it converges faster
than {p,} in the sense of Theorem 2.8, and usuvally Aitken’s method gives a bettcr
improvement than this, When Aitken’s process is combined with fixed-point iteration,
the result is called Steffensen’s acceleration. The details are given in Program 2.7 and
in the exercises.

Muller’s Method

Muller’s method is a generalization of the secant method, in the sense that it doe-
not require the derivative of the function. It is an iterative method that requires thre:
starting points (po, f(pp)). (p1, f(p1)), and (pz. f(p2)). A parabola is constructe.i
that passes through the three points; then the quadratic formula is used to find a roo
of the guadratic for the next approximation. It has been proved that near a simpl.
root Muller’s method converges faster than the secant method and almost as fast a-
Newton’s method. The method can be used to find real or complex zeros of a function
and can be programmed to use complex arithmetic.

Without loss of generality, we assume that p; is the best approximation to th.
root and consider the parabola through the three starting values, shown in Figure 2,17
Make the change of variable

%) t=x—py,

and use the difference

(10) ho=po—p2 and hy=p1—po
Consider the quadratic polynomial involving the variable 7

(11 y=ar*+ bt +c.

SEC. 2.5 AITKEN'S PROCESS AND STEFFENSEN'S AND MULLER’S METHODS 93

Each point is used to obtain an equation involving 2, b, and c:
At 1 = hg: ah3+bho+c=fo,

(12) At t=hy a}ﬁ-\-bh\-\-c = fy,
At t=0  a0® +b0 +c= fo.

From the third equation in (12), we see that

(13) c= fa.

Substituting (13) inte the first two equations in (12) and using the definitioneg = fy~c¢
and e; = f1 — ¢ results in the linear system

aﬁg-{—bﬁozfo—czeo,

(14)
ah%+bh1 = fi—c=e.

Solving the linear system for @ and b results in

eoh| — e1hy
4= 2
h]ho —-hohl
15
) _ et} — eoh}

" hikd — hoh?’
The quadratic formula is used to find the roots 1 = z;3, 22 of (11):

—2c

(16) 1=

b+ /B2 —dac

Formula (16) is equivalent to the standard formula for the roots of a quadratic and is
hetter in this case because we know that ¢ = f>.

To ensure stability of the method, we choose the root in (16) that has the smallest
absolute value. If b > 0, use the positive sign with the square root, and if & < 0, use
the negative sign. Then p3 is shown in Figure 2.17 and is given by

{17 p3=pr+z

To update the iterates, choose po and p, to be the two values selected fromm among
{pa. p1, p3} that lie closest to ps (i.e., throw out the one that is farthest away). Then re-
place phiwith p3. Although a lot of auxiliary calculations are done in Muller’s method,
it only requires one function evaluation per iteration.

If Muller’s method is used to find the real roots of f(x) = 0, it is possible that
one may encounter complex approximations, because the roots of the quadratic in (16)
might be complex (nonzero imaginary components). In these cases the imaginary com-
ponents will have a small magnitude and can be set equal to zero so that the calculations
proceed with real numbers.
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Table 2,12 Comparisen of Convergences near a Simple Root

Secant Muller's Newton’s Steffensen
k method method method with Newton
0 —2.600000000 —2.600000000 =2.400000000 —2.400000000
1 —2.400000000 —2.500000000 —2.076190476 —2.076190476
2 —2, 106598985 —2.400000000 —2.003596011 —2.003596011
3. —-2.022641412 —1.985275287 —2.000008589 —1.982618143
4 —2.00£5i 1098 —2.000334062 —2.000000000 ~2.000204982
5 —2.000022537 —2.000000218 —2.000000028
6 —2.000000022 —2.000000000 —2.000002389
7 —2.000000000 —2.000000000
Comparison of Methods

Steffensen’s method can be used together with the Newton-Raphson fixed-point func-
tion g(x) = x — f(x)/f'(x). In the next two examples we look at the roots of
the polynomial f(x) = x* — 3x + 2. The Newton-Raphson function is g(x) =
(2x3 — 2)/(3x? ~ 3). When this function is used in Program 2.7, we get the calcula-
tions under the heading Steffensen with Newton in Tables 2.12 and 2.13. For example,
starting with py = —2.4, we would compute

(18) p1 = g(po) = —2.076190476,
and
(19) p2 = g(p1) = —2.003596011.

Then Aitken’s improvement will give p; = —1.982618143.

Example 2.19 (Convergence near a Simple Root). This is a comparison of methos
for the function f(x)} = x3 — 3x + 2 near the simple root p = 2.

Newton's method and the secant method for this function were given in Examples 2.14
and 2.16, respectively. Table 2.12 provides a summary of calculations for the methods. =

Example 2.20 (Convergence near a Double Root). This is a comparison of the methods
for the function f{x) = x* — 3x + 2 near the double root p = 1. Table 2.13 provides u
summary of calculations. -

Newton’s method is the best choice for finding a simple root (see Table 2.12). AT
double root, either Muller’s method or Steffensen’s method with the Newton-Raphson
formula is a good choice (see Table 2.13). Note in the Aitken’s acceleration formula (4
that division by zero can occur as the sequence {pz} converges, In this case, the last
calculated approximation to zero should be used as the approximation to the zero of J .
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Table 2.13 Compatison of Convergence Near a Double Root

Secant Muiler’s Newton's Steffensen
k method method method with Newton
a 1.400000000 1.400000000 1.200000000 1.200000000
1 1.200000000 1300000000 1.103030303 1.103050303
2 1.138461538 1.200000000 1.052356417 1.052356417
3 1.083873738 1.003076923 1.026400814 0.996890433
4 1.053093854 1.003838922 1.013257734 0.998446023
5 1.032853156 1.000027140 1.006643418 0.999223213
6 1.020429426 0.999997914 1.003325375 0.999999193
T 1.012648627 0.999999747 1.001663607 0.999999597
8 1.007832124 1.000000000 1.000832034 0.5999999798
L4 1.004844757 1.000416075 0.999999999

In the following program the sequence {p;), generated by Steffensen’s method
with the Newton-Raphson formula, is stored in a matrix { that has max1 rows and
three columns. The first column of Q) contains the initial approximation to the root,
o, and the terms p3, pe, . .., P, - .. generated by Aitken’s acceleration method (4).
The second and third columns of (¢ contain the terms generated by Newton’s method.
The stopping criteria in the program are based on the difference between consecutive
terms from the first column of Q.

Program 2.7 (Steffensen’s Acceleration). To quickly find a solution of the fixed-
point equation x = g(x) given an initial approximation pg; where it is assumed
that both g(x) and g’(x} are continuous, |g'(x¥{ < 1, and that ordinary fixed-point
iteration converges slowly (linearly) w p. j

function [p,Ql=steff(f,df,p0,delta,epsilon,maxl)
#lmput - f is the object function input as a string ’f’

h - df is the derivative of f input as a string ‘df’

% - p0 is the initial approximation to a zero of f

% - delta is the tolerapce for po

% - epsilon is the tolerance for the functiom values y
h - maxl is the maximum number of iterations

%Output - p is the Steffensen approximation to the zero

% - { is the matrix containing the Steffensen seguence
#Initialize the matrix R

‘B=zeros(max1,3) :

R(1,1)=p0;
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for k=1:maxl
fer j=2:3
YDencminator in Newton-Raphson method is calculated
nrdenom=faval {(df ,R(k,j-1)};

ACalculate Newton-Rapheon approxinations
if nrdenom==(0
’division by zero in Newton-Raphaon method’
break
else
R(k,j)=R(k,j-1)-feval(f ,R{k,j-1)}/nrdenom;
end

%Denominator in Aitken’s Acceleration process calculate

aadenon=R{k,3)-2%R(k,2)+R(k,1);

“%Calculate Aitken’s Acceleration approximations
if aadenom==0
’division by zero in Aitken’s Acceleration’
break
else
R(k+1,1)=R(k,1)-(R(k,2)-R(k,1))"2/aadenom;
end

and

%End program if division by zero occurred
3f (nrdencm==0) | (aadenom==0)

break
end

%Stopping criteria are evaluated
err=abs(R{k,1)-R(k+1,1));
relerr=err/{abs{R(k+1,1))+delta);
y=feval(f R(k+1,1};;
if (err<delta)|(relerr<delta)](y<epsilon’
% p and the matrix J are deterrined
p=R{k+1,1);
Q=R{1:x+1,:];
breax
end

end
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: Program 2.8 (Muller’s Method). To find a root of the equation f(x) = O given

three distinct initial approximations pg. p;, and p;.

fucction [p,y,err]=muller(f,p0,pl,p2,delta epsilon,rax1i}
%Input - £ is the object functiom input as a ®siring 'f’

o
%
Y
s
N
il

»
fe

.
/e
)3

- p0, pl, and p2 are the initial approximations

- delta jis the toleraance for p0, pi, and p2

- epsilon the the tolerance for the function values y
- maxl is the maximum number of iterations

%0utput - p is the Muller approximation to the Zzerc of f

~ y ie the, function valve y = f(p)
- exr is the errcr in the approximation of p.

%Initialize the matrices P and Y
P=[p0 p1 p2];

¥Y=foval (f,P);

#Calculate a and b in fermula (15)
for k=1:maxl

h0=P(1}~P{(3) ;h1=P(2)-P(3) ;e0»Y(1)-Y(3) ;01=Y(2)-Y(3);c=Y(3);
denom=h1*h0~2-h0*h1"2;

a={a0*hi-ai1*h0) /denomn;

b={e1*h0"2-e0+h1"2) /denon;

%Supprese any complex roots
if b 2-44a%xc > 0
disce=aqrt (b 2-4kaxc);
elsa
disc=0;
end
YFind the smallest root of (17
ifb<O
dige=-disc;
and
z=-2*c/(b+disc);
p=P(3)+z;
%Sort the entries of P to find the two closest to p
if abs(p-F(2))<abs(p-P(1))
QP (2) P(1) P(3)];
P=Q;
Y=faval(f,P>;
end
if abs{p-P(3))<abs(p-P(2))
R=[P(1) P{3) P(2)];
P=R;
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Y=feval (f,P);
end

%Replace the entry of P that was farthest from p with p
P(3)=p;

¥(3) = feval(f,P(3));

y=Y(3);

%Determine stopping criteria

err=abs(z);

relerr=err/(abs(p)+delta);

if (err<delta)|(relerr<delta) | {abe(y)<epsilon)
break

end

end

Exercises for Aitken’s, Steffensen’s, and Muller’s Methods

1. Find Ap,, where

@ p.=5 ) prn=6tn+2 © py=nn+1)
2. Let pn = 2n° + 1. Find A* p,, where
(a) k=2 (b k=3 () k=4

3. Let p, = 1/2". Show that g, = 0 for all n, where g, is given by formula (4).

4. Let p, = 1/n. Show that g, = 1/(2n + 2) for all n; hence there is little acceleration
of convergence. Does {p,} converge to 0 linearly? Why?

5. Let pn = 1/(2" — 1). Show that g, = 1/ (4"*! — 1) for all n.

6. The sequence p, = 1/(4” + 47"} converges linearly to 0. Use Aitken’s formula (4)
to find ¢1, g2,and g3, and hence speed up the convergence.

Pn _ n
0.5 —0.26437542
0.23529412
0.06225681
0.01562119
0.00390619
0.00097656

Chi Bt tdfe| o =

7. The sequence { p,} generated by fixed-point iteration starting with pg = 2.5 and using
the function g(x) = (6 + x)'/2 converges linearly to p = 3. Use Aitken’s formula
{4 to find g1, g2, and g3, and hence speed up the convergence.
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8. The sequence {p,} generated by fixed-point iteration, starting with po = 3.14, and
using the function g(x) = In(x) -+ 2 converges linearly to p = 3.1419322. Use
Aitken’s formula (4) to find ¢), g2, and g3, and hence speed up the convergence.

9. For the equation cos(x) — 1 = 0, the Newton-Raphson function is gxy=x—(1—
cos(x))/ sin(x) = x — tan(x/2). Use Steffensen’s algorithm with g(x) and start with
po = 0.5, and find p1, p2, and p;; then find p4, ps, and ps.

10. Convergence of series. Aitken’s method can be used to speed up the convergence of
a series. If the rth partial sum of the series is

n
Se = Z Ag.
k=1
show that the derived series using Aitken's method is

2
An+l

Tn = § + .
" Apyr — Anyz

In Exercises 11 through 14, apply Aitken’s method and the results of Exercise 10 to speed
up the convergence of the series.

11, S, = 3 5_,{0.99)%

12. 5, =37 Bﬁf

13. 8, = Yhoy 5

1.5, = i

15. Use Muller’s method to find the root of f(x) = x> — x ~ 2. Start with pg = 1.0,
p1=12,and p2 = 1.4 and find p3, ps, and ps.

16. Use Muller’s method to find the root of f(x) = 4x? — ¢*. Staxt with pp = 4.0,
p1=4.1,and p; = 4.2 and find p3, ps, and ps.

17. Let {p,} and {g,] be any two sequences of real numbers. Show that
(@) A(pn+gn) = Apn+ Agn
(b) A(pn?n) = Pn+IAG’n + gnAPn

18. Start with formula (8), add the terms p,+2 and — p42 to the right side, and show that
an equivalent formula is

(Pnt2 = pnr1)*
Pri2 — 2ppti + pu

P ™ Pnya — n-
19. Assume that the error in an iteration process satisfies the relation Eny1 = KE, for
some constant K and | K| < 1.
(a)} Find an expression for E, that involves Ep, K, and n.
(b) Find an expression for the smallest integer N so that [Ex| < 1078,
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Algorithms and Programs

1.

Use Steffensen’s method with the initial approximation pg = 0.5 to approximate the
zero of f(x) = x — sin(x) accurate to 10 decimal places.

. Use Steffensen’s method with the initial approximation pg = 0.5 to approxirmate the

zero of f(x) = sin(x?) closest to 0.5 accurate to 10 decimal places.

Use Muller’s method with the initial approximations pg = 1.5, py = 1.4, and
p2 = 1.3 tofind a zero of f(x) = 1 + 2x — tan(x) accurate to 12 decimal piaces.

In Program 2.8 (Muller’s method)} a 1 x 3 matrix P is initialized with pg, p1, and p.
Then at the end of the loop, one of the values pp, p), or ps is replaced with the new
approximation to the zero. This process is continued until the stopping criteria are
satisfied, say at k = K. Modify Program 2.8 so that, in addition to p and err, a
(K + 1) x 3 matrix @ is produced such that the first row of @ contains the 1 x 3
mairix P with the initial approximations to the zero, and the kth row of @ contains
the kth set of three approximations to the zero.

Use this modification of Program 2.8 with the initial approximations py = 2.4,
p1 = 2.3, and p; = 2.2 to find a zero of f(x)}) = 3cos(x) + 2sin(x) accurate to
8 decimal places.

LA |

The Solution of Linear Systems
AX =B

Three planes form the boundary of a solid in the first octant, which is shown in Fig-
ure 3.1. Suppose that the equations for these planes are

Sx+y+z=35
x+4y+z=4
x+y+3z=3.

What are the coordinates of the point of intersection of the three planes? Gaussian
elimination can be used to find the solution of the linear system

x=076, y=068 and z=052.

In this chapter we develop numerical methods for solving systems of linear equations,

Introduction to Vectors and Matrices

A real N.dimensional vector X is an ordered set of N real numbers and is usually
written in the coordinate form
H X=(x1,x....,xn).

I-_Ielte the numbers xy, x3, ..., and xy are called the components of X. The set con-
sisting of all N-dimensional vectors is called N-dimensional space. When a vector is
used to denote a point or position in space, it is called a position vector. When it is

101
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Figure 3.1 The intersection of three planes

used to denote 2 movement between two points in space, it is called a displacement

vector.
Let another vectorbe ¥ = (yy, ¥, ..., yn). The two vectors X and ¥ are said to

be equal if and only if each corresponding coordinate is the same; that is,

2) X=Y ifandonlyif x;=y; forj=1,2 ..., N.

The sum of the vectors X and Y is computed component by component, using the
definition

3) X+¥Y=+ynx+y...,x8 +¥n8).

The negative of the vector X is obtained by replacing each coordinate with its
negative:

Gy —X = (—xj, —x2, ..., —x¥N).
The difference ¥ — X is formed by taking the difference in each coordinate:

&) Y —Xe=(y1—x,y2—x2,....y8 —xn).
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Vectors in N-dimensional space obey the algebraic property
(6) Y- X=Y+(-X)

If ¢ is a real number (scalar), we define scalar multiplication c X as follows:
{7y cX = (cxj,exz, ..., cxn).

If ¢ and d aré scalars, then the weighted sum ¢ X + dY is called a linear combing-
tion of X and ¥, and we write

(8) cX +dY = (cx; +dyr,exa+dyr, ..., cxy +dyy).

The dot product of the two vectors X and ¥ is a scalar quantity (real number)
defined by the equation

@) X-Y=xiyi+xm+--+xyyw.
The norm (or length) of the vector X is defined by
(10) X0 = G + x5 + -+ 22012,

Equation (10) is referred to as the Euclidean norm (or length) of the vector X.
Scalar multiplication ¢X stretches the vector X when el > 1 and shrinks the

vector when |e{ < 1. This is shown by using equation (10):
(an leX |l = (xf + % + -+ 2xf)! 2
=lelxf +x3 4+ 22 = el X].

An important relationship exists between the dot product and norm of a vector, If
both sides of equation (10) are squared and equation (9) is used, with ¥ being replaced
with X, we have

(12) IXPP=x?4+x3 4+ +x3 =X.X.
If X and Y are position vectors that locate the two points (x, x3, ..., xn) and
. ¥z, ..., yn) in N-dimensional space, then the displacement vector from X to Y

is given by the difference
{13) Y — X  (displacement from position X to position ¥).

Notice that if a particle starts at the position X and moves through the displacement
¥ — X, its new position is ¥. This can be obtained by the following vector sum:

(14) hy Y=X+(¥-X).
Using equations (10) and (13), we can write down the formula for the distance
between two points in N-space.
2 p 2 1/2
A5 ¥ = Xl= (01— x)? + Gz = x4+ G —xw)?)

When the distance between points is computed using formula (15), we say that the
points lie in N-dimensional Euclidean space.
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Example 3.1. Let X = (2,-3,5,—1)and ¥ = (6, 1, 2, —4). The concepts mentioned
above are now illustrated for vectors in 4-space.

Sum X+Y=(8,-27-5

Difference X-Y=(-4,-4,373

Scalar multiple 3X = (6, -9, 15, -3)

Length IX)| = (4+9+25+ 1)/2 =392
Dot product X Y=12-3+10+4=23

Y¥-X=04.4-3-3

Displacement from X to ¥
(¥ -X|=(6+16+9+9N2=501/? a

Distance from X to ¥

It is sometimes useful to write vectors as columns instead of rows. For example,

Xi Y1

X2 ¥z
(16} X=1. and Y=/| .

AN YN

Then the linear combination cX + dY is

cx) +dy;

cxy +dys
(7 cX +dY = i

cxy +dyn

By choosing ¢ and d appropriately in equation (17), we have the sum 1X + 1Y,
the difference 1 X — 1Y, and the scalar multiple ¢X + 0Y. We use the superscript “’",
for transpose to indicate that a row vector should be converted to a column vector, and

vICE versa.

X1 X
X2 X2

(18) (-xlsx24---an)’= . and . =(xt,x2,...,XN).
XN AN

The set of vectors has a zero element 0, which is defined by
(19) 0=1(0,0,....0)

Theorem 3.1 (Vector Algebra). Suppose that X, Y, and Z are N-dimensional vec-
tors and a and b are scalars (real numbers). The following properties of vector addition
and scalar multiplication hold:

200 Y+X=X+Y commutative property
21y 0+ X=X=+0 additive identity
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2y X-X=X+(-X)=0 additive inverse

23) X+N+Z=X+X+2) associative property

24) (a+b)X =aX +bX distributive property for scalars
(25) a(X+Y)=aX +a¥Y distributive property for vectors
(26) a(bX) = (ab)X associative property for scalars

Matrices and Two-dimensional Arrays

A matrix is a rectangular array of numbers that is arranged systematically in rows and
columns, A matrix having M rows and ¥ columns is called an M x N (read “M by N7)
matrix. The capital letter A denotes a matrix, and the lowercase subscripted letter a;;
denotes one of the numbers forming the matrix. We write

27 A=lajlyny for l<i=M1<j<N,

where a;; is the number in location (i, j) (i.e., stored in the ith row and jth column
of the marrix). We refer to a;; as the element in location (i, j). In expanded form we
write

aip 4dip e a)j e AN
azy 4z - azj e oy
(28) . ] ' ' ) = A.
rowi — | 4 aiz e dij cer IN
Lasm1  am2 - amj St aMN
T
column j

The rows of the M x N matrix A are N-dimensional vectors:
(29) V; =(aj1. a2, ....4iN) fori=1,2, ..., M.

The row vectors in (29) can also be viewed as | x N matrices. Here we have sliced
the M x N matrix A into M pieces (submatrices) that are | x N matrices.

In this case we could express A as an M x 1 matrix consisting of the 1 x N row
matrices V;; that is,

v
Va

(30) A= V, =[Vi Vi -0 Vi o Vil

Vu
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Similarly, the columns of the M x N matrix A are M » 1 matrices:

an (au [ain ]

az| az; a2y
By o= |, ... c=]|" .. Cn=

aiy T ay [ N T

| da1 | | aM; | aMN_J

In this case we could express A asa I x N matrix consisting of the M x 1 column
matrices C;:

(32) A=[C; €2 - €; - Cn].

Example 3.2, Identify the row and column matrices associated with the 4 x 3 matrix

-2 4 9
I R
A=19 3 3
-4 6 -5

The four row matricesare V; = [-2 4 9, va= [5 -7 1, V3= [0 -3 8],
and V4 =[-4 6 —5]. The three column matrices are

-2 4 9
5 -7 1
Ci=1 41, €= _3 and C3= g
—4 6 -5
Notice how A can be represented with these matrices:
L8
1%
A= Vi = [C 1 Cy C 3] . [
Va

let A = [a,-,-]MxN and B = [by;],,, » be two matrices of the same dimension.
The two matrices A and B are said to be equal if and only if each corresponding
element is the same; that is,

(33) A=B if and only if a; =b; for l=i<M,1<j<N.

The sum of the two M x N matrices A and B is computed element by element,
using the definition

(34 A+ B=lai+bijly,.y forl<isM I<j<N
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The negative of the matrix A is obtained by replacing each element with its nega-
tive:
(35) —A={—GU}MXN fﬂrISiSM, IS]SN

The difference A — B is formed by taking the difference of corresponding coordi-
nates:

(36) A—B=[aj—bijly,y forl=<isM 1=<j=<N.
If ¢ is a real number (scalar), we define scalar multiplication c A as follows:
(37 cA =[cajjlyy forl<i<M, 1=j<N.

If p and g are scalars, the weighted sum pA + g B is called a linear combination
of the matrices A and B, and we write

38 PA+qB =|pajj+abyly,y forlsisM 1=jsN
The zero matrix of order M x N consists of all zeros:

(39) 0 =[Olpyrxn.

Example 3.3. Find the scalar multiples 2A and 3 B and the linear combination 24 — 3B

for the matrices
—1 2 -2 3
A= 7 5 and B = 1 —41.
31 -4 | —9 7
Using formula (37), we obtain

S [ —6 9
2A=| 14 10 and 3B= 3 12,
6 —8 |—27 21

The linear combination 2A — 3 B is now found:

—24+6 4-9 4 -5
24-3B=1| 14-3 1W0+12]=|11 22].

6+27 —B-121 33 -29

Theorem 3.2 (Matrix Addition). Suppose that A, B, and C are M x N matrices
and p and g are scalars. The following properties of matrix addition and scalar multi-

plication hold:

40y B+A=A+B commutative property

41) 0+A=A4+0 additive identity

42) A—A=A4+(-A)=0 additive inverse

43) (A+B)+C=A+(B+C) associative property

44) (p+g)A=pA+ga distributive property for scalars
45) p(A+ B)=pA+ pB distributive property for matrices
(46) p{gA)=(pq)A associative property for scalars
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Exercises for Introduction to Vectors and Matrices

The reader is encouraged to carry out the following exercises by hand and with MATLAB.

1. Giventhe vectors X and ¥, find (@) X + ¥, (b X — ¥, €¢) 3X. (d) )| X[, () 7Y — 4X,
XY, and (g} 7Y - 4X).
i} X=03 -4and¥ =(-2,8)
() X=¢(-6,32and? = (-85, 1)
iy X =@ -8, Dand¥ ={1, -12 - ID)
(iv) X=(.-2.42and¥ = (3, -5, -4

2. Using the law of cosines. it can be shown that the angle ¢ between two vectors X and
Y i1s given by the relation

XY

cost®) = TxiEn

Find the angle. in radians, between the following vectors:

(a} X=(~632)and¥ =(2,-2, 1)

(bY X=(4,~-8 Lyand¥ = (3,4,1D)
3. Two vectors Xand ¥ are said to be orthogonal (perpendicuiar) if the angle between

them is /2.

(a) Frovethat X and ¥ are orthogonal if and only if X - ¥ = 0.

Use part (a; (0 determine if the following vectors are onhogonal.

(h) X=(-6.4,2)and¥ = (6.5,8)

e} X =(-4.83and¥ =(2.5,16)

d) X =(-53.72)and¥Y =(4,1,6)

(e} Find two different vectors that are orthogonal 1o X = (1, 2, —5).
4. Find(a) A + B, (b) A — B, and {¢) 34 - 2B for the matrices

l’—l 9 4] ['"--4 9 27
=i 2 -3 -6, B=| 3 -5 7).
o s 7J L8 1 -6]

5. The transpose of an M x N matrix A, denated A', is the N x M matrix obtuned
from A by conventing the rows of A 1 columns of A’. That is, if A = laglyy o o
A’ = [bij]y e then the elements satisfy the refation

by=a; for I<i<M|=j<N.

Find the transpose of the following matrices.
-2 5 R

4 9 2

1 4 -
(a) 7 0 6 th) |3 5 7}
1 -3 8 816
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6. The square matrix A of dimension N x N is said to be symunetric if A = A’ (see
Exercise 5 for the definition of A”). Determine whether the following square matrices
are gymrnetric.

1 -7 4 4 -7 |
m |-7 2 0 ®m (0 2 -7
4 0 3 i 0o 4

if =]

(€©) A=l[ajlyy whereay = i—ij4j i

cos(ij) i=j
i—ij—j i#j
7. Prove statements (20), (24), and (25) in Theorem 3.1.

dy A=[ajluxn,wherea; = ‘

3.2 Properties of Vectors and Matrices

A linear combination of the variables x|, x7, ..., xy i5 a sum
(1) mx|+ a4+ - —anxy
where 4. is the coefficientof x, fork = 1,2, ..., V.
A linear equation in x1, x2, . . ., X is oblained by requiring the linear combination

in (1} to take on a prescribed value &; that is,
2) aix)+aym+ - +ayxy =0,
Systems of linear equations arise frequently, and if M equations in N unknowns
are given, we write
anx| +anxy + +anxy = b
anx| +apx; +--+awiy =

(3) ’
akixy +agaxy + -+ awnxy = by

apIX| + X7+ Ay Ay = by
To keep wack of the different coefficients in each equation, 1t is necessary 1o use the
two gybscripts (k, j). The first subscript locates equation k and the second subscript
locates the variable x;.
A solution to (3) is a set of pumerical values x|, xz. ..., xy that sarisfies all the
equations in {3) simultanecusly. Hence a solutian can be viewed as an N-dimensional
vecior:

4) X =(x1.x2,...,xn).
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Example 3.4. Concrete (used for sidewalks, etc.) is a mixture of portland cement, sand,
and gravel. A distributor has three batches available for contractors. Batch 1 contains ce-
ment, sand, and gravel mixed in the proportions 1/8, 3/8, 4/8; batch 2 has the proportions
2/10, 5/10, 3/10; and batch 3 has the proportions 2/5, 3/5, 0/5.

Let x1, x2, and x3 denote the amount (in cubic yards) 10 be used from each baich to
form a mixture of 10 cubic yards. Alsa, suppose that the mixture is to contain b; = 2.3,
& = 4.8, and b3 = 2.9 cubic yards of portland cement, sand, and gravel, respectively.
Then the system of linear equations of the ingredients is

0.125x; + 020052 + 0.400x3 =23 (cement)
(5) 0.375x; + 0.500x3 4 0.600x3 = 4.8  {sand)
0.500x; 4+ 0.300x; + 0.000x3 = 2.9 (gravel)

The solution to the linear system (5) is x; = 4, x; = 3, and x3 = 3, which can be verified
by direct substitution into the equations:

(0.125)(4) + (0.200)(3) + (0.400)(3) = 2.3
(0.375)(4) + (0.500)(3) + (0.600)(3) = 4.8
(0-500)(4) + {0.300)(3) + (0.000)(3) = 2.9 M

Matrix Multiplication

Definition 3.1. If A = {alyxny and B = [Bijlnxp are two matrices with the
property that A has as many columns as B has rows, then the matrix product AB is
defined to be the matrix C of dimension M x P:

(6) AB =C = [CU]M)(P’

where the element c;; of C is given by the dot product of the ¢th row of A and the jth
column of B:

N
) cij = Zaikbkj =anbij +appbj + -+ ainby;
k=1

fori=1,2,...,Mandj=1,2,..., P. "

Example 3.5. Find the product C = A B for the following matrices, and tell why BA is

not defined.
| 2 3 15 =2 1
A‘“[—l 4}' B‘[3 8 —6]'

The matrix A has two columns and B has two rows, so the matrix product AB is
defined. The productof a2 x 2 and a 2 x 3 matrix is 4 2 x 3 matrix, Computation reveals
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S S

_[10+9 —ay24 2-18] _F19 20 -16] _ .
= L7 o34 5|7

that

5412 2432 —-1-24

When an attempt is made to form the product B A, we discover that the dimensions are
not compatible in this order because the rows of B are three-dimensional veciors and the
columns of A are two-dimensional vectors. Hence the dot product of the jth row of B and
the kth column of A is not defined. [ ]

If it happens that AB = BA, we say that A and B commute. Most often, even
when AB and B A are both defined, the products are not necessarily the same,

We now discuss how to use matrices to represent a linear system of equations.
The linear equations in (3) can be written as a matrix product. The coefficients a; .
are stored in a matrix A (called the coefficient matrix) of dimension M x N, and the
unknowns x ; are stored in a matrix X of dimension N x 1. The constants ; are stored
in a matrix B of dimension M x 1. It is conventional to use column matrices for both

X and B and write

ayy dy - ayy o e am-| x| Fb\
ax  axn - dzp - aan || x2 by
(8) AX = ) i ’ : =1, | =8
arl ag2 akj akN .Ij b_’
LaMy am2 - amj ccc GMNLXEN) b

The matrix multiplication AX = B in (8) is reminiscent of the dot product for
ordinary vectors, because each element by, in B is the result obtained by taking the dot
product of row & in matrix A with the column matrix X.

Example 3.6. Express the system of linear equations (5) in Example 3.4 as a matrix
product. Use matrix multiplication 1o verify that [4 3 3) is the solution of (5):

0.125 0.200 0400 | x 2.3
% 0375 0500 0600 |x2|=]487].
0.500 0300 0.000) | x3 2.9

To verify that [4 3 3] is the solution of (5), we must show that A[4 3 3] =
[23 48 29]

0.125 0.200 0400 (4 05+06+1.2 2.
0375 0500 060013 =[154+154+18|=|48].
0.500 0.300 0.000§ |3 20+094+0.0 29 -
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Some Special Matrices

The M x N matrix whose elements are all zero is called the zero matrix of dimen-
sion M « N and is denoted by

(10) 0 = [0]asn.

When the dimension is clear, we use 0 to denote the zero matrix.
The identity matrix of order N is the square matrix given by

1 wheni — j,
(11 Iy =1[8i)]y.y where &=
{11) N [ UJ;\,,.‘,\, ij I0 when i £ f.
It is the multiplicative identity, as illustrated in the next example.

Example 3.7. Let A be a2 x 3 matrix. Then 124 = Al4 = A. Multiplication of A on
the left by F» results in

I 0][an a2 ap|_|an+0 an+0 an+0]_
0 1||an a2 ap| [an40 an4+0 anu+0| "
Mulniplication of A on the right by I3 results in

fay w2 a (1) ? 3 _tan+0+0 O4+ai2+0 0+0+ap; A =
day  az an 00 1 T ez 400 O+ap+0 0+0+an|”

Some properties of matrix multiplication are given in the following theorem.

Theorem 3.3 (Matrix Multiplication). Suppose that ¢ is a scalar and that A, 8.
and C are matrices such that the indicated sums and products are defined: then

associativiry of matrix multiplication
identity matrix

(12) (ABYC = A(BC)
(13 TA=AI—A

(14) A(B+Cy=AB+ AC left distributive property
(15) (A+ BC - AC+ BC right distributive property
{16) r(AB)=(cAIB = A(cB) scalar associative property

The Inverse of a Nonsingular Matrix

The concept of an inverse applies to matrices. but special atiention must be given.
N x N matrix A is called nonsingular or invertible if there exists an & x N mutrix R
such that

(1N

AB=BA=1.
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If no such matrix B can be found, A is said to be singular. When B can be found
and (17) holds, we usually write B = A~} and use the familiar relation

(18) AA'=A"'A if A is nonsingular.

It is easy lo show that at most one matrix B can he found that satisfies relation (17).
Suppose that € is also an inverse of A (ie., AC = CA = I). Then properties (12)
and (13) can be used to abtain

C—IC=(BAC =BAC)=BI =8B.

Determinants

The determinant of a square maltrix A is a scalar quantity (real number) and is denoted
by det(4) or |Al. If A isa N x N matrix

ajy aiz --- aIN
a2y 42 -+ d2N
A=1] | . . v
aw| awz --- anNwN
then it is customary to write
an @z oo dix |
azy a3z - dapn
det(A) =
aNy 4dy2 - AN

Although the notation for a determinant may look like a matrix, its properties are com-
pletely different. For one, the determinant is a scalar quantity (real number). The
definition of det(A) found in most linear algebra texibooks is not tractable for compu-
tation when N > 3. We will review how to compute determinants using the cofactor
expansion method. Evaluation of higher-order determinants is done using Gaussian
elimination and is meutioned in the body of Program 3.3.

A [a;]isal «x | matrix, we definc det(A) = ay;. If A = [a;]n . where
N > 2 then let M;; be the determinant of the N | x & — 1 submatrix of A obtained
by deteting the 7th row and jth column of A. The determinant M, is said to be the
minor of a;;. The cofactor A;; of a;, is defined as A;; = (=1)'""/M,;. Then the
determinant of an ¥ x Amatrix A is given by

N
(19) det{ 4) = Z a;, Ai;  (ith row expansion)
j=l1
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or

N
(20) det(4) = Za,-jA,- ;  (jth column expansion).

i=l

Applying forraula (19), with/ = 1, to the 2 x 2 matrix

a
A=|9 an .
an ap
we see that det A = ay1@2 — ar2az;. The following example illustrates how to use

formulas (19) and (20) to recursively reduce the calculation of the determinant of an
N x N matrix to the calculation of a number of 2 x 2 determinants.

Example 3.8, Use formula (19) with i = 1 and formula (20) with j = 2 to caiculate the

determinant of the matrix
2 3 8
A=|—-4 5 —14.
7 -6 9
Using formula (19) with i = 1, we obtain

det 4 = (2)'_2 _;

—4 -1 -4 5
ol ot
= (2)(45 — 6) — (3)(—36 + 7) + (R)(24 — 35)
=77.

Using formula (20) with j = 2, we obtain

det(A):—(3]$_; _;+(5){‘3 g(—(—ﬁl‘_i _ﬂ

=77. [ ]

The following theorem gives sufficient conditions for the existence and uniqueness
of solutions of the linear system AX = B for square coefficient matrices.

Theorem 3.4, Assume that A is an N x N matrix. The following statements are
squivalent.

(21} Given any ¥ x | matrix B, the linear system AX = B has a unique solution,
(22) The matrix A is nonsingular (i.e., Al exists).

(23) The system of equations AX = 0 has the unique solution X = ¢.

(24) det(A) £ 0.
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Theorems 3.3 and 3.4 help relate matrix algebra to ordipary algebra. If state-
ment (21) is true, then statement (22) together with properties (12) and (13} give the
following line of reasoning:

25y AX =B implies A7'AX=A"'B, whichimplies X =A"'B.

Example 3.9. Use the inverse matrix

I 4 —1
—!I___
=35 7))

and the reasoning in (25) to solve the linear sysiem AX = B:

R ST {8 BN VAN
ax=; 3 [a)-[5)=»
Using (25), we get

o3 E-RR)

Remark. In practice we never numerically calculate the inverse of a nonsingular
matrix or the determinant of a square matrix. These concepts are used as theoretical
“tools” to establish the existence and uniqueness of solutions or as a means to alge-
braically express the solution of a linear system (as in Example 3.9).

Plane Rotations

Supposethat A is a3 x3 matrix and U = [x y z]’ is 2 3x 1 matrix; then the product
V = AU is another 3 x 1 matrix. This is an example of a linear transformation, and
applications are found in the area of computer graphics. The matrix U is equivalent
to the positional vector U = (x, y, z), which represents the coordinates of a point in
three-dimensional space. Consider three special matrices:

1 0 0
26) R.(a) = |0 cos{e) —sin(e) |,
| 0 sin(w) cos(a)
[ cos(B) O sin(B)
2n Ry(py = 0 i G :
| —sin(8) 0 cos(p)

cos(y) —sin(y) 0
(28) R (y) = [ sin(y) cos(y) 0
0 0 i
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Table 3.1 Coordinates of the Vertices of a Cube under Successive Rotations

v V=R T}V W=R,(§)R: (})U
(0,0,0/ (0.000000, 0.000000, 0)’ (0.000000, 0.000000, 0.000000)’
{1,000 (0.707107. 0.707107, 0V (0.612372, 0.707107, —0.353553)
@ 1,0 (—0.707107, 0.707107, 0y (~0.612372, 0.707107, 0.353553)'
0,1y (0.000000, 0.000000, 1Y (0.500000, 0.000000, 0.866025)
(1, 1,0/ (0.000000, 1.414214, 0) {0.000000, 1.414214, 0.000000)
(1,0, 1y {0.707107, 0.707107, tY (1.112372, 0.707107, 0.512472)
1,1 (-0.707107, 0.707107, 1Y (~0.112372, 0.707107, 1.219579Y
(1,1, (0.000000, 1.414214, 1Y (0.500000, 1.414214, 0.866025)'

These matrices R, (x}, Ry(#), and R,()) are used to rotate points about the x-, y-,
and z-axes through the angles «, B, and y, respectively. The inverses are R (—o),
R,(—pB), and R (—y) and they rotate space about the x-, y-, and z-axes through the
angles —a, —pB, and —y, respectively. The next example illustrates the situation, and
further investigations are left for the reader.

Example 3.10. A unit cube is situated in the first octant with one vertex at the origin.
First, rotate the cube through an angle 7 /4 about the z-axis; then rotate this image through
an angle 7/6 about the y-axis. Find the images of all eight vertices of the cube.

The first rotation is given by the transformation

7 cos(§) —sin(§) 0O [=x
V=R, (—) U =|sin(}) cos() Olty
4
0 0 1 z
0.707107 —0.707107 0.000000| | x
= { 0.707107 0.707107 0.000000 |1 v |-
0.0006000 6.00000G  1.0000001 | =

Then the second rotation is given by

cos{f) O sin(%)
w=r,(Z)v=| o 1 0 |v
6 —sin(%) 0 cos(Z)

[ 0.866025 0.000000 O.SOOODO]
14

0.000000 1.000000 0.000000
—0.500000 0.000000 0.866025

The composition of the two rotations is

. N 0.612372 —0.612372 0.5000007 [x
W = R, (—~)R:(—)U= 0.707107  0.707107 0.000000{ | v | .

6 4 --0.353553  0.353553 0.866025 | | z
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(a) ] ©

Figure 3.2 (a) The original starting cube. (b) V = R (r/4)U. Rotation about
the z-axis. (c) W = R, (/6)V . Rotation about the y-axis.

Numerical computations for the coordinates of the vertices of the starting cube are given m
Table 3.1 (as positional vectors), and the images of these cubes are shown in Figure 3.2(a)
through (c). n

MATLAB

The MATLAB functions det {4) and inv(A) calculate the determinant and inverse
(if A is invertible), respectively, of a square matrix A.

Example 3.11, Use MATLAB 1o solve the linear system in Example 3.6. Use the inverse
matrix method described in (25).
First we verify that A is nonsingular by showing that det(A) # 0 (Theorem 3.4).

»>>A=10.125 0.200 0.400:0.375 0.500 0.600;0.500 0.300 0.000];
>>det (A)
ans=

-0.0176

Following the reasoning in (25), the solution of AX = Bis X = A™'B.

>>X=inv(a)*[2.3 4.8 2.9]°
=

4,0000

3.0000

3.0000

We can check our solution by verifying that AX = B.

>>B=A%X
B=
2.3000
4 .8000
2.9000 =
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Exercises for Properties of Vectors and Matrices

The reader is encouraged to carry out the following exercises by hand and with MATLAB.
1. Find AB and B A for the following matrices:

R ek

2. Find AB and B A for the following matrices,

30
A=[; ”3 g} B=|-1 5
3 -2

3. Let A, B,and C be given by

31 1 2 2 -5
R B P
(a) Find (AB)C and A(BC).
(b) Find A(B +C)and AB + AC.
(¢) Find (A + B)C and AC + BC.
(d) Find (AB) and B'A’.
4. We use the notation A% = AA. Find A” and B for the following matrices:

2 0 6

A:[_; _z] B=|-1 5 —4

3 -5 2

5. Find the determinant of the following matrices, if it exists.

1 -7 2 0 6
(a) [ 3 2:| (b) -1 5 —4
| 3 -5 2

1 2 3 4

1 2

0 2 4 6

©@ 1 @ 1o 0 5 4

0 000 7

matrices R, (x) and

1]

6. Show that R, (¢)R,(—«a} = I by direct multiplication of th
R (—a); (see formula (26)).

7. (@) Show that R (e)R,(8) =

cos(B) 0 sin(4)
sin(f)sin{er) cos{a) — cos(f)sin{x)
—cos(a) sin{B) sinfa)  cos(B) cos(w)

(see formulas (26) and (27)).
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(1) Show that R, (B)R; (a) =

cos(f)y sin(B)sin(a) cos(@)sin(#)
0 cos{a) — sin{w)
—sin(a) cos{B)sin{w) cos(B)cos(a)

8. If A and B are nonsingular N x N matricesand C = AB, showthat C~! = B~'4" '
Hint. Use the associative property of matrix multiplication.

9. Prove statements (13) and (16) of Theorem 3.3.

10. Let Abean M x N matrix and X an N x | matrix.
(a) How many multiplications are needed to calculate AX?
(b} How many additions are needed to calculaie AX?

11. Let A be an M x N matrix, and let B and € be N x P matrices. Prove the left
distributive law for matrix multiplication: A(B + €)= AB + AC.

12. Let A and B be M x N matrices, and let C be a N x P matrix. Prove the right
distributive law for matrix multiplication: (A + B)C = AC + BC.

13. Find XX’ and X'X, where X = [I —1 2]. Note. X’ is the transpose of X.

14. Let Abea M x N matrix and B a N x P matrix. Prove that (AB) = B’A’. Hint. Let
C = AB and show, using the definition of matrix multiplication, that the (i, j)th entry
of C’ equals the (i, j)th entry of B'A’.

15. Use the result of Exercise 14 and the associative property of matrix multiplication to
show that (ABCY = C'B’A’.

Algorithms and Programs

The first column of Table 3.1 contains the coordinates of the vertices of a unit cube situated
in the first octant with one vertex at the origin. Note that all eight vertices can be stored in
a matrix U of dimension 8 x 3, where each row represents the coordinates of one of the
vertices. It follows from Exercise 14 that the preduct of U and the transpose of R.(7/4)
will produce a matrix of dimension 8 x 3 (representing the second column of Table 3.1,
where eech row represents the transformation of the corresponding row in ¥/). Combining
this idea with Exercise 15, it follows that the coordinates of the vertices of a cube under
any number of successive rotations can be represented by a matrix product.

1. A unit cube is situated in the first octant with one vertex at the origin. First, rotate
the cube through an angle of 7 /6 about the y-axis; then rotate this image through an
angle of 7 /4 about the z-axis. Find the images of all eight vertices of the starting
cube. Compare this result with she result in Example 3.10
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+a

X
(a) ) ()

Figure 3.3 (a) The original starting cube. (b) ¥V = R, (x/6)U. Rotation about
the y-axis. (¢} W = R,(w/4)V. Rotation about the z-axis.

What is different? Explain your answer using the fact that, in general, matrix mul-
tiplication is not commutative. {See Figure 3.3(a) to (c}}. Use the plot3 command to
plot each of the three cubes.

2. A unit cube is situated in the first octant with one vertex at the origin. First, rotate
the cube through an angle of 7 /12 about the x-axis; then rotate this image through
an angle of /6 about the z-axis. Find the images of all eight vertices of the statting
cube. Use the plot3 command to plot each of the three cubes.

The tetrahedron with vertices at (0,0, 0), (1,0, 0}, (0, 1, 0}, and (0, 0, 1) is first ro-
tated through an angle of 0.15 radian about the y-axis, then through an angle of
—1.5 radians about the z-axis, and finally through an angle of 2.7 radians about the
x-axis. Find the images of all four vertices. Use the plot3 command to plot each of

the four images.

w

Upper-triangular Linear Systems

We will now develop the back-substitution algorithm, which is useful for solving a lin-
ear system of equations that has an upper-triangular coefficient matrix, This algorithm
will be incorporated in the algorithm for solving a general linear system in Section 3.4.

Definition 3.2. An N x N matrix A = [a;;] is called upper triangular provided that
the elements satisfy a;; = 0 whenever/ > j. The ¥ x N matrix A = [a;;] is called
lower triangular provided that ¢;; = 0 wheneveri < j.

We will develop a method for constructing the solution to upper-triangular linear
systems of equations and leave the investigation of lower-triangular systems to the
reader. If A is an upper-triangular matrix, then AX = B is said to be an upper-
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friangular system of linear equations and has the form
alxi+apxz+aax; oo+ ain-ixN—1 +  aywxy = by
anxytapnxi+---+ @my-txn-1+  @niv =B
apx3+ -+ aN-1AN-1 T+ anIn =B

AN-IN—1XN—t T an—1nXy = by
ayNxy = by.

Theorem 3.5 (Back Substitution). Suppose that AX = B is an upper-triangular
system with the form given in (1). If

(2) ae 70 fork=1,2, ..., N,
then there exists a unique solution to (1).

Constructive Proof.  The solution is easy to find, The last equation involves only x ,
50 we solve it first:
by
)] XN = —.
aNyN
Now xy is known and it can be used in the next-to-last equation:
by.) —an_|nx
#) Xyop = ol _CWRININ
aN-IN=1

Now xy and xy_; are used to find xy—3:

bN_2 — ON—IN_1XN~1 — GN—_INXN

(5 XN— =
AN-2N-2
Onee the values xy, Xy_1, ..., xz41 are known, the general step is
b — 3 i auix;
(6) Xp = L jmkce1 B4i%) for k=N—1, N-2, ..., 1.

Gkk

The uniqueness of the solution is easy to see. The Nth equation implies that
by/awn is the only possible value of x». Then finite induction is used to establish
that xy—¢, xy—2, ..., X are unique. .

Example 3.12, Use back substitution to solve the linear system
dxy —xp 4+ 2x3 + 3xq4 = 20
—2x3 4+ Tx3 —4x4 = =7

6xa4+Sxs= 4
Jxg= 6.
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Solving for x4 in the last equation yields

6
Using x4 = 2 in the third equation, we obtain
4 - 5(2)

= =-1

6
Now x3 = —1 and x4 = 2 are used to find x; in the second equation:

—T-T-1)+4Q2) -

X2 = = —4,

Finally, x1 is obtained using the first equation:
204+ 1(—4)~2(-1) - 3(2)
XI = 4 =

The condition that a, # 0 is essential because equation (6) involves division
by agg. If this requirement is not fulfilled. either no sotution exists or infinitely many

solutions exist.

3. [

Example 3.13.  Show that there is no solution to the linear system

dx; —xz+2x3+3x4= 20

Oxq 4 Tx3 —4xg = =7

7 bxs+3x4= 4
3x4= 6.

Using the last equation in (7), we must have x4 = 2, which is substituted into the ~ccond
and third equations to obtain

Txy— 8§=-7
®) 6x;+10= 4.
The first equation in (8) implies that x3 = 1/7, and the second equation impii: that

x3 = —1, This contradiction leads to the conclusion that there is no solution to the lin-

ear system (7). &

Example 3.14. Show that there are infinitely many solutions to

4x) —x2+ 2x3+3x4 = 20

Oxy 4 Txz 4 0xq4 = —7

® 6x3+5x4= 4
3xs= 6.
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Using the last equation in (9}, we must have x4 = 2, which is substituted into the second
and third equations to get x3 = —1, which checks out in both equations, But only two
values x3 and x4 have been obtained from the second through fourth equations, and when
they are substituted into the first equation of (9), the result is

(10) x2 =4x; — 16,

which has infinitely many solutions; hence () has infinitely many solutions. If we choose a
value of x; in (10), then the value of x3 is uniquely determined. For example, if we include
the equation x| = 2 in the system (9), then from (10) we compute x; = —8. ]

Theorem 3.4 states that the linear system AX = B, where A isan N x N matrix,
has a unique solution if and only if det(4) # 0. The following theorem states that
if any entry on the main diagona) of an upper- or lower-triangular matrix is zero then
det(4) = 0. Thus, by inspecting the coefficient matrices in the previous three exam-
ples, it is clear that the systemn in Example 3.12 has a unique solution, and the systems
in Examples 3.13 and 3.14 do not have unique solutions. The proof of Theorem 3.6
can be found in most introductory linear algebra textbooks.

Theorem 3.6. [If the ¥ x N matrix A4 = [g; /118 either upper or lower triangular, then

N
(1n) det(A) =anan---avy = na,-.-.

i=l

The value of the determinant for the coefficient matrix in Example 3.12 is det A =
4(=2)(6)(3) = —144. The values of the determinants of the coefficient matrices in
Exampie 3.13 and 3.14 are both 4(0)(6)(3) = 0.

The following program will solve the upper-triangular system (1) by the method
of back substitution, provided az; # O0fork =1,2,..., N.

Program 3.1 (Back Substitution). To solve the upper-triangular system AX = B
by the method of back substitution. Proceed with the method only if all the diagonal
¢lements are nonzero. First compute xy = &y /any and then use the rule

N
_ b= T ik an%)
ik

X fork=N-1,N=-2, ..., 1

funct,y'.,oln X=backsub(4,B)

#Input - A isanp xa upper-triangular nonsingular matrix
% - B is an n x 1 matrix

#0utput - X is the sclution to the linear system AX = B
#Find the dimension of B and initialize X

n=length(B);

X=zeros(n,1);
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X(n)=B(a)/Aln,z); 7. Show that back substitution requires N divisions, (N? — N)/2 multiplications, and
for k¥=n-1i:-1:1 (N? — N)/2 additions or subtractions. Hint. You can use the formula

k) =(B(k)-A(k,k+1:n)*X(k+1:n))/Alk,k); .
end 3 k=MW +1)/2.

k=1
Exercises for Upper-triangular Linear Systems
Algorithms and Programs

tn Exercises 1 through 3, solve the upper-triangular system and find the value of the dete:-

i ficient mairix.
minant of the coefficien i. Use Program 3.1 to solve the system U X = B where.

1. 32— 2x2+ x3— x4= 8§ 2 5x—3x:-T%34+ xza=-14
dxy — x3+42r4= -1 Mz +923+ 5= 22 o _ Jeostij) i<
23+ 3x3 = LI 3x3 — 13x4 = ~11 U=lifloao and - uy = 0 t> .

Sx4= 15 Tea= 14

and B = {h;1]10% and b;) = tan(i).

_ — = 4 - . .
3 ax ~ x4+ 2o — Xy 2. Forward-substitution algorithm. A linear system AX = B is called lower triangula:

—2xz4+6x3+2x4+Txs= 0 provided that g;; = 0 wheni < j. Construct 2 program forsub, analogous 10
x3— Xg—2xg= 3 Program 3.1, to solve the following lower-triangular system. Remark. This program
—2x4— x5=10 will be used in Section 3.5.
3x5= 6 apx = b
4. (a) Consider the two upper-triangular matrices anx 4+  apxs =i
an ap ai b bz b3 anxy+  apx+ enx =by
A=| 0 ap an and B=1) 0 bn bn
0 0 an 0 0 b
aN—[1X1 +an-12X2 F aN-13%3 + o HaN-1 N-1XN-} =bn-i

Show that their product C = A B is also upper triangular.
(b) Let A and B be two N x N upper-triangular matrices. Show that their produ.:

is also upper triangular. 3. Use forsub to solve the system L X = B. where

avixi+ an2x2+  anaxs+ -+ ayN-1xN—) FaynIy = by

5. Solve the lower-triangular system AX = B and find det{ 4).
i+j i>, ]
2x) =6 L=[hjloxo and &j =1 ! P - 7" and B=[balox anc by =i,
—x1 +4xg =35
Ix; - 2 -3 =4

X1 = 20y 4633 4 3xe = 2 34 Gaussian Elimination and Pivoting

. Solve the lower-triangular system AX = B and find det{ A).

o

[n this section we develop a scheme for solving a general system AX = B of N
3x) =-10 equations and N unknowns. The goal is to construct an equivalent upper-trianguiar

X1+ 3x = 4 system U/ X = ¥ that can be solved by the method of Section 3.3.
3 +4xz + 2x3 2 Two linear systems of dimension N x N are said to be equivalent provided that
x4+ —br3—xg= S their solution sets are the same. Theorems from linear algebra show that when certain

transformations are applied ta a given system the solution sets do not change.
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Theorem 3.7 (Elementary Transformations). The following operations applied to
a linear systern yield an equivalent system:

(1) Interchanges: The order of two equations can be changed.

(2) Scaling: Multiplying an equation by a nonzero constant.

(3) Replacement: An equation can be replaced by the sum of itself and
a nonzero multiple of any other equation.

It is common to use (3) by replacing an equation with the difference of that equa-
ton and a muitiple of another equation. These concepts are illustrated in the next

example.

Example 3.15. Find the parabolay = A+ Bx + Cx? that passes through the three points
(1.1),(2,~1),and (3, 1).

For each point we obtain an equation relating the value of x to the value of y. The
result is the linear system

A+ B+ C= 1 a(l1)
(4) A+2B+4C=—-1 a(2,-1)
A+3B4+9C= 1 at (3, ).

The variable A is eliminated from the second and third equations by subtracting the
first equation from them. This is an application of the replacement transformation (3), and
the resulting equivalent linear system is

A+B+ C= |
5) B+3C=-2
2B+8C= 0.

The variable B is eliminated from the third equation in (5) by subtracting from it two times
the second equation. We arrive at the equivalent upper-triangular system:

A+B+ C= 1|
(6) B+3C=-2
2C= 4.

The back-substitution algorithm is now used to find the coefficients C = 4/2 = 2, B =
—2~32) = -8,and A = 1 — (—8) — 2 = 7, and the equation of the parabola .-

y=7—8x+2x% "

It is efficient to store all the coefficients of the linear system AX = B in an arr:
of dimension N x (N + 1). The coefficients of B are stored in column ¥ 4 1 of the
array (i.e., axv+1 = by). Each row contains all the coefficients necessary to represen:
an equation in the linear system. The augmented matrix is denoted [A|B] and the

SEC. 3.4 GAUSSIAN ELIMINATION AND PIVOTING 127

linear system is represented as follows:

aiy aiz - aiy | b

a1 ax - ay | b
0] [A|B] = ] ) ) )

anNp an2 -+ anwn | by

The system AX = B, with augmented matrix given in (7}, can be solved by per-
forming row operations on the augmented matrix [A|B). The variables xy, are place-
holders for the coefficients and can be omitted until the end of the calculation.

Theorem 3.8 (Elementary Row Operations). The following operations applied to
the augmented matrix (7) yield an equivalent linear system.

(8) Interchanges: The order of two rows can be changed.

(9) Scaling: Multiplying a row by a nonzero constant.

{10) Replacement: The row can be replaced by the sum of that row and
a nonzero multiple of any other row; that is:
TOW, = TOW, —,; X TOWp.

It is common to use (10) by replacing a row with the difference of that row and a
multiple of another row.

Definition 3.3 (Pivot). The number a,, in the coefficient matrix A that is used to
eliminate ag,, where k = r + 1, r+2,..., N, is called the rth pivatal element, and
the rth row is called the pivot row. A

The following example illustrates how to use the operations in Theorem 3.8 to
obtain an equivalent upper-triagjgular system UX = ¥ from a linear system AX = B
where A is an N x N matrix.

Example 3.16. Express the following system in augmented matrix form and find an
equivalent upper-triangular system and the solution.

x1+2x24+ xi+4xs=13
2x) +0xp + 4x3 +3x4 =28
4x1+2x2+2x34+ x4 =20
=3x1+ x2+3x+2u= 4

The augmented matrix is

pivot — 1 2 14|13
my =2 2 0 4 3{28
my; =4 4 2 2 1120
mq = -3 -3 1 3 2| 6
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The first row is used to eliminate elements in the first column below the diagonal.
We refer to the first row as the pivotal row and the element @31 = 1 is called the pivotal
element. The values my; are the multiples of row 1 that are to be subtracted from row & for
k = 2, 3, 4. The result after elimination is

1 2 1 41 13
pivot — 0 4 2 -5 2
mip =15 0 -6 -2 —-15|-32
0

The second row is used to eliminate elements in the second column that lie below the
diagonal. The second row is the pivotal row and the values my; are the multiples of row 2
that are to be subtracted from row k for k = 3, 4. The result after elimination is

1 2 1 4 13
o -4 2 -5 2
pivot — 0 0 =5 =75]-35
mga=-19 | 0 0 95 525|485
Finally, the multiple m43 = —1.9 of the third row is subtracted from the fourth row. and

the result is the upper-triangular system

2 1 4 13
-4 2 =5 2
0 -5 -75!-35
0 0 -9 18

(1n

(== g

The back-substitution algorithm can be used to solve (11), and we get
x4=2, x3=4, x=-1, x=3. u

The process described above is called Gaussian elimination and must be modified
so that it can be used in most circumstances. If age = 0, row k cannot be used to
eliminate the elements in column &, and row & must be interchanged with some row
below the diagonal to obtain a nonzero pivot element. If this cannot be done, then the
coefficient matrix of the system of linear equations is nonsingular, and the system does
not have a unique solution.

Theorem 3.9 (Gaussian Elimination with Back Substitution). If A is an NxN
nonsingular matrix, then there exists a system X = ¥, equivalentto AX = B, where
U is an upper-triangular matrix with uz; # 0. After U and ¥ are constructed, back
substitution can be used to solve UX = ¥ for X.
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Proof. 'We wilt use the augmented matrix with B stored in column N + 1:

. (1} 8} [0 I — -
4y G g3 Gy X1 afu.“
(1) (hH 83 (1}
4 6y 4y o a4y || x aly +1
(1} (1} (1} 1
_fa a a - oa X3 (1)
AX = 31 32 33 N = a3N+1 = B.
M 1 10
ayi aiy aly - aly & _GNN+IJ
Then we will construct an equivalent upper-triangular system UX = ¥:
(1) (1) H (N7 B M (1 T
’-“11 47 413 g1y |'x; 2Nt
{2) (2) 2) {2)
0 ap a3 - ay || x Q1 N+1
(3) 3 3)
vx=| 0 0 ay - ay|IB|=|Ggyn |-y,
N G4 )
o ¢ o0 NN | V] (A ae
L - - -

Step I. Store the coefficients in the augmented matrix. The superscript on a'l means
that this is the first time that a number is stored in location (7, ¢):

[4)] 1) [8))] (1 ¢} 7]
[ iy 4 &3 o 4y | 8iNh
1) (1) (L} 1) (1)
@y Gy G o iy | Gyng
(1) n (4] (L [43]
@y 43 833 o Gy | G3n
moom W | m
ayy 8yz 8y3 Tt GyN | FN N4l
L .

Step 2. If necessary, switch rows so that aﬂ) # 0; then eliminate x; in rows 2

through N. In this process, m; is the multiple of row 1 that is subtracted from row .

forr =2:N
1 1
s = a0l
a® =0

rl ™
forc=2:N+1

{2) 1 ' 1
Qre = ar('c') — My * agc):

end
end
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The new elements are written a2 to indicate that this is the second time that a
number has been stored in the matrix at location (r, ¢). The result after step 2 is

- no_(D (M [ M

afl) “{2 813 0 AN | BNl ]
2 (2) 2 (2)

0 af ay AN | BN
2 @ (2) (2)

0 aj ag a3y | 23np
2) (2) (2) 2

0 ay, ay; - ayy | 8NN

Step 3. If necessary, swilch the second row with some row below it so that

ag’ # 0; then eliminate x; in rows 3 through M. In this process, m,; is the multi-

ple of row 2 that is subtracted from row r.

forr=3:N
2), (2
mpy = afz)/ agz)i
o =0
forc=3:N+1
2 2
o2 = a2 ~me2va;
end
end

‘The new elements are written a,fg) to indicate that this is the third time that a num-
ber has been stored in the matrix at location (r, ¢). The result after step 3 is

oM (M (D n (O T
4y % 43t AN | CiNn
2 (2) 2 2
0 a7 a3 - | Gy
3) @ 3
0 0 ay - a3y |agyy,
(3) (3) (6]
0 0 ayy 0 ayy |BuNgs
L e

Step p + 1. This is the general step. If necessary, switch row p with some row
beneath it so that ayj,) # 0; then eliminate x, in rows p + 1 through N. Here m, is
the multiple of row p that is subtracted from row r.

forr=p+1:N
(p)
Mrp =a§g)/apf,;

1
a§£+ —
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fore=p+1:N+1
+1
alf*V = a2 —m,, xa?;
end

end

The final result after x_; has been eliminated from row N is

(D (N m 4] (1) .

2 42 My Ay | Gy
(2) 2) 2 (2)

0 ay ay Gy | a4
{3} {3 (3)

0 0 aj; Gy | By
: W™ | o

o 0 0 AN | IN N+

The upper-triangularization process is now complete.

Since A is nonsingular, when row operations are performed the successive matrices
are also nonsingular. This guarantees that aé’,‘() # Ofor all k in the construction process.
Hence back substitution can be used to solve UX = ¥ for X, and the theorem is prove.

Pivoting to Avoid a,(,’;,} =

if a,(,‘g) = 0, row p cannot be used to eliminate the elements in column p below the

main diagonal. It is necessary to find row &, where a,g) # Oand k > p, and then in-

terchange row p and row k so that a nonzero pivot element is obtained. This process is
called pivoting, and the criterion for deciding which row to choose is called a pivoting

strategy. The trivial pivoting strategy is as follows. If aﬁ,‘;) # 0, do not switch rows.

If aﬁ,f,) = 0, locate the first row below p in which alﬁg) # 0 and switch rows k and p.

This will result in a new element a},f,) # 0, which is a nonzero pivot element,

Pivoting to Reduce Error

Because the computer uses fixed-precision arithmetic, it is possible that a small error
will be introduced each time that an arithmetic operation is performed. The following
example illustrates how the use of the trivial pivoting strategy in Gaussian elimination
can lead to significant error in the solution of a linear system of equations.
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Example 3.17. The values x; = x; = 1.000 are the solutions to

1.133x; + 5.281x2 = 6.414

12 24.14x; — 1.210x3 = 22.93.

Use four-digit arithmetic {see Exercises 6 and 7 in Section 1.3) and Gaussian elimipation
with trivial pivoting to find a computed approximate solution to the system.

The multiple my; = 24.14/1.133 = 21.31 of row 1 is to be subtracted from row 2 to
obtain the upper-triangular system. Using four digits in the calculations, we obtain the new
coefficients

a) = —1.210 - 21.31(5.281) = -1.210 - 112.5 = ~113.7
a2 = 2293-2131(6414)= 22931367 = —113.8.
The computed upper-trianguiar system is
1.133x; + 5.281lx2 = 6.414
~113.7x; = ~113.8.

Back substitution is used to compute x; = —113.8/(—113.7) = 1.001,and x| = (6.414 —
5.281(1.001))/(1.133) = (6.414 — 5.286)/(1.133) = (.9956. n

The error in the solution of the linear system (12) is due to the magnitude of the
multiplier m2; = 21.31. In the next example the magnitude of the multiplier my; is
reduced by first interchanging the first and second equations in the linear system (12)
and then using the trivial pivoting strategy in (Gaussian elimination to solve the system.

Example 3.18. Use four-digit arithmetic and Gaussian elimination with trivial pivoting
to solve the linear system

24.14x; — 1.210x2 = 22.93
1.133x; + 5.281x; = 6.414,

This time mz; = 1.133/24.14 = 0.04693 is the multiple of row 1 that is fo be subtrz.ted
from row 2. The new coefficients are

aly) = 5.281 — 0.04693(—1.210) = 5.281 + 0.05679 = 5.338
aly = 6.414 — 0.04693(22.93) =6.414—1.076 = 5.333.
The computed upper-triangular system is

24.14x; — 1.210x7 = 22.93
5.338x; = 5.338.

Back substitution is used to compute x2 = 5.338/5.338 = 1.000, and x| = (22.93 +
1.210(1.000))/(24.14) = 1.000. n
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The purpose of a pivoting strategy is to move the entry of greatest magnitude tc
the main diagonal and then use it to eliminate the remaining entries in the column. [
there is more than one nonzero element in column p that lies on or below the mair
diagonal, then there is a chaice to determine which rows to interchange. The partia:
Pivoting strategy, iilustrated in Example 3.18, is the most coramon one and is used ir
Program 3.2. To reduce the propagation of error, it is suggested that one check the
magnitude of all the elements in column p thai lie on or below the main diagonal
Locate row k in which the element that has the largest absolute value lies, that is,

lakp) = max{lapyl, laptipl, .- ., |5Nf1p!’ |aNpl}.

and then switch row p with row & if k¥ > p. Now, each of the multipliers m,, for
r=p+1,..., N will be less than or equal to | in absolute value. This process will
usually keep the relative magnitudes of the elements of the matrix I/ in Theorem 3.9
the same as those in the original coefficient matrix A. Usually, the choice of the larger
pivot element in partial pivoting will result in a smaller error being propagated.

In Section 3.5 we will find that it takes a total of (4N +9N? — TN) /6 arithmetic
operatious to solve an N x N system. When N = 20, the total number of arithmetic
operations that must be performed is 5910, and the propagation of error in the compu-
tations could result in an erroneous answer. The technique of scaled partial pivoting
or equilibrating can be used to further reduce the effect of error propagation. In scaled
partial pivoting we search all the elements in column p that lie on or below the main
diagonal for the one that is largest relative to the entries in its row. First search rows p
through N for the largest element in magnitude in each row, say s,:

(13) sy = max{la,pl, [arpsrl, ... laenlt forr=p, p+1, ..., N,

The pivotal row £ is determined by finding

(14) lap| = max [ |app! |@p+1p] janp!
— E] ey -
Sk Sp Sp+1 SN

Now interchange row p and k, unless p = k. Again, this pivoting process is designed
to keep the relative magnitudes of the elements in the matrix ¥ in Theorem 3.9 the
same as those in the original coefficient matrix A.

I conditioning
A matrix A is called il conditioned if there exists a matrix B for which small pertur-
bations in the coefficients of A or B will produce large changes in X = A~'B. The
system AX = B is said to be ill conditioned when A is ill conditioned. In this case,
numerical methods for computing an approximate solution are prone to have more
error.

One circumstance involving ill conditioning occurs when A is “nearly singular”
and the determinant of A is close to zero. Il conditioning can also occur in systems
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12}
10+
08}
o6
04}

021

0.0 L . : — x  Figure 3.4 A region where two
0.5 1.0 L3 20 equations are “almost satisfied”,

ot two equations when two lines are nearly parallel (or in three equations when three
planes are nearly parallel). A consequence of ill conditioning is that substitution of
erroneous values may appear to be genuine solutions. For example, consider the two

equations

x+2y—-200=0

(13 2x + 3y — 3.40 = 0.

Substitution of xg = 1.00 and yo = 0.48 into these equations “almost produces zeros™

14+2(0.48) —2.00=1.96—-2.00 = -0.04 = 0
243(048)~340=344-340= 0.04=0.

Here the discrepancy from 0 is only £0.04. However, the true solution to this lin-
ear system is x = 0.8 and y = 0.6, so the errors in the approximate solution are
x —xp=080—1.00=-0.20and y — yp = 0.60 — 0.48 = 0.12. Thus, merely sub-
stituting values into a set of equations is not a reliable test for accuracy. The rhombus-
shaped region R in Figure 3.4 represents a set where both equations in (15) are “almosl

satisfied":
R={(x,y):lx+2y—-2.00] <01 and |2x+ 3y 340} < 0.2}.

There are points in R that are far away from the solution point (0.8, 0.6) and yet
produce small values when substituted into the equations in (15). If it is suspected
that a lines system is ill conditioned, computations should be carried out in multiple-
precision i i:hmetic. The interested reader should research the topic of condition num-
ber of a mauix to get more information on this phenomenon.

1INl conditioning has more drastic consequences when several equations areqin‘
volved. Consider the problem of finding the cubic polynomial y = c1x* + c2x” 4
€3x +c4 that passes through the four points (2, 8), (3, 27), (4, 64),and (5, 125) (clearly.
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y = x? is the desired cubic polynomial). In Chapter 5 we will introduce the method
of least squares. Applying the method of least squares to find the coefficients requires
that the following linear system be solved:

20,514 4,424 978 224 || ¢ 20,514
4,424 978 224 S4i| ;| _ | 4424
978 224 54 14| )T 978
224 54 14 4] |lcs 224

A computer that carried nine digits of precision was used to compute the coefficients
and obtained

¢ = 1.000004, ¢z = —0.000038, ¢3 =0.000126, and c; = ~0.000131.

Although this computation is close to the true solution,cy = land ¢y = ¢3 = ¢4 = 0, it
shows how easy it is for error to creep into the solution. Furthermore, suppose that the
coefficient a;; = 20,514 in the upper-left corner of the coefficient matrix is changed
to the value 20,515 and the perturbed system is solved. Values obtained with the same
computer were

c1 = 0.642857, ¢ = 3.75000, c3 = —12.3928, and ¢4 = 12.7500,

which is a worthless answer. Il conditioning is not easy to detect. If the systern is
solved a second time with slightly perturbed coefficients and an answer that differs
significantly from the first one is discovered, then it is realized that ill conditioning
is present. Sensitivity analysis is a topic normally introduced in advanced numerical
analysis texts.

MATLAB

In Program 3.2 the MATLAB statement [A B} is used to construct the augmented
matrix for the linear system AX = B, and the max command is used to determine
the pivot element in partial pivoting. Once the equivalent triangulated matrix [U/|¥]
is obtained it is separated into ¥/ and ¥, and Program 3.1 is used to carry out back
substitution (backsub (U, Y}). The use of these commands and processes is illustrated
in the following example.

Example 3.19. (a) Use MATLARB to construct the augmented matrix for the linear system
in Example 3.16; (b) use the max command to find the element of greatest magnitude in the
first column of the coefficient matrix A: and (¢) break the augmented matrix in (11) into
the coefficient matrix I and constant matrix ¥ of the upper-triangular system UX = Y.,
(@

> 4=[1214;20423;4221;-313 2];

>> B=[13 28 20 6]";

>> Aug=[4 B]
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Aug= for p=1:N-1
121213 %Partial pivoting for celumn p
z g : f 28 [Y, j]1=max (abs (Aug(p:N,p)));
31302 20 %Interchange row p and j
C=Aug(p,:);
(b) In the following MATLAB display, a is the element of greatest magnitude in the tir( Aug(p, :)=Aug(j+p-1,:);
column of A and j is the row number. Aug(j+p-1,:)=C;
>>{a, j]=max{abs{A(1:4,1))} if Aug(p,p}==0
a= ’A was singular. No unique solution’
4 break
j= end
3 %Elimination process for column p
(c) Let Augup = [U|Y] be the upper-triangular matrix in (11). for k:p+t}::N 3}/ hag (b.p)
>> Augup={1 2 1 4 13;0 -4 2 -5 2;0 0 -6 ~7.5 -35;0 0 0 -9 18] . AUETE.p/ U8 P P
>> U=Augup(i:4,1:4) ’ Aug (k,p:N+1)=Aug(k,p:N+1)-m*xAug(p,p:N+1);
U= end
1.0000 2.0000 1.0000 4.0000 end
0 -4.0000 2.0000 -5.0000 %Back Substitution on [U|Y] using Program 3.1
o 0 -5.0000 -7.5000 X=backsub(Aug(1:N,1:N),Aug(1:N,N+1)});
0 Q 0 -9.0000
>> Y=Augup(1:4,5)
Y=
13 Exercises for Gaussian Elimination and Pivoting
2
_:13: In Exercises 1 through 4 show that AX = B is equivalent to the upper-triangular system
) = UX =Y and find the solution.
1 2x) +4dx; —6x3= —4 2x)+4x3 — bx3 = —4
- - x1+5x2+3x3= 10 3x34 6x3= 12
Program 3.2 (Upper Triangularization Followed by Back Substitution). To X +30+2nn= 5 3x3= 3
construct the solution to AX = B, by first reducing the augmented matrix [4]B] to
upper-triangular form and then performing back substitution, 2. x1+ xp+6r3= 7 x+ xz+ bra= 7
function X = uptrbk(4,B) i+t = 2 3+ = 9
AImput - A is an N x N nonsingular matrix ¥ -2 t+in= 10 i2x3= 12
% - B is an N x 1 matrix 3 y-2n+5xs= 6 ai—2xn+ = 6
%Output -~ X is an N x 1 matrix containing the solution to AX=E. 2432+ x3= 13 Sxp— Axy= 7
#Initialize X and the temporary storage matrix C - x1+4x2—4x3= 3 09x3= 1.8
[N Nl=size(a);
' - - = - - - = -1
X=zeros (¥,1) : 4 S5x1 4 2x2 x3 1 S5x1 + 2x2 X3
C=zeros(1,N+1); x1+0xp+3x3= 5 0.4x3+28x3= 4.8
35+ x2+6x3= 17 ~10x3 = —10

%Form the augmented matrix:Aug=[A|B] .
Aug=[A B]; 5. Find the parabola y = A + Bx + Cx? that passes through (1. 4), (2, 7), and (3, 14).
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6. Find the parabola y = A + Bx + Cx? that passes through (1, 6), (2, 5), and (3, 2).
7. Find the cubic y = A + Bx + Cx? + Dx? that passes through (0, 0, (1, 1), (2, 2).

and (3, 2).

In Exercises 8 through 10, show that AX = B is equivalent to the upper-triangular system

UX =Y and find the solution.
8 4x14+8x2+4x35+0xy = 8

x4+ 8x2+4dx3+0x4= 8§

X1+ 5x2+4x3—3x4 = —4 3x:+3x3—-3x4= -6
x1+4x+Tx3+2x4= 10 dx3 +4xs = 12

X1+3x0 +0x3 —2x4 = —4
9 2xi+4xg—dxs+0x4= 12

xp= 2

2x)+4xy —dxs +0x4 = 12

Xy +5x2~5x3-3x4a= 18 3x2—3x3—3x4= 12

2x1+3x3+ x34+3x4= 8
xi+4x; —2x34+2x3 = 8
0. x14+22+0x03~ xa= 9
2o +3x— x3+0x4= 9

dx34+2x4= 0

314 = —6

X1 +2x34+0x3 — x4 = q
—X2— x3+2xg= -9

Oxi+4x24+2x3—Sxa= 26 —2x3 4+ 3x4 =-10
Sxy+5x4+2x3—dxa= 32 1.5x4= -3
11. Find the solution to the following linear system.
x1+ 2x; =17
2x1 4+ 3x3— x3 =9
4x2 + 2x3 + 3x4 = 10
2x3—4x4 =12
12. Find the solution to the following linear system.
X1+ x32 = 5
2x1— x4+ 5x3 = —9
3xp —4dxs+2x4 = 19
2i3+b6xg= 2

13. 'Ithe Rockmore Corp. is considering the purchase of a new computer and will choose
either the DoGood 174 or the MightDo 11. They test both computers’ ability to solve

the linear system

34x 4+ 55y —21 =0
55x + 89y —34 = 0.

The DoGood 174 computer gives x = —0.11and y = 0.45, and its check for accuracy
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is found by substitution:

34(-0.11) + 535(0.45) - 21 = 0.01
55(—0.11) + 89(0.45) — 34 = 0.00.

The MightDo 11 computer gives x = —0.9%and y = 1.01, and its check for accuracy
is found by substitution:

34(—0.99) + 55(1.01) — 21 = 0.8%
55(—-0.99) + 89(1.01) - 34 = 1.44.

Which computer gave the better answer? Why?

14. Solve the following linear systems using (i) Gaussian elimination with partial pivot-

ing, and (ii) Gaussian elimination with scaled partial pivoting.
@ 2xi— 3x4+ 100x3=1 M x4+ 200~ x34+000lx4=0
x; 4+ 10x —0.001x3 =90 2x)] —  Sxg4 30x3— O0.lxs=1
3x; — 100xz + 0.01x3 =0 5xy + x3—100x3— 10x4=0
2xy - 100x2 —  x3+4+ x4 =0

15. The Hilbert matrix is a classical ill-conditioned matrix and small changes in its coef

ficients will produce a large change in the solution to the perturbed system.
(a) Find the exact solution of AX = B (leave all numbers as fractions and do exact
arithmetic) using the Hilbert matrix of dimension 4 x 4:

1

) R
2 03 3
1
2 I 0
A: !B=
1 1 1 1 0
3 3 5 % 0
O N |
i 5 § 7

(b) Now solve AX = B using four-digit rounding arithmetic:

1.0000 0.5000 0.3333 0.2500
0.5000 0.3333 0.2500 0.2000
0.3333 0.2500 0.2000 0.1667 |’
0.2500 0.2000 0.1667 0.1429

B =

oo o~

Note. The coefficient matrix in part (b) is an approximation to the coefficient
matrix in part (a).



190 CHAP. 3 THE SOLUTION OF LINEAR SYSTEMS AX =B
Algorithms and Programs

1. Many applications involve matrices with man ical i
an y zeros. Of practical importance are
tridiagonal systems (see Exercises 11 and 12) of the form

dixy + c1xz — b
a1x; + dyxz + cax3 =b,
axxz + dixy + c3xg =b

ay-2xXN-3 + dN_1XN-~1 + CN_1XN = bN_)
ay_1xN—1 +dyxy = by.

_Construct a program that will solve a tridiagonal system. You may assume that row
interchanges are not needed and that row k& can be used to eliminate x; in row & + 1.

2. Use4Pr0granS1 3.2 to find the sixth-degree polynomial y = a; + a2x + a3x? + a4x° +
asx® + agx + a7x5 that passes through (0, 1), (1,3), (2,2), (3. 1), (4.3), (5,2),
and (6, 1). Use the plot command to plot the polynomial and the given points on the
same graph. Explain any discrepancies in your graph.

3. Use Progrlalm 3.2 to solve the linear system AX = B, where A = faijlvxn and
a;; =i/ and B = [byjlnx1. where by = N and by; = i¥=2/(G — 1) fori > 2.
Use N = 3,7, and 11. The exact solution is X = [1 | S l]'. Explain any
deviations from the exact solution.

4. Cpnstruct a program that changes the pivoting strategy in Program 3.2 to scaled partial
pivoting.

5. Fjse your scaled partial pivoting program from Problem 4 to solve the system given
in Problem 3 for ¥ = 11, Explain any improvements in the solutions.

6. Modifgt' Progralp 3.2 so that it will efficiently solve M linear systems with the same
coefficient matrix A but different column matrices B. The M linear systems look like

AX, =B, AX2= B, ., AXy = By

7. The following discussion is presented for matrices of dimension 3 x 3, but the con-
cepts ]apply to matrices of dimension N x N. If A is nonsingular, then A~ exists and
AA™ = I. Let €|, C), and C; be the columns of A~! and E, E3, and E; be the
columns of 7. The equation AA™! = I can be represented as

A[C[ C> C3] = [El E; E3].
This matrix product is equivalent to the three linear systems

AC) = E|, AC, = Ez, and AC3 = Ej.
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Thus finding A~! js equivalent to solving the three linear systems.
Using Program 3.2 or your program from Problem 6, find the inverse of each of the
.following matrices. Check your answer by computing the product AA~Y and also by

using the command inv (A). Explain any differences.
16 -~120 240 140

( g g ; W |12 1200 2700 1680
a) 1 240 —2700 6480 —4200
- —140 1680 —4200 2800

35 Triangular Factorization

In Section 3.3 we saw how easy it is to solve an upper-triangular system. Now we
introduce the concept of factorization of a given matrix A into the product of a lower-
triangular matrix L that has 1’s along the main diagonal and an upper-triangular ma-
trix U with nonzero diagonal elements. For ease of notation we illustrate the concepts
with matrices of dimension 4 x 4, but they apply to an arbitrary system of dimension

N x N,

Definition 3.4. The nonsingular matrix A has a triangular factorization if it can
be expressed as the product of a Jower-triangular matrix L and an upper-triangular

matrix U
4)) A=LU.

In matrix form, this is written as

a;p gy 413 dl4 i 0 0 Of|un w2 wiz s
az an apn au|_ |[ma 1 0 0 0 uyp ux3 uuM
ay ap ay au| |my mn 10 0 0 wum; wy
a4l as2 a43 a4 my) M4z mez 1 0 0 0 uuy A

The condition that A is nonsingular implies that #g # 0 for all k. The notation
for the entries in L is m;, and the reason for the choice of m;; instead of I;; will be

pointed out soon.

Solution of a Linear System

Suppose that the coefficient matrix A for the linear system AX = B has a triangular
factorization (1); then the solution to

2 LUX =B
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can be obtained by defining ¥ = {/X and then solving two systems:

3 firstsolve LY = BforY; thensolve UX =¥ for X.
In equation form, we must first solve the lower-triangular system
¥ = by
@) may + =b
muyi+mpy+ on =b3

ma1¥1 + Mazy2 + ma3ys + y4 = by

to obtain y;, y2, ¥3, and y4 and use them in solving the upper-triangular system
BELX] Fpaxz + 81axs F uj4xs =y
uxy + uxxy + uzaxs = y2
U33x3 + U344 = ¥3
U4axs = y4.

()

Example 3,20, Solve
x1+ 2x24 4x34 x3=21
2x1 4+ 8x 4 BxytAxy =352
3x; +10x2+ Bx3+8x4 =79
4xy + 12x2 -+ 10x3 + 6x4 = 82.
Use the triangular factorization method and the fact that

1 2 4 1 1 000 1 2 4 1
|2 8 6 4 (2 100[{0 4 —2 2
A=13 10 8 8[=[3 11 0flo o -2 3|=LU
4 12 10 6 4 1 2 1|10 0 0 -6
Use the forward-substitution method to solve LY = B:
» =21
2 =52
6) ¥1+ ¥2
3yi+y2+ ¥ =79

4yr + ¥2+2y3 + yq =82,

Compute the values y1 = 21, y2 = 52— 2(21) = 10, y3 = 79 — 3(21) — 10 = 6, and
ya=82-4(21) ~10-2(6) = —24,0r ¥ =[21 10 6 -—24]" Next write the system
vx=Y:
+2o+dxa+ xg= 21
4x3 = 2xa+2x4= 10
—2x3+3x4= 6
—GX4 = 24,

(7
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Now use back substitution and compute the solution x4 = —24/(—6) = 4, x3 = (6 —
34D/ (-2) =3, =(10-24) + 2(3))/4=2,and x; =21 —4 - 4(3) - 2(2) = L, or
Xx=[1 2 3 4]. .
Triangular Factorization

We now discuss how to obtain the triangular factorization. If row interchanges are not
necessary when using Gaussian elimination, the multipliers m;; are the subdiagonal
entries in L.

Example 3.21. Use Gaussian elimination to construct the triangular factorization of the

matrix
4 3 -1
A=|-2 -4 5.
1 2 6

The matrix L will be constructed from an identity matrix placed at the left. For each row
operation used to construct the upper-triangular matrix, the multipliers m;; will be put in
their proper places at the left. Start with

1 00 4 3 -1
A=|0 1 0||-2 -4 35].
00 1 1 2 6

Row 1 is used to eliminate the elements of A in column 1 below aj;. The multiples m3; =
—0.5 and m3; = 0.25 of row 1 are subtracted from rows 2 and 3, respectively. These
multipliers are put in the matrix at the left and the result is

1 0 0f[4 3 -1
A=|-05 1 0|0 25 45].
025 0 1|{0 125 625

Row 2 is used to eliminate the elements of A in column 2 below az3. The multiple m3; =
—0.5 of the second row 1s subtracied from row 3, and the multiplier is entered in the matrix
at the left and we have the desired triangular factorization of A.

1 0 04 3 —-17
(%) A=|-05 1 0]10 —25 45].
025 -05 1|0 0 85 .

Theorem 3.10 (Direct Factorization A = LU. No Row Interchanges). Suppose
that Gaussian elimination, without row interchanges, can be successfuily performed to
solve the general linear system AX = B. Then the matrix A can be factored as the
product of a lower-triangular matrix L and an upper-triangular matrix U:

A=LU.
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Furthermore, L can be constructed to have 1°s on its diagonal and I/ will have nonzero
diagonal elements. After finding L and U, the solution X is computed in two steps:

1. Solve LU = B for ¥ using forward substitution.
2. Solve UX =Y for X using back substitution,

Progf.  We will show that, when the Gaussian elimination process is followed and
B is stored in column N + 1 of the augmented matrix, the result after the upper-
triangularization step is the equivalent upper-triangular system I/ X = ¥. The matrices
L, U, B, and Y will have the form
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forr=2:N
1 1,
nrl =a£])/a§1 :
ady] = Mpl;

force=2:N+1

1),
o? = o~ my1 )
end

end

The new elements are written aﬁf) to indicate that this is the second time that a
aumber has been stored in the matrix at location (r, ¢). The result after step 2 is

(1)
F a5
may

m3i

myi

(n
a3

(2)
ayy

2)
a3

@
an2

()
a3

@
any

2
ai3

@
an3

r - (1 7
i 0 ¢ 0 8 i
(2)
mz 1 0 vl
ms3 M3z 1 0 2
L= s B =|*3N+1
(N)
_le MmN M3 IJ aNNHJ
roay (o (D (1 U
By Gy g o dyy BN+l
(D) (2} @ 2)
0 ay ay - agy T N41
(3) 3 3)
v=|0 0 a3 - agy , Y = BN+t
() (N)
0 o 0 "fwvJ ay N-d-—l_J

Remark. To find just L and U, the (N + 1)st column is not needed.
Step 1. Store the coefficients in the augmented matrix. The superscript on a,.’
means that this is the first time that a number s stored in location (r, ¢).

(N 1)
4N | BN+
2 2)
3N | BNl
(2} (2}
Ay | Fyq
o | o
Ay | By N+l i

Step 3. Eliminate x; in rows 3 through N and store the multiplier m.;, used to
eliminate x; in row r, in the matrix at location (r, 2).

forr=3:N
(2}, .2
mpy = a,z) /azz);
ary = Mr2;
forc=3:N+1
2
oF =~ mrynad
end
end

The new elements are written ag) to indicate that this is the third time that a num-
ber has been stored in the matrix at the location {r, c).

e, [$3] 4] (1} (1) T
4y 4y apy TN | BN
(1 | (N
Gy Gy ap DN | FaNyl
n (1) (1) (1} (1}
431 4y ay Gy | Bang
Mm@ m | m
N1 G2 A3 AVN | AN N+1 ]

Srep 2. Eliminate x| in rows 2 through N and store the multiplier m, ¢, used to

eliminate x; in row r, in the matrix at location (r, 1).

(1)
( ay
ma|

m3|

L

Maq

(1}

a;

(2)

a

m32

my2

(1)
a3

(2)
Gy

(3}
a33

3
an3

Step p + 1. This is the general step

(1
ar N

(2
Gy

(3)
A3y

3
ayN

. Eliminate x, in rows p + | through N and
store the multipliers at the location {r, p).

(1)
Ay N+i

(2)
4 N+1

3)
a3 N+1

€]
Ay N+l
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forr=p+1:N

} .
e =P a2

Qrp = Mrp;
forc=p+1:N+1
1
o = 0P~y a2
end
end

The final result after xx_.; has been eliminated form row N is

(D (1) (1 (1 [¢)] 7]

a4 a7 &3 o 4y | SNy
(2) (2) (2) (2

ma dyy  Gyy o oy | Gangy
&)} 3) a)

M3t omap dzy - 3y | d3ngg
™ |

myNl mpy2 MmMy3 ANN | BN N+t

The upper-triangular process is now complete, Notice that one array is used to store
the elements of both L and {/. The 1’s of L are not stored, nor are the 0’s of L and
U that lie above and below the diagonal, respectively. Only the essential coefficients
needed to reconstruct L and U are stored!

We must now verify that the product LU = A. Suppose that P = LU and
consider the case when r < ¢. Then dy¢ is
9) dre = m,—laglc) + mrgag) + - +m,,_.1a£'_'1? +a,§?.

Using the replacement equations in steps 1 through p 41 = r, we obtain the following
substitutions:

1
m1a® = ad - o,

2
m2a® = o - o,

(10

e =alh — e,

Mrr—18,_ 10

When the substitutions in (10) are used in {9), the result is
de=0a —a@ +a? — @ + .. 420V —aD +al) = al).

rc

The other case, r > c, is sitnilar to prove. .
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Computational Complexity

"The process for triangularizing is the same for both the Gaussian elimination and tri-
angular factorization methods. We can count the operations if we look at the first N
columns of the augmented matrix in Theorem 3.10. The outer loop of step p + 1 re-
quires N — p = ¥ — (p + 1} + 1 divisions to compute the multipliers rm,,. Inside the
loops, but for the first N columns only, a total of (¥ — p){N — p) multiplications and
the same number of subtractions are required to compute the new row elements aﬁf +h,
This process is carried out for p = 1, 2, ..., ¥ — 1. Thus the triangular factorization
portion of A = LU requires

N-1 N3 _
iy Y N-pWN-p+1)= 3 multiplications and divisions,
p=1
and
N-1 3 _ 2
(12) Z(N -pPN—p) = gy—%ﬂ subtractions.
p=i

To establish (11), we use the summation formulas

M M
Yr=MAED 4 e MM LMY
k=1

2 k=1 6

Vsing the change of variables k = N — p, we rewrite (11) as

N-1 N-1 N—1
N=pWN—p+D)=3 (N-p)+ Y (N-p)®
p=1 p=1 p=1
N1 N-1
=) k+y K
k=1 k=l
_IN-1DN (N=-1DNQN-1)
2 6

_N*-N
==

Onbbithe triangular factorization A = LU has been obtained, the solution to the
lower-triangular system LY = B willrequire 0 + 1 + --- + N — 1 = (N? -~ N)/2
muitiplications and subtractions; no divisions are required because the diagonal ele-
ments of L are 1’s. Then the solution of the upper-triangular systerm UX = Y requires
1+2+4---+ N = (N? + N)/2 multiplications and divisions and (N? — N)/2 sub-
tractions. Therefore, finding the solution to LUX = B requires

N? multiplications and divisions, and N2 — N subtractions.
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We see that the bulk of the calculations lies in the triangularization portion of the
solution. If the linear system is to be solved many times, with the same coefficient
matrix A but with different column matrices B, it is not necessary to triangularize the
matrix each time if the factors arc saved. This is the reason the triangular factorization
method is usually chosen over the elimination method. However, if only one linear
system is solved, the two methods are the same, except that the triangular factorization
method stores the multipliers,

Permutation Matrices

The A = LU factorization in Theorem 3.10 assumes that there are no row inter-
changes. It is possible that a nonsingular matrix A cannot be directly factored as
A=LU.

Example 3.22.  Show that the following matrix cannot be directly factored as A = LU:

12 6
A=| 4 8 -1
-2 3 5

Suppose that A has a direct factorization LU ; then

102 6 1 0 O|]un wupp up
{(13) 4 8 —l|=]mu 1 0|10 wum uyp
-2 3 5 mi; myp 1 0 0 us3

The matrices L and U on the right-hand side of (13) can be multiplied and each etement
of the product compared with the cotresponding element of the matrix A. In the first
column, I = lujj, then 4 = majuy1 = ma;, and finally -2 = majuy] = m3j. In
the second column, 2 = luy), then 8 = maup = (AW2) + uyw implies that uxp = 0,
and finally 3 = maju12 + mazuz = (~2)(2) + m33(0) = —4, which is a contradiction.
Therefore, A does not have a LU factorization. [ ]

A permutation of the first N positive integers 1, 2, ..., N is an arrangement &y, k2,
.- .. ky of these integers in a definite order. For example 1, 4, 2, 3, 5is a permutation of
the five integers 1, 2, 3, 4, 5. The standard base vectors E; =[00 --- 01; 0 --- 0],
fori = 1,2,..., N, are used in the next definition.

Definition 3.5. An N x N permutation matrix P is a matrix with precisely one entry
whose value is 1 in each column and row, and all of whose other entries are Q. The

rows of P are a permutation of the rows of the identity matrix and can be written as

(14) P=[E, E, .. E,).
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- The elements of P = [ p;;] have the form

o ik
pip = 0 otherwise.

For example, the following 4 x 4 matrix is a permutation matrix,

01 00
i 000 ’

(15) P=\0 4 0 1|=[E5 Ei E, EiJ. A
0010

Theorem 3.11. Suppose that P = [E;,  E,, ... Ej} ] isapermutation matrix.

The product PA is a new matrix whose rows consist of the rows of A rearranged in
the order rowy, A4, rowy, 4, .. ., Towg, A.

Example 3.23. Let A be a4 x4 matrix and let P be the pecmutation matrix given in (15),
then P A is the matrix whose rows consist of the rows of A rearranged in the order rows A,
row; A, rowy A, rows A.

Computing the product, we have

1 0 0][ay a2z az au ax Gx axn ap

1 0 0 O0flay a2 as au _|an a2 aiz amg

0 0 0 1)|as @12 a3 axn aq) 442 d43  asd

0 01 0){au ap apn auy asi 23 a3 ay -
Theorem 3.12. If P is a permutation matrix, then it is nonsingular and P~! = P’.

Theorem 3.13. If A is a nonsingular matrix, then there exists a permutation matrix
P so that P A has a triangular factorization

(16) PA=LU.
The proofs can be found in advanced linear algebra texts.

Example 3.24. If rows 2 and 3 of the matrix in Example 3.22 are interchanged, then the
resulting matrix P A has a triangular factorization.

The permutation matrix that switches rows 2 and 3is P = [E| E} E.]. Comput-
ing the product P A, we obtain

1 00 1 2 6 1 2 6
PA=1{0 0 1 4 8 —1i=1-2 3 5
01 0]1-23 5 4 8 ~1
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Now Gaussian elimination without row interchanges can be used:

pivot — 1l 2 6
myy=-21-2 3 5
my = 4 4 8§ -1

After x2 has been eliminated from column 2, row 3, we have

P2 6
pivot— 0 7 17{=U.
myp=010 0 -25 »

Extending the Gaussian Elimination Process

The following theorem is an extension of Theorem 3.10, which includes the cases
when row interchanges are required. Thus triangular factorization can be used to find
the solution to any lincar system AX = B, where A is nonsingular.

Theorem 3.14 (Indirect Factorization: PA = LU). Let A be a given N x N
matrix. Assume that Gaussian elimination can be performed successfully to solve the
general linear system AX = B, but that row interchanges are required. Then there
exists a permutation matrix P so that the product PA can be factored as the product
of a lower-triangular matrix L and an upper-triangular matrix U:

PA=LU.

Furthermore, L can be constructed to have ’s on its main diagonal and U will huve
nonzero diagonal elements. The solution X is found in four steps:

1. Construct the matrices L, U, and P.

2. Compute the column vector P B,

3. Solve LY = P B ior Y using forward substitution.
4. Soive UX = Y for X using back substitution.

Remark. Suppose that AX = B is to be solved for a fixed matrix A and several differ

ent column matrices B. Then step 1 is performed only once and steps 2 through 4 are
used to find the solution X that corresponds to B. Steps 2 through 4 are a computatio

ally efficient way to construct the solution X and require @ (N?) operations instead .|
the O(N?) operations required by Gaussian elimination.
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MATLAB

The MATLAB command [L,U,P]=1u(A) creates the lower-triangular matrix L, the
upper-triangular matrix U (from the triangular factorization of A}, and the permutation
matrix P from Theorem 3.14, :

Example 3.25.  Use the MATLAB command [L,U,P]=1u(A} on the matrix A in Ex-
ample 3.22. Verify that A = P~ AU (equivalent to showing that P4 = LU).

>»4=(1 2 6 ;4 8 -1;-2 3 -5];
>>[L,U,PI=1ulA)

L:
1.0000 0 0
-0.5000 1.0000 0
0.2500 O 1.0000
U=
4.0000 8.0000 ~1.0000
0 7.0000 4,5000
0 0 6.2500
P=
010
001
100
>>inv(P)*L*U
1 26
4 B -1
-235 L]

As previously indicated the triangular facterization method is often chosen over the
elimination method. In addition, it is used in the inv(A) and det(A) commands in
MATLAB. For example, from the study of linear algebra we know that the determinant
of a nonsingular matrix A equals (~1)7 detU, where U is the upper-triangular matrix
from the triangular factorization of A and g is the number of row interchanges required
to obtain P from the identity matrix f. Since U is an upper-triangular matrix, we
‘know that the determinant of U is just the product of the elements on its main diagonal
{Theorem 3.6). The reader should verify in Example 3.25 that; det(4) = 175 =
=1?(175) = (—1)2 dey(l).

The following program implements the process described in the proof of Theo-
remn 3.10. [t is an extensicn of Program 3.2 and uses partial pivoting. The interchang-
ing of rows due 10 partial pivoting is recorded in the matrix R. The matrix R is then
used in the forward substitution step 1 finé the matrix ¥,
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Program 3.3 (PA = LU: Factorization with Pivoting). .To construct the solu- | for k=N-1:-1:1
tion to the linear system AX = B, where A is a nonsingular matrix. ) =(Y(k)-A(k,k+1:N)*X(k+1:N))/A(k,k);
end
function X = lufact(4,B)
%Input - A is an N x N matrix
% - B is an N x 1 matrix Exercises for Triangular Factorization
%Output - X is an N x 1 matrix containing the sclution to AX = B.
%Initialize X, Y, the temporary storage matrix C, and the row 1. Solve LY = B, UX =Y, and verify that B = AX for (a) B = [—4 10 5]' and
% permutation information matrix R (b) B=[20 49 32]’,whcre A= LUis
[N,N]=size(A);
X=zeros(N,1); 2 4 -6 1 0 0jl2 4 -6
Y=zeros(N,1); 1 5 31=1172 1 0O}|0 3 6.
C=zeros{1,N); 13 2 /2 13 1|0 0 3
R=1:N; ’
. - 2. Solve LY = B,UX =¥, and verify that B = AX for (@) B = [7 2 10] and
or p=1:N- _ ’ _ .
%Find the pivot row for columm p ®) B=[23 35 7] where A = LU is
[max1,j]l=max(abs(A(p:N,p))}; 1 1 6 1 0 0)J[1 1 @6
AInterchange row p and j -1 2 9|=]|-1 1 0]|0 3 15].
C=A(p,:); 1 -2 3 1 =1 1[0 0O 12

Alp, :)=A(j+p-1,:);

AG*p-1,:)=C; 3. Find the triangular factorization A = LU for the matrices

d=R(p); (=5 2 —1] 10 3
R(p)=R(j+p-1); (a) 10 3 b) 31 6
R(j+p-1)=d; | 3 1 6] | -5 2 1]
if Alp,p)==0 4. Find the triangular factorization A = LU for the matrices
'A is singular. No unique solution’ 4 2 1 1 -2 7]
break @ (2 5 -2 m {4 2 1
end 1 -2 7] (2 5 -2
%Calculate multiplier and place in subdiagonal pertion of & 5. Solve LY = B,UX =¥, and verifythat B = AX for(a) B = [8 —4 10 ~4]
for k=p+1:N and(b) B =[28 13 23 4]', where A = LU is
mult=A(k,p)/A(p,p);
A(k,p) = mult; 4 8 4 0 11 ] 0 014 8 4 0o
Alk,p+1:W)=A(k,p+1:N)—mult*A{p,p+1:N}; 15 4 =3 _ 7 ; 0 0||0 3 3 =3
end 1 4 7 2 i3 1 g|l{0o 0 4 4
_ 1
end 130 -2 i 5 —3 1Jooo 1
%Solve for Y 6. Find the triangular factorization A = LU for the matrix
Y(1) = B(R(1});
for k=2:N 1 0 4
Y()= B(R(k))-A(k,1:k~1)*Y(1:k-1); § —; ? g
ood -3 0 2 6

%Solve for X
X(N)=Y(N)/A(N,N}; 7. Establish the formula in (12).
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8. Show that a triangular factorization is unique in the following sense: If A is nonsin-
gularand L)1 /y = A = LUy then Ly = Lpand Uy = U,

9. Prove the case r > c at the end of Theorem 3.10.
10. (a) Verify Theorem 3.12 by showing that PP’ = I = P'P for the permutation

matrix
6100
1 00 0
P= 00 0 1
001 0

(b} Prove Theorem 3.12. Hint. Use the definition of matrix multiplication and the
fact that each row and column of P and P’ contains exactly one 1.

11. Prove that the inverse of a nonsingular N x & upper-triangular matrix is an upper-
triangular matrix.

Algorithms and Programs

1. Use Program 3.3 to solve the system AX = B, where

1 3 57 1

2 -1 35 2
A=l o o 2 5| ad B=|,
-2 -6 -3 1 4

Use the [L,U,PI=1uf{A) command in MATLAB to check your answer.

2. Use Program 3.3 to solve the linear system AX = B, where 4 = [a;;]yxn and
aij = i/7), and B = [bi;]nx1. where b} = N and by = i¥=2/( — 1) for i = 2.
Use N = 3,7, and 11. The exact solutionis X = [1 1 ... 1 1]. Explain any
deviations from the exact solution.

3. Modify Program 3.3 so that it will compute A~! by repeatedly solving N linear sys-

tems
AC; =E; for J=1,2, ..., N.
Then
A[Cl C. C,v]"—-[E1 E; EN]
and
Alt=[c, € ... cu].

Make sure that you compute the LU factorization only once!
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Figure 3.5 The electrical petwork
for Exercise 4.

4. Kirchoff’s voitage law says that the sum of the voltage drops around any closed path
in the network in a given direction is zero. When this principle is applied to the circuit
shawn in Figure 3.5, we obtain the following linear system of equations:

(Ri+R3+ R + R+ Raly = E)
(1N Rsh +(Ra+ R3+ Rs)hh — Rsly = E2
Rily — Rsh +(Ra+ Rs+ Re)l3 = 0.

Use Program 3.3 to solve for the current Iy, Iz, and 5 if

(a) R]=1,R2=1,R3=2,R4=1,R5=2,R6=’4,andE1"—-"23,E2=29

ity Ri=1,R =075, Ry =1 Ry = 2.Rs =1, Rg = 4,and E; = 12,
E;=215

(c) R1=1,R2=2,R3=4,R4=3,R5=I,R5=5,andE1=41,E2=38

5, In calculus the following integral would be found by the technique of partial fractions:

4+ x+1 dx
(x— D —x -2+

This would require finding the coefficients A;, fori = 1,2, ..., 6, in the expression

X2rx+1
(x—Dx—2x -32E=2+1)
_ Ay " Az Ay + A Azx + Ag
To-D -2 G- &-3 @+

Use Program 3.3 to find the partial fraction coefficients.

6. Use Program 3.3 to solve the linear system AX = B, where A is generated us-
ing the MATLAB command A=rand(10,10) and B=[1 2 3 ... 10]’. Remem-
ber to verify that A is nonsingular (det (A) 3 ©) before using Program 3.3. Check
the accuracy of your answer by forming the matrix difference AX - B and ex-
amining how close the elements are to zero (an accurate answer would produce
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AX — B = 0). Repeat this process using a coefficient matrix A generated by the
command A=rand(20,20) and B=[1 2 3 ... 20]’. Explain any apparent di:-
ferences in the accuracy of Program 3.3 on these two systems.

7. In (8) of Section 3.1 we defined the concept of linear combination in N-dimensionul
space. For example, the vector (4, —3), which is equivalent to the matrix [4 —3].

could be written as a linear combination of [1 0]' and [0 l]’:

5] =4+ o)

Use Program 3.3 to show that the matrix [1 3 5 7 9]' ¢an be written as a lineur
combination of

0 2 3 3 1
4 0 2 6 4
=20,10].,10], [-3j, and -2
3 4 5 0 7
—1 4 1 2 0

Explain why any matrix [x1 X3 X3 X4 xs]’ can be written as a linear cennbina-
tion of these matrices,

3.6 Iterative Methods for Linear Systems

The goal of this chapter is to extend some of the iterative methods introduced in Chap-
ter 2 to higher dimensions. We consider an extension of fixed-point iteration that ap-
plies to systems of linear equations.

Jacobi Iteration
Example 3.26. Consider the system of equations

4x— y+ z= 7
(1) 4x ~ 8y+ z=-21
—2x + y+5z= 15.

These equations can be written in the form
_1+y—z
=—a
_2+4x+z
- 8

1I5+2x—y
i= —_5 -

(2)
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Table3.2 Convergent Jacobi Iteration for the Linear

System (1)

k Xi Yk Zk

0 1.0 20 20

1 1.75 3375 3.0

2 1.84375 3875 3.025

3 1.9625 3,025 2.9625

4 199062500 3.97656250 3.00000000

5 1.99414063 3.90531250 3.00003750
15 199999993 3.99999985 2.99999993
19 2.00000000 4.00000000 3.00000000

This suggests the foilowing Jacobi iterative process:

P4y —u
Xg+l = —
21 +dxp + 2
3) it = "—-—8'*—"—*
15422 — w
k4l = =
Let us show that if we start with Py = (xp, yg. 20) = (1.2, 2}, then the iteration in (3)

appears to converge ta the solution (2, 4, 3).
Substitute xp = 1. yo = 2, and 7y = 2 into the right-hand side of each equation in {3)
10 obtain the new values

_742-2

=1.75
X1 2
1
= 3—"'§~+—2 =3.375
15+42-2
Z] = ——'5*— = 3.00.

The new point Py = (1.75, 3.375, 3.00) is closer to (2, 4, 3) then Py. Iteration us-
ing (3} generates a sequence of points { P} that converges to the solution (2, 4, 3) (see
Table 3.2). -

This process is called Jacobi iteration and can be used to solve certain types of
linear systems. After 19 steps, the iteration has converged to the nine-digit machine
approximation (2.00000000, 4. 00000000, 3.00000000).
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Linear systems with as many as 100,000 variables often arise in the solution o1
partial differential equations. The coefficient mairices for these systems are sparsc:
that is, a large percentage of the entries of the coefficient matrix are zero. If ther-
is a pattern to the nonzero entries (i.e., tridiagonal systems), then an iterative proce--
provides an efficient method for solving these large systems.

Sometimes the Jacobi method does not work. Let us experiment and sec that :
rearrangement of the original linear system can result in a system of iteration equation~

that will produce a divergent sequence of points.

Example 3.27. Let the linear system (1) be rearranged as follows:

~2x+ y+5z2= 15
4 4x -8y + z=-21
dr— y+ z= 7.

These equations can be written in the form

_ —I5+y+5z
- 3
(5) 21+4x 42
y=—"
z=T7—4x+y.

This suggests the following Jacobi iterative process:

=154 yx + S5z

xk+1 = _-_3._._..-
(6) 21 +4x + 2
yk-H = _—8"_

Zi+1 =T —4xx + W

See that if we start with Pg = (xo, y0.20) = (1.2, 2) then the iteration using (&) wil!
diverge away from the solution (2, 4, 3).
Substitute xg = 1, yp = 2, and zp = 2 into the right-hand side of each equation in (6
to obtain the new values x1, y;, and z;:
_ 1542410

x| = — e = —1.5
! 2

_21+4+2
»n= 3
n=7-44+2=5.00

=3.373

The new point P; = (~-1.5, 3.375, 5.00) is farther away from the solution (2, 4, 3) than P,
Iteration using the equations in (6) produces a divergent sequence (see Table 3.3). 3
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Table 3.3 Divergent Jacobi Iteration for the Linear

System (4)

k Xi Yi Zk

0 1.0 2.0 2.0

1 -15 3.375 5.0

2 6.6875 2.5 16.375

3 34,6875 8.015625 —17.25

4 ~46.617188 17.8125 —123.73438
8 —307.929683 -36.150391 211.28125
6 502.62793 —124.929688 1202.56836

Gauss-Seidel Iteration

Bometimes the convergence can be speeded up. Observe that the Jacobi iterative pro-
cess (3) yields three sequences {xz}, {y}, and (z¢] that converge to 2, 4, and 3, respec-
tively (sec Table 3.2). It seems reasonable that x| could be used in place of x; in
the computation of y,.1. Similarly, x¢.; and yiy ) might be used in the computation
of z;.1. The next example shows what happens when this is applied to the equations
in Example 3.26.

Example 3.28. Consider the system of equations given in (1) and the Gauss-Seidel iteva-
tive process suggested by (2):

Kian o TR~k
k+1 = “——4
. 20 +dxpq1 + 2
M Vst = ——%’——"
I3 4+ 2xp1 — yer
Tp == ————.

See thatif we start with Py = (xp. yo. 20) = (1, 2. 2). then itzration using (7) will canverge
1o the solution (2, 4, 3).
Substitute yp = 2 and zo = Z into the first equation of (7) and obtain

7422
=12 oS,
X n 1.7
Then substitute x| = 1.75 and zp = 2 into the second equation and get
21+ 4(1.75)+ 2
yo= “(x T o 3s

Finaily, substitute x; = 1.75 and y; = 3.75 into the third equation to get

15~ 2(1.75) — 3.75
= = = =295,

<1
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Table 3.4 Convergent Gauss-Seidel Iteration for the

System (1)
k Xi Yk Zk
0 10 20 20
i 1.75 375 2.95
2 1.95 3.96875 2.98625
3 1995625 3.99609375 2.99903125
3 1.99999083 3,99999988 2.99999996
9 1.99999998 3.99999995 3.00000000
10 2.00000000 4.00000000 3.00000000

The new point Py = (1.75, 3.75, 2.95) is closer to (2, 4, 3) than Py and is better tha:
value given in Example 3.26. lteration using (7) generates a sequence { P} that conve
to (2, 4, 3) (see Table 3.4).

In view of Examples 3.26 and 3.27, it is necessary to have some criterion to
termine whether the Jacobi iteration will converge. Hence we make the follos
definition.

Definition 3.6. A matrix A of dimension N x N is said to be strictly diagon
dominant provided that

N
(8) | @i} >2lakj| fork=1,2,..., N.

j=1
J#k

This means that in each row of the matrix the magnitude of the element on
main diagonal must exceed the sum of the magnitudes of all other elements in the
The coefficient matrix of the linear system (1) in Example 3.26 is strictly diagon
dominant because

Inrow I; M4 = { =1+ 1]
In row 2: | — 8j > |4 +i1]
In row 3: [5] = | —2] +|1].

All the rows satisfy relation (8) in Definition 3.6; therefore, the coefficient matri
for the linear system (1) is strictly diagonally dominant.
The coefficient matrix A of the linear system (4) in Example 3.27 is not stri
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iagonally dominant because

In row 1: | 2| < 1]+ |5}
In row 2: =8| = 41+ 111
It row 3: < |4f +] -1

ows 1 and 3 do not satisfy relation (8) in Definition 3.6; therefore, the coefficient
atrix A for the linear system (4) is not strictly diagonally dorninant.

We now generalize the Jacobi and Gauss-Seidel iteration processes. Suppose that
- given linear system is

anxy +apxy +---+ayxi+o+ ainky = by
anxy+anx +-+ayix;+-oo+ aanxy =by

ajix) +apxy +---+apixj+---+ ajNXN =b;

ay1x1 +anzxz +---+anixj +---+ annviy=by.

et the kth point be Py = (xm xgc), 5"),... x(k))' then the next point is
i) = (x(k"'l) xz(H”,. .,x(‘H”, f\f“)). The superscript (k) on the coor-

nates of Py enables us to 1dent1fy the coordinates that belong to this point. The

.eration formulas use row j of (9) to solve for xﬁ’”’]) in terms of a linear combination

f the previous valuesxfk) xgk),.--,xf,-k), ---,x;(\f)I
cobi iteration.:
(k) . k) n (€3] i (x)
0 kDo bj~apxy” — o —@jiaXi, — Gk — o — djNAy
J djj

prj=1,2,..., N.
Jacobi jteration uses all old coordinates to generate all new coordinates, whereas
tauss-Seidel iteration uses the new coordinates as they become available:

auss-Seidel Iteration:

(k+1) Get-1) L (k)
1y %D = bj —ajix) o S N e S U A L LY
W) aj;
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The following theorem gives & sufficient condition for Jacobi iteration to converge.

Theorém 3.15 (Jacobi Iteration). Suppose that A is a strictly diagonally dominant
matrix. Then AX = B has a unique solution X = P. Iteration using formula (10)
will produce a sequence of vectors { Py} that will converge to P for any choice of the
starting vector Pyp.

Proof. The proof can be found in advanced texts on numerical analysis. .

[t can be proved that the Gauss-Seide! method will also converge when the ma-
irix A is strictly diagonally dominant. In many cases the Gauss-Seide] method will
converge faster than the Jacobi method; hence it is usually preferred (compare Exam-
ples 3.26 and 3.28). It is important to understand the slight modification of formula
{10) that has been made to obtain formula (11). In some cases the Jacobi method will
converge even though the Gauss-Seidei method will not.

Convergence

A measure of the closeness between vectors is needed so that we can determine if
{P;] is convergihg to P. The Eunclidean distance {see Section 3.1} between P =
(x1.%2,...,xn)and @ = (y1, ¥2,... ., yn) is

N 12
(12) P —Ql= (Zj(x; - y,-)z) .
j=t1

Its disadvantage is that it requires considerable computing effort. Hence we intraduce
a different norm, | X,

N
(13) IXl = Il
j=1

The following resuit ensures that §{ X[, has the mathematical structure of a metric
and hence is suitable to use as a generalized “distance formula.” From the study of
linear algebra we know that on a finite-dimensional vector space all norms are equiv-
alent; that is, if two vectors are close in the [|*|/; norm, then they are also close in the
Euclidean norm ||*||.

Theorem 3.16. Let X and ¥ be N-dimensional vectors and ¢ be a scalar. Then the
function || X ||| has the following properties:

(4 1X0; =0,
(15) [Xll, =0 ifandonlyif X =90,
(16) leXlly = lel N XNy,

(7 BX + ¥l < 41X, + Y.

SEC. 3.6 ITERATIVE METHODS FOR LINEAR SYSTEMS 163

_?raof. ' We prove (17) and leave the others as exercises. For each j, the triangle
equality for real numbers states that [x; + y i1 = |xjl + [y;l. Summing these yields
inequality (17):

N N N
IX+YI=3 te+x0 <5 a1+ 3yl = 01Xy + W¥f; .
j=1 '

j=1 J=1
The norm given by (13) can be used to define the distance between points. .

Definition 3.7. Suppose that X and ¥ are two points in N-dimensional space. We
define the distance between X and ¥ in the {+{|, norm as

N
(X =¥l ="y — yl. s
=1

Example 3.29. Determine the Euclidean distance and {|+{|, distance between the points
P=4{,4 3and Q = (1.75,3.75, 2.95).
The Euclidean distance is

[P~ Qll = (2~ 175 + {4 ~3.75)% + (3 — 2.95)H1/2 = 0.3570.
The [f«l{; distance is
WP — Q) =12 — L75] 4+ |4 — 375/ + |3 — 2.95| = 0.55,

The |+}i; 1s easier to compute and use for determining convergence in N-dimensional
space. =

The MATLAB command A(j,{1:j~1,j+1:N]) is used in Program 3.4. This
effectively selects all elements in the jth row of A, except the element in the jth
cotarmn (i.e., A(j,37). This notation is used to simplify the Jacobi iteration (10) step
in Program 3.4.

In both Programs 3.4 and 3.5 we have used the MATLAB command norm, which
i3 the Buclidean norm. The {j«f}; can also be used and the reader is encouraged to
check the Help menu in MATLAB or one of the reference works for information on
the norm command.

Program 3.4 (Jacobi Iteration). To solve the linear system AX = B by starting
with un initial guess X = Py and generating a sequence { P} that converges to the
solution. A sufficient condition for the method to be applicable is that A is strictly
diagonally dominant.

function X=jacobi(4,B,P,delta, maxil)

% laput - A is an N x N nonsingular matrix
p! - B is an N x 1 matrix
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% - P is an ¥ x 1 matrix; the initial guess

% delta is the tolerance for P

% maxl is the maximum number of iterations

% Output - X is an N x 1 matrix: the jacobi approximation to
% the solution of AX = B

N = length(B);

for k=1:paxl
for j=1:N
X(j=(B(I~A(j, [1:3-1,j+1:N])*P([1:4-1,3+1:N1))/A(5,3);
end
err=abs{norm(X’-P)});
relerr=err/(norm(X) +eps) ;
P=X’;
if(err<delta) | (relerr<delta)
break
end
end
X=X';

Program 3.5 (Gauss-Seidel Iteration). To solve the linear system AX = B |
by starting with the initial guess X = Pg and generating a sequence {Py) that |
converges to the solution. A sufficient condition for the method to be applicable is :
that A is strictly diagonally dominant. ;

i
|
|

O

function X=gseid(A,B,P,delta, max1l)
% Input ~ A is an N x N nonsingular matrix

% - B is an N x 1 matrix

% ~ P is an N x 1 matrix; the initial guesa

% ~ delta is the tolerance for P

% - maxl is the maximum number of iterations
% Dutput - X is an N x 1 matrix: the gauss-seidel

% approximation to the solution of AX = B

N = length(B);

for k=1:max1
for j=1:N
if j==
X(1)=(B(1)-A(1,2:M)*P(2:N) ) /A(1,1);
elseif j==
X(N}=(B(N)-A(N,1:N-1)*(X(1:8-1}) ) /A(N,N);
else
%X contains the kth approximatioms and P the (k-1)st
X(j)=(B(§>-A(j,1:5-1)*X(1:3-1)
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-A(H, j+1:N)#P(j+1:N))/A(F, 1)
end
end
err=abs (norm{X’-P});
relerr=err/(norm(X)+eps);

P=X’;
if (err<delta) | (relerr<delta)
break
end
end
i=X’;

Exercises for Iterative Methods for Linear Systems

In Exercises 1 through 8:
(a) Start with Po = 0 and use Jacobi iteration to find Py for k = 1, 2, 3. Will Jacobi

iteration converge to the solution?
(b) Start with Pg = 0 and use Gauss-Seidel iteration to find Py fork = 1, 2, 3. Will

Gauss-Seidel iteration converge to the solution?

1. 4x- y=15 2. 8x-3y=10
x+5y= 9 —x+4y= 6

3. —x+3y= 1 4. 2x+3y= 1
6x~2y= 2 Tx—2y= 1

5 S5x—~ y4+ z=10 6. x4+ 8y~ z= 11

2x+8y— z= 11 S5»— y+ z=10

—x+ y+4z= 3 —x+ y+4z= 3
7. x—5y— z=-8 8. 4x+ y— z=13

4+ y— z=13 x-5y—- z=-8

2xx~ y—6z=-2 2x— y—6z=-2
9. Let X = (x1, x2, ..., xn). Prove that the ||%{|; norm

N
IXly = bxl
k=1

satisfies the three properties {14)-(16).
10. Let X = (xy, x2, ..., xn). Prove that the Euclidean norm

N /2
X1 = (Z(mz)
k=1
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satisfies the four properties given in (14)-(17).
il. Let X = (x, x2, . .-, xx)- Prove that the ||*|{,, norm

X = max |xg|
1 X0 lskle

satisfies the four properties given in (14)}-(17).

Algorithms and Programs

1. Use both Programs 3.4 and 3.5 to solve the linear systems in Exercises 1 through &.
Use the format long command and detta = 107,

2. In Theorem 3.14 the condition that A be strictly diagonally dominant is a sufﬁcie.nt_t?m
not necessary condition. Use both Programs 3.4 and 3.5 and several different iniths!

guesses for Py on the following linear system. Note. The Jacobi iteration appears t.-

converge, while the Gauss-Seidel iteration diverges.

x + z=2
—x+ ¥ =0
x+2y—-3z2=0

3. Consider the following tridiagonal linear system, and assume that the coefficient ma:-

trix is strictly diagonally dominant.

dixy +cix2 by
arxy + daxa + cax3 =b2
by

ayxa + dixz + €3x4

an_2XN-2 + dy—1XN-| + CN=1XN = DNy
an—1xn—1 +dnxy = by.

(i) Write an iterative algorithm, following (9)—<11), that will s9lve this §ystem. You
algorithm should efficiently use the “sparseness” of the coefficient matrix.

(i) Construct a MATL AB program based on your algorithm in and solve the followin:

tridiagonal systems.

L7
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(®) 4m; + my =3 (b) 4m; + my =1
my +4mz + m3 =3 my +dmy + my =2
my; +4m3 + my =3 my +4mz + my =1
m3 +4mg + ms =3 m3 +dmy + ms =2

mag +4mao + msg =3 mag + 4mag + msg =1

mag + 4msy = 3 nag + dmsg =2
4. Use Gauss-Seidel iteration to solve the following band system.
12x) — 2% + x3 =5
—-2x1 +12x — 2x3 + x4 =35

x; — 2x +12x3 — 2x4 + x5 =5
x2 — 2x3 +12x5 — 205 + x¢ =5

Xag — g7+ 12x48 — 2xag+ x50=35
X47 — 2148 + 12X49 - 21'50 =5
X48 — 2)549 + 12).’50 =5

5. In Programs 3.4 and 3.5 the relative error between consecutive iterates is used as a
stopping criterion. The problems with using this criterion exclusively were discussed
in Section 2.3. The linear system AX = B can be rewritten as AX — B — 0. if X,
is the kth iterate from a Jacobi or Gauss-Seidel iteration procedure, then the norm of
the residual AX; — B is, in general, a more appropriate stopping criterion,
Modify Programs 3.4 and 3.5 to use the residual as a stopping criterion. Use the
meodified programs to solve the band system in Problem 4.

Iteration for Nonlinear Systems:
Seidel and Newton’s Methods (Optional)

herative techniques will now be discussed that extend the methods of Chapter 2 and
Section 3.6 to the case of systems of nonlinear functions. Consider the functions

{!) fl(xw)’)=xz—2x—y+0.5
Llxyy=x*+ay? -4

We seek a method of solution for the system of nonlinear equations

Hx,y)=0

The cquations f1(x, y} = O and fo(x, y) = 0 implicitly define curves in the xy-
plane. Hence a solution of the system (2} is a point {p, g) where the two curves cross *

(2 A, y)=0  and
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Y y=xt-2x+ 0.3
x2+4y2=4

Figure 3.6 Graphs for the nonlinear system y = x2 ~ 2x 4 0.5
and x? +4y2 = 4.

(i.e., both fi(p, q) = 0 and f2(p, g) = 0). The curves for the system in (1) are well
known:

x2—2x4+05=0 is the graph of a parbola,

3) 2 2 . .
Xx“4+4y“—4=0 is the graph of an ellipse.

The graphs in Figure 3.6 show that there are two solution points and that they are in
the vicinity of (—0.2, 1.0Y and (1.9, 0.3).

The first technique is fixed-point iteration. A method must be devised for generat-
ing a sequence {{p4, g&)} that converges to the solution (p, q). The first equation in (3.
can be used to solve directly for x. However, a multiple of y can be added to each side
of the secand equation to get x4+ 4y? — 8y — 4 = ~8y. The choice of adding —8 ix
cruciai and will be explained later. We now have an equivalent system of equations:

_ x2~y+05

B 2

—x* -4y’ + 8y +4
2 ,

@

y=

These two equations are used to write the recursive formulas. Start with an initial poin.
{po, go), and then compute the sequence {(Pr+1. Ge+1)} using

pf —gqr+05
Pl = 21(Pr. qr) = e
5 2 2
—Py —4q; +8q + 4
qr+1 = g2(pr, gx) = 5 .
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Case (i): Start with (0, 1) Case (ii): Start with (2,0)
k Pk qx k P ax
0 0.00 1.00 0 2.00 0.00
1 —-0.25 1.00 1 2.25 0.00
2 —0.21875 0.9921875 2 2.78125 —0.1328125
3 —0.2221680 0.9939880 3 4.184082 —0.6085510
4 —0.2223147 0.9938121 4 9.307547 —2.4820360
5 —0.222194] 0.9933029 5 44,80623 —15.891091
6 —-0.2222163 0.9938005 6 1,011.995 ~392.60426
7 —0.2222147 0.9938083 7 512,263.2 —205,477.82
8 —0.2222145 0.9938084 This sequence is diverging.
9 —0.2222146 0.9933084

Case (i): If we use the starting value (pg, go} = (0, 1), then
02—1+05

—0% —4(1)? +8(1) + 4
pr=-——t2 = 025 and q = ()" +8) +
2 8
Iteration will generate the sequence in case (i) of Table 3.5. In this case the sequence

converges to the solution that lies near the starting value (0, 1).
Case (ii): If we use the starting value (pg, go) = (2, 0), then

= 1.0,

2 2 2
o= 2°—0+05 ~225 ad q = —2° -4+ 50+ 4 _
2 8

Tteration will generate the sequence in case (ii) of Table 3.5. In this case the sequence
diverges away from the solution.

Tteration using formulas (5) cannot be used to find the second solution (1.900677,
0.3112186). To find this point, a different pair of iteration formulas are needed. Start
with equation (3) and add —2x to the first equation and —11y to the second equation

and get

0.0.

xP—4x—y+05=-2r and x4 4y2 —1ly —4 = —11y.
These equations can then be used to obtain the iteration formulas

—pi+4pk+q — 0.5

Pi+1 = g1{(Pr, g) = 5

(6) 2 2
- P "'4qk -+ IIQk +4
gi+1 = 82(Pr. qv) = T .

Table 3.6 shows how to use (6) to find the second solution.
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Table 3.6  Fixed-point Iteration Using the
Formulas in (6)

k Pk a

0 2.00 0.00

1 1.75 0.0

2 1.71875 0.0852273

3 1.753063 0.1776676

4 1.808345 0.2504410

8 1.903595 0.3160782
12 1.900924 0.3112267
16 1.900652 0.3111994
20 1.900677 0.3112196
24 1.900677 0.3112186

Theory

We want to determine why equations (6) were suitable for finding the solution near
(1.9, 0.3) and equations (5) were not. In Section 2.1 the size of thé derivative at the
fixed point was the necessary idea. When functions of several variables are used, the
partial derivatives must be used. The generalization of “the derivative” for systems
of functions of several variables is the Jacobian matrix. We will consider only a few
introductory ideas regarding this topic. More details can be found in any textbook on
advanced calculus.

Definition 3.8 (Jacobian Matrix). Assume that fi(x, y) and fa2(x, y) are functions
of the independent variables x and y; then their Jacobian matrix J(x, y) is

i o
ox  dy
2
@) o
ax oy

Similarly, if fi(x, y, z), fa(x, y. z), and f3(x, y, z) are functions of the independent
variables x, y, and z, then their 3 x 3 Jacobian matrix J(x, y, z) is defined as follows:

(o 3 2h
ax dy oz
(®) o 3
ax dy 8z
| dx 3y dz | R
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Example 330, Find the Jacobian matrix J(x, y,2) of order 3 x 3 at the point (1, 3, 2)
for the three functions

Ay =x -y +y—zt+ 2
fxy.0)=xy+yz+xz

=2
flx,y, 2= pot
The Jacobian matrix is
(of an o4 ]
ax ay a4z 312 —2y+1 —423+22
_|3f 3 x| _jy+z x+z y4x
J(x,y,2) = ax By oz -y 1 :12
afs s Ofs x%z xz Xz
| oax 3y 8z ]

Thus the Jacobian evaluated at the point (1, 3, 2) is the 3 x 3 matrix

3 -5 -28
3 3 41,
3 1 3
2 I 4

J(1,3,2) = |:

Generalized Differential

For a function of several variables, the differential is used to spow how changes of the
independent variables affect the change in the dependent variables. Suppose that we
have

&) w=filx,y,2), v=falx,y,2), and w=f3(x,y,2).
Suppose that the values of the functions in (9) are known at the point (xp, yo. Zo)
and we wish to predict their value at a nearby point (x, y,z). Let du, dv, and dw

denote differential changes in the dependent variables and dx, dy, and dz dlenotf{ dif-
ferential changes in the independent variables. These changes obey the relationships

a af
du = %(xo, v, 20) dx -+ ﬁ(xo, Yo, zo) dy + L (x0. yo. 0) dz,
ax ay az
afz af2 af2
(10) dv= ™ {xp, 0. 20) dx + By {x9. Yo, 20) dy + . (x0, ¥o, zo0) dz,

a af3
dw="20 (x0, yo. z0) dx + 85 (x0, Y0, 20) dy + —— (x0, yo. 20) dZ.
dx ay a9z
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If vector notation is used, (10) can be compactly written by using the Jacobian
matrix. The function changes are d F and the changes in the variables are denoted 4 X.

du dx
(1 dF = | dv | = J(x0.y0,20) | dy | = J (x0. Yo, z0) dX.
dw dz

Example 3.31. Use the Jacobian matrix to find the differential changes (du, dv, du)
when the independent variables change from (1, 3, 2) to (1.02, 2.97, 2.01) for the system
of functions

u=fix,y,0)=x" -y +y—z44 22

v=folx,y. 2y =xy+ yr +xz

w= fix,y.7) = <.
Xz

Use equation (11) with J(1,3,2) of Example 3.30 and the differential changes
(dx,dy, dz) = (0.02, —0.03, 0.01) to obtain

du 3 -5 -28 0.02 —0.07
duf=| 5 3 411 003} = 0.05].
dw _g % _42 0.01 —0.0525

Notice that the function values at (1.02, 2.97, 2.01) are close to the linear approxima-
tions obtained by adding the differentials du = —0.07, dv = 0.05, and dw = —0.0525 1o
the comresponding function values £1(I,3,2) = ~17, f2(1,3,2) = 11, and f3(1,3,2) =
1.5; that is,

Fi{1.02,297,201) = —17.072 = —17.00 = £(1,3,2) + du
f2(1.02,2.97,2.01) = 11.0493 ~ 11.05 = £(1,3.2) + dv
f3(1.02,2.97,2.01) = 1.44864 =~ 1.4475 = f3(1, 3, 2) + duw.

Convergence Near Fixed Points

The extensions of the definitions and theorems in Section 2.1 to the case of two and
three dimensions are now given. The notation for N-dimensional functions has not
been used. The reader can easily find these extensions in many books on numerical
analysis.

Definition 3.9. A fixed point for the system of two equations
(12) x=gi{x,y) and y=gx,y)

s a point {p, g) such that p = g)(p, g) and g = g2(p, g). Similarly, in three dimen-
sions a fixed point for the system

{13) y=gfx, 5,2, vy=gflxy2 and z=gx, y 2
isaPOint(Paqyr)SUChlhatP=81(P.q,r),q=gz(p.q,r)andr=g3(p,q,r)_ A

SEC, 3.7 ITERATION FOR NONLINEAR SYSTEMS 173

Definition 3.10. For the functions (12), fixed-point iteration is
{14) P+t = E1(pr.ge)  and ey = g2(pr. qi)
fork =0, 1, .... Similarly, for the functions (13), fixed-point iteration is

Pi+1 = g1{ Pk, gk, Tk)
{15) Qi+t = 820 Pk, Gk, TE)
Fe+1 = £3(Pk. Qi Ti)

fork=0,1,.... A

Theorem 3.17 (Fixed-Point Iteration). Assume that the functions in (12) and (13)
and their first partial derivatives are continuous on a region that contains the fixed point
{p, q)or {p, q.r), respectively. If the starting point is chosen sufficiently close to the
fixed point, then one of the following cases applies.

Case (1): Two dimensions. T (py, gq) is sufficiently close to (p, q) and if

< ¥,

ag1 ag]
or (p,q)\+« 3y p.q)

(16)
< 1,

9g2 8ga
B;(P!Q)‘-f- I 3y (p.q)

then the iteration in (14) converges to the fixed point (p, g).
Case (ii): Three dimensions. If (pg, qo, ro) is sufficiently close to (p, g, ryand it

] d 9
il (P, q.r) + 22 (p.gq.r)|+ 8 (p.g.r}| <1,
ax dy az

982 082 dg2
i - ) —(p.q, —(p. q. 1,
amn ax(p.qr)-!-ay(pq'r)+az(pqr)<

og3 ag3 dg3
aJC(pqr)+ ay(irs'qrr)+ az(pqr)<

then the iteration in (15) converges to the fixed point (p, ¢, r).

If conditions (16} or (17} are not met, the iteration might diverge. This wil} usually
be the case if the sum of the magnitudes of the partial derivatives is much targer than }.
Theorem 3.17 can be used to show why the iteration (5} converged to the fixed point
near (—0.2, 1.0). The partial derivatives are

X, X, - X, = »

—a ( )= X —a (x,y) = +1
x, ——, , - .
Y g2 Y 4 ang ¥y y
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Indeed, for all (x, y) satisfying —0.5 < x < 0.5and 0.5 < y < 1.5, the partial
derivatives satisfy

3 3
—gilx, M|+ —alx, ¥} = x| +1-05] <1,
ax dy

d —X
—g2(x, y) =|—-——|+|—y+ 1] <« 0.625 < 1.
dy 4

3
‘_8 gz(x.y)‘ +
X

Therefore, the partial derivative conditions in (16} are met and Theorem 3.17 implies
that fixed-point iteration will converge to (p, g) = (=0.2222146, 0.9938084). Noticc
that near the other fixed point (1.90068, 0.31122) the partial derivatives do not megt
the conditions in (16); hence convergence is not guaranteed. That is,

4 =2.40068 > 1,

i{g1(1.90068, 0.31122)
ax

"3_31(1.90068, 0.31122)
dy

Jaigz(l.90068, 0.31122). + l;gz(1.90068, 0.31122)1 =1.16395 > 1.
x y

Seidel Iteration

An improvement, analogous to the Gauss-Seidel method for linear systems, of fixed
point iteration can be made. Suppose that py; is used in the calculation of g;4)
(in three dimensions both pg.; and gey1 are used to compute riy). When these
medifications are incorporated in formulas (14) and (15), the method is called Seide!

iteration:
(18} Pl = g1ipkqr)  and et = g2{Pk+15 Qk)s

and

Pr+1 = 21(Pk Gks Tk}
(19) i+l = 82(Prt1. Gk, Th)
re+1 = 83(Pr1s Qv Te)-

Program 3.6 will implement Seidel iteration for nonlinear systems. Imple:
tion of fixed-point iteration is left for the reader.

Newton’s Method for Nonlinear Systems

We now outline the derivation of Newton's method in two dimensions. Newton's
method can easily be extended to higher dimensions.
Consider the system

u=fl(XpJ’)

2
(20) v = falx, y)
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which can be considered a transformation from the x y-plane to the uv-plane. We are
interested in the behavior of this transformation near the point (xp, yp) whose image
is the point (ug, vp). If the two functions have continuous partial derivatives, then the
differential can be used to write a system of linear approximations that is valid near the

point (xp, yo):

3 ]
u—ug = a—fl(xo. Yo}(x — xg) + a_fl {(x0, yo)(y — yo),

@1 ; ay
v—uvp= a_fo(x"’ yo)lx — xp) + '@fz(xo, Yo} (¥ — yo).

The system (21) is a local linear transformation that relates small changes in the
independent variables to small changes in the dependent variable, When the Jacobian
matrix J(xp, vo) is used, this relationship is easier to visualize:

(22)

v— g Y=o

] a
a—f 1(x0, y0) ==~ f1{x0, yo0)
[u - uo] x dy [x - IO]
a a )
(:)-;fz(xo, yo) Efz(xo. ¥o)

If the system in (20) is written as a vector function V = F(X), the Jacobian
J(x, ¥) is the two-dimensional analog of the derivative, because (22) can be written as
23) AF = J(xg, yo) AX.

We now use (23) to derive Newton's method in two dimensions.
Consider the system (2(}) with & and v set equal to zero:

04) 0= filx,y)
0= falx, y).

Suppose that (p, q) is a solution of (24); that is,

25) 0= filp.q)
0= fa(p,q).

To develop Newton’s method for solving (24), we need to consider small changes
in the functions near the point (pg, go):
= - Ap=x — .
26) Au = u — up, P =x—po
Av=v —up, Ag =y —qo.
Set (x, ¥) = (p, g) in (20) and use (25) to see that (u, v} = (0, 0). Hence the changes
in the dependent variables are
u = ug = fi(p.q) — f1(po, 90) = 0 — f1(po, 0)

27
v~ = falp.q) — f2(po. qo) = 0 — f2(pg. qo).
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Use the result of (27) in (22) to get the linear transformation

8

ax

d
S1(po. g0} a—’fl (po. q0) A
)

Hilpo. qo)] .

? 4 (po.
a2 2P0 90> o= F2(Po. 40) F2(po. q0)

if the Jacobian J{py, gg) in (28) is nonsingular, we can solve for AP = [ Ap Aq]! _
[P q]’ - [PO 610]’ as follows:

(29) AP = —J(po. 90)” F(po, 40).
Then the next approximation P to the solution P is
(30) Py = Po+ AP = Po— J(po, q0) ' F{po, qo)-

Notice that (30) is the generalization of Newton’s method for the one-variable casc:
thatis, p1 = po — f(po)/f'(po)-

Qutline of Newton’s Method

Suppose that P has been obtained.
Step 1. Evaluate the function

_ [ f1(pe. qu)
F(P) = [fz(m, qr«)]

Step 2. Evaluate the Jacobian

3

3
Y Sr(pe, q) @f{ {Pk, i)

J(Pyy = 9 2
é‘;fZ(Pks gx) 5;f2(pk' gx)
Step 3. Solve the linear system
JPAP =-F(Py) for AP
Step 4. Compute the next point:
Proi=Py +AP.

Now, repeat the process.

SEC.3.7 ITERATION FOR NONLINEAR S YSTEMS 177
Example 3.32. Consider the nonlinear system

0=x?—2x—y+05
0=1x2+4y° — 4.

Use Newton’s method with the starting value (pp, go) = (2.00, 0.25) and compute (p1, 1)

(7. g2}, and (p3. g3).
The function vector and Jacobian matrix are

2_2xr—y+05 2x -2 -1
F(x,y)=[x x2+4y2y.».4 ]' J(x,y)z[ oy By]‘

At 1he point (2.00, 0.25) they take on the values

0.25 2.0 —1.0]

F(2.00,0.25)=[0_25]a J (2-00'0'25)=[4.0 20)"

The differentials Ap and Ag are solutions of the linear system

20 -1.0|[Ap|_ |0.25

40 20|lAgql™ 0251
A straightforward calculation reveals that

_lap]_ |-0.09375

ab= [Aq] = { 0.0625 :[

The next point in the iteration is
2.00 ~0.09375 1.90625
Pi=Pot+ AP = {0.25] ’*[ 0.0625 ] = [0.3125 ]

Similarly, the next two points are

1.900691 1.900677
Pr= [0.311213] and Py = [0.311219]'

The coordinates of P are accurate to six decimal places. Calculations for finding P and
P are summarized in Table 3.7. [
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Table 3.7 Function Values, Jacobian Matrices, and Differentials Required for Each
Iteration in Newton’s Solution to Example 3.32

Solution of the linear system

Py J(POAP = —F(Py) P+ AP
2.00 20 -101[-0.09375]_ [0.25 1.90625
0.25 40 20 0.0625|~  |o.25 0.3125
1.90625 1.8125 —1.01[-0.0055597 _ [0.008789 1.900691
0.3125 38125 25| —0.001287 | T [0.024414 0.311213
1.900691 1.801381  —1.0000007[-0.000014] _  [0.000031 1.900677
0.311213 3.801381  2.489700{| 0.000006| = ~]0.000038 0.311219

{mplementation of Newton’s method can require the determination of several par-

tial derivatives. It is permissible to use numerical approximations for the values of

these partial derivatives, but care must be taken to determine the proper step size. In
higher dimensions it is necessary to use the methods for solving linear systems intro-
duced earlier in this chapter to solve for AP.

MATLAB

Programs 3.6 (Nonlinear Seidel Iteration) and 3.7 (Newton-Raphson Method) will re-
quire saving the nonlinear system X = G(X), and the nonlinear system F(X) =
and its Jacobian matrix, JF, respectively, as M-files. As an example consider saving
the nonlinear system in Example 3.32 and the related Jacobian matrix as the M-files
F.mand JF.m, respectively.

function Z=F(X) function W=JF(X)
x=X{1);y=X(2); x=X(1);y=X(2);
Z=zeros(1,2); W=[2#x-2 -1;2xx 8+y];
Z(1)=x"2-2#x-y+0.5;

Z(2)=x"2+4y"2-4;

The functions may be evalnated using the standard MATLAB comm.n:l-

>>A=feval (’F’,[2.00 0.25])
A=

0.2500 0.2500
>>V=JF([2.00 0.25])
B=

2 -1

42
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i Program 3.6 (Nonlinear Seidel Iteration). To solve the nonlinear fixed-point
| system X = G(X), given one initial approximation Py, and generating a sequence
; { P} that converges to the solution P,

function [P,iter] = seidel(G,P,delta, maxl)

%Input - G is the nonlinear system saved in the M-file G.m
A - P is the initial guess at the solution
% - delta is the error bound
% - maxl is the number of iterations
%0utput - P is the seidel approximation to the sclution
% - iter is the number of iteraticns required
N=length(P};
for k=1:maxl

X=P;

% X is the kth approximation to the solutiomn

for j=1:N

A=feval(’G’,X);
% Update the terms of X as they are calculated
X(§)=A(3);
end
err=abs (norm(X-P));
relerr=err/(norm(X)+eps) ;
p=X;
iter=k;
if(err<delta) | (relerr<delta)
break
end
end

In the following program the MATLAB command A\B is used to solve the linear
system AX = B (see Q=P-(J\Y’} ). Programs developed earlier in this chapter could
be used in place of this MATLAB command. The choice of an appropriate program
to solve the linear system would depend on the size and characteristics of the Jacobian
matrix.

Program 3.7 (Newton-Raphson Method).  To solve the nonlinear system
F(X) = 0, given one initial approximation Pg and generating a sequence { Py}
that converges to the solution P.

function [P,iter,err]=newdim(F,JF,P,delta,epsilon,max1)

%Input - F is the system saved as the M-file F.m
A - JF is the Jacobian of F saved as the M-file JF.M
h - P is the initial approximation to the solution
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% delta is the tolerance for P
% epsilon is the tolerance for F(P)
% - maxl is the maximum number of iteratiomns
%Output — P is the approximation to the solution
% iter is the number of iterations required
% - err is the error estimate for P
Y=feval(F,P);
for k=1:maxl

J=feval (JF,P);

Q=P-(I\Y’}";

Z=feval(F,Q):

err=noerm{Q-P);

relerr=err/(norm{(Q}+eps) ;

P=Q;

Y=2;

iter=k;

if (err<delta)l(relerr<delta)|(abs(Y)<epsilon;

break

end

end

Exercises for Iteration for Nonlinear Systems

1. Find (analytically) the fixed point(s) for each of the following systems.
@ r=ga&.y=x-y
vy =gx, y)=—x+6y
b x=gxy)=06"-y-x-3)/3
y=g&y==x+y-1/3
(© x=gx, y)=sin(y)
y=gx, y)=—6x+ty
d) x=g,y.2)=9-3y—-22
y=gx y0=2-x+z
z=gi(x,y.2) =-943x+4dy-~-z

2. Find (analytically) the zero(s) for each of the following systems. Evaluat
bian of each system at each zero.

a) 0= filx.y)=2x+y-06
0= falx,y) =x+2y

by 0= filx,y)=3x>+2y—4
0= folx,y)=2x+2y -3
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Figure 3.7 The hyperbola and
circle for Exercise 5.

(€) 0= fi(x,y) =2x —dcos(y)
0= falx, y) = 4x sinfy)

) 0=filx,y,2)=x>+3y?—z
0=flx,y, 0 =x2+y*+2 -1
0= falx,y,2)=x+y

3. .Find a rqgion in the xy-plane such that if (pp, gp) is in the region then fixed-point
iteration is guaranteed to converge (use an argument similar to the one that followed
Theorem 3.17) for the system:

=gy =@ty —x—3)/3
Y=g, y)=x+y+1)/3.
4. Rewrite the following linear system in fixed-point form. Find bounds on x, v, and z

sugh that fixed-point iteration is sure to converge for any initial guess (po, go. ro) that
satisfies the boundary conditions.

bx+ y4+ z=1
x+dy+ z=2
x+ y+5z=0

7

For the given nonlinear system, use the initial approximation (pg, go) = (1.1, 2.03,
?.nd compute the next three approximations to the fixed point using (a) fixed-point
iteration and equations (14) and (b) Seidel iteration using equations (18).

8x—4x2+y2 +1
8
Zx —x2 44y —y2 43
4

x=gi{x,¥) = ¢hyperbala)

y=galx,y) = (circle).
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y
2 -
=2. 5 ~1.0 -05 0.5
I —_____
_2 -
3L Figure 3.8 The cubic and porabola
for Exercise 6.

6. For the following nonlinear system, use the initial approximation (pg, go) = (—0.3,
--1.3), and compute the next three approximations to the fixed point using (a) fixed-
point iteration and equations (14) and (b) Seidel iteration using equations (18).

y—x? +3x%+3x
7

2
+2y—x—-2
y=gkxy= Zyz— {parabola).

x=gi{x,y) = (cubic)

7. Consider the nonlinear system

0= filx,y)=x2—y—02
0= fg(x,y)=y2—1—0.3.

These parabolas intersect in two points as shown in Figure 3.9.
(a) Start with (pg, go) = (1.2, 1.2) and apply Newton’s method to compute (p). g1}

and (p2, q2).
(by Start with (pg. go) = (—0.2, —0.2) and apply Newton’s method to compute

(p1. 1) and (p2, q2).
8. Consider the nonlinear system shown in Figure 3.10.

0= filx,y)=x"+y*-2
0= falx,y)=xy- 1

(a) Verify that the solutions are (1, 1) and (—1, —1).
(b} What difficulties might arise if we try to use Newton's method to find the solu-
tions?
9. Show that Jacobi iteration for a 3 x 3 linear system is a special case of fixed-point
iteration {15). Furthermore, verify that if the coefficient matrix from a 3 x 3 linear
system is strictly diagonally dominant then condition (17) is satisfied.
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-2

Figure 3.9 The parabolas for

\ Figure 3.10 The circle and hyper-
Exercise 7. bola for Exercise 8.

10. Show that Newton's method for two equations can be written in fixed-point iteration
form

x=g1(x,¥), y=gix,y),

where g1(x, y) and g2(x, ¥} are given by

L NE A& ) - o NG filx,y)
det(J (x, y))
S NE AR, ) - file, & flxy)
det(J (x, y)) ’
11. Fixed point iteration is used to solve the nonlinear system (12). Use the following

steps to prove that conditions in (16) are sufficient to guarantee that {Cpr, qr)} con-
verges 1o {p, g). Assume that there is a constant K with 0 < K < 1 so that

gilx.y)=x—

galx,y) =y~

a a
agx(x.y)‘ + 531(&):)1 <K

and

) a
|£gz(x,y) + '5582(1'”1 <K

for all (x, y) in the rectangle R = {(x,¥) : @ < x < b,c < y < d}. Also assume
thata < pp < band ¢ < gy < d. Define

eg=p—pi, Er=q—q and 7, =max{|el, |Egl).
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Use the following form of the Mean Value Theorem applied to functions of two var- (@) 0=9x2+36y% +4;% 36
ables: ) , 0=y 2%  20;
e+l = agl(a}:- qgider + 551(,0, i) Ex 0= 16x — x* — 2y? — 1672

3 N a -5, 'We wish to solve the nonlinear system
Erq = ﬁgz(bk,q:cm + 532(‘9, di)Ey, ¥
_ N T . 0=7x3—10x—y—1
where a; and b lie in [a, b]and ¢} and df lie in [c. d]. Prove the following: 0= o7

=8y —1lly+x-1.

(@ el < Krgand |E|| < Ko

2 2
(b) ezl = Kri = K r(;cand |E2l < Kr1 = K%ro . Use MATLAB to sketch the graphs of both curves on the same coordinate syste
(©) lex| < Krniwt < K*rgand |E| < Kni1 < K¥ro Use the graph to verify that there are nine points where the graphs intersect )Ssirt:l'
@ limp—co pi = p and LMo g = ¢ the graph, estimate the points of intersection. Use these estimates and Progra!.n 3.7 t(g)

12. As noted earlier, the Jacobian matrix of system (20) is the two-dimensional analog approximate the points of intersection to 9 decimal places.

of the derivative. Write system (20) as a vector function ¥ = F(X), and let J(F) 6. The system in Problem 3 can be rewritten in fixed-point form:
be the Jacobian matrix of this system. Given two nonlinear systems ¥V = F(X) and )

¥ = G(X) and the real number ¢, prove: _ 3 —-y—1

(@ J(cF(X))=cJ(F(X)) = o
) JFX) +GX) = J(F(X)+ J(GX) b 899 +x— 1
- 11 :

Do some computer experimentation. Discover that, no matter what starting value is

useq, onily one of the nine solutions can be found using fixed-point iteration (on this

- - . . particular fixed-point form). Are there other fixed-point forms of the system in 5 that

1. Use Program 3.6 to approximate the fixed points of the systems in Exercises 5 2 could be used to find other solutions of the system? ’ :
Answers should be accurate to 10 decimal places. |

2. Use Program 3.7 to approximate the zeros of the systems in Exercises 7 and 8.
swers should be accurate to 10 decimal places.

3. Construct a program to find the fixed points of a system using fixed-point iter:
Use the program to approximate the fixed points of the systems in Exercises 5 a
Answers should be accurate to 8 decimal places.

Algorithms and Programs

4. Use Program 3.7 to approximate the zeros of the following systems. Answers sl
be accurate to 10 decimal places.
@ O=x*—x+y"+z>-5
0=x2+y*—y+2—4
0=x>+y"+*+z-6

(b} 0=x?—x+2y +yz—10
0=5x—6y+z
0=z-x2—y*

© O=(+12+@+D -z
0=@x—1)*+y* -2
0=4x2+2y2 4+ 22— 16



Interpolation and
Polynomial Approximation

The computational procedures used in computer software fo_r the evaluzj\tion' of a li-
brary function, such as sin(x), cos(x), or ¢*, involve polynomial apPprommatlon. Thle
state-of-the-art methods use rational functions (which are the quotients of polynomi-
als). However, the theory of polynomial approximation is su.itable for a first course
in numerical analysis, and we will mainly consider them in this chapter. Suppose that

the function f{x) = ¢* is to be approximated by a polynomial of degree n = 2 over

the interval [—1, 1]. The Taylor polynomial is shown in Figure 4.1{a) and can be con-

-1.0 -0.5 0.0 0.5 1.0

(3] b)

Figure 4.1 (a)} The Taylor polynomial p(x) = 1.000000 + 1.000000x +
0.500000x% which approximates f(x) = e* over [—1,1]. (b) The Chebyshev
approximation g(x) = 1.000000 + 1.129772x + 0.532042x% for f{x) = ¢* over
[—1,1].

186
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Figure 4.2 The graph of the col-
location polynomial that passes
¥ through (1,2), (2,1}, (3.5), (4,6},
1 2 3 4 5 and (5, ).

trasted with the Chebyshev approximation in Figure 4.1(b). The maximum error for
the Taylor approximation is (.218282, whereas the maximum error for the Chebyshev
polynomial is 0.056468. In this chapter we develop the basic theory needed to investi-
pate these matters.

An associated problem involves the construction of the collocation polynomial.
Given n + | points in the plane (no two of which are aligned vertically), the colloca-
tion polynomial is the unique polynomial of degree < n that passes through the points,
In cases where data are known to a high degree of precision, the collocation polyno-
mial is sometimes used to find a polynomial that passes through the given data points.
A variety of methods can be used to construct the collocation polynomial: solving a
linear system for its coefficients, the use of Lagrange coefficient polynomials, and the
construction of a divided differences table and the coefficients of the Newton poly-
nomial. All three techniques are important for a practitioner of numerical analysis to
know. For example, the collocation polynomial of degree n = 4 that passes through
the five points (1, 2), (2, 1), (3, 5), (4, 6), and (5, 1)is

5x% — 82x* + 427x2 — 806x + 504

P(x) = 7 .

and a graph showing both the points and the polynomial is given in Figure 4.2,

Taylor Series and Calculation of Functions

Limi! processes arc the busis of calculus. For example, the derivative
Flx—h)— fix)
h

is the limi of the difference quotient where both the numerator and the denominator
go 1o zero. A Taylor series illustrates another type of limit process. In this case an

~f — i.
7 x) hl—?ll)



188 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Table4.1 Taylor Series Expansions for Some Common Functions

PEEE Y

Sin(I)=X—§+§—ﬁ+"' for all x
2 4 6
P
COS(x):l—E-i-Z—a'i‘"‘ for all x
2 3 4
x* 2 x
ex=1+x+f+ﬁ+ﬁ+.n for all x
eSS SN S A0 “1<x=<l
M=Im3 T3 73 =*=
arctan(x) = x3+x5 17"' “l1=x=1
O W =+=

plp— I)xz_‘_p(p—— ;)'(pvz)x3+--- forix <1

(A+x)?P=1+px+ 3

infinite number of terms is added together by taking the limit of certain partial sums.
An important application is their use to represent the elementary functions: sin{x),
cos{x), e*, In{x), etc. Table 4.1 gives several of the common Taylor series expansions.
The partial sums can be accumulated until an approximation to the function is obtained
that has the accuracy specified. Series solutions are used in the areas of engineering
and physics.

We want to learn how a finite sum can be used to obtain a good approximation
to an infinite sum. For illustration we shall use the exponential series in Table 4.1 to
compute the number e = &', which is the base of the natural logarithm and exponential
functions. Here we choose x = 1 and use the series

2 13 14 lk

1 1 1
e = +ﬁ+§?+§'+zf+"'+ﬁ

-

The definition for the sum of an infinite series in Section 1.1 requires that the partial
sums Sy tend to a limit. The values of these sums are given in Table 4.2.

A natural way to think about the power series representation of a function is to
view the expansion as the limiting case of polynomials of increasing degree. If enough
terms are added, then an accurate approximation will be obtained. This needs to be
made precise. What degree should be chosen for the polynomial, and how do we
calculate the coefficients for the powers of x in the polynomial? Theorem 4.1 answers
these questions.
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Table4.2 Partial Sums S, Used 1o

Determine e

n Sn=l+%+%+“'+$

0 1.0

1 2.0

2 25

3 2.666666666666 . . .

4 2708333333333 ...

5 2.716666666666 . . .

6 2.718055555555 . ..

7 2718253968254 ...

8 2.718278769841 . ..

9 2718281525573 . .
10 2718281801146 . ..
11 2.718281826199 ...
12 2.718281828286 ...
13 2718281828447 . .
14 2718281828458 . ..
15 2718281828459 ...

Theorem 4.1 (Taylor Polynomial Approximation). Assume that f & CV¥+[q, b}
and xo € [a, b is a fixed value. If x € [a, b], then

) Fx) = Py(x)+ En(x),

where Py (x) is a polynomial that can be used to approximate f(x):

N otk
@ fom Py =Y L0 e
k!
=0

The error term E y (x) has the form

(N+1)
@) Eui) = d @

wn(x) N1 {x — xp)

for some value ¢ = c(x) that lies between x and xg.
Proof. The proof is left as an exercise. N

Relation (2) indicates how the coefficients of the Taylor polynomial are calculated.
Although the error term (3) involves a similar expression, notice that SN (cyis to be
evaluated at an undetermined number ¢ that depends on the value of x. For this reason
we do not try to evaluate Ey(x): it is used to determine a bound for the accuracy of
the approximation.
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Example 4.1. Show why 15 terms are all that are needed to obtain the 13-digit approx:
mation e = 2.718281828459 in Table 4.2,

Expand f(x) = " in a Taylor polynomial of degree 15 using the fixed value xp = U
and involving the powers (x — 0)* = x*. The derivatives required are f'(x) = f”(x) =
... = fU6) = ¢* The first 15 derivatives are used to calculate the coefficients ay = e¥/4'
and are used to write

2 3 15
x* x x
4 P, = —+ =+ .
“4) 15x) 1+x+2!+3!+ +15!‘
Setting x = 1 in (4) gives the partial sum S5 = Py5(1). The remainder term is needed to
show the accuracy of the approximation:

f(IG)(C)Ilﬁ

(5) Es() =74

Since we chose xg = 0 and x = 1, the value ¢ lies between them (i.e., 0 < ¢ < 1), which
implies that ¢ < ¢'. Notice that the partial sums in Table 4.2 are bounded above by 2.
Combining these two inequalities yields e© < 3, which is used in the following calculation

_ Jf“b)(c)\ et 3 —13

|EI5(1)|_W16! Sm<ﬁ< 1.433844 x 10~ ™7,
Therefore, all the digits in the approximation ¢ = 2.718281828459 are correct, because thy
actual error (whatever it is) must be less than 2 in the thirteenth decimal place. ]

Instead of giving a rigorous proof of Theorem 4.1, we shall discuss some of the
features of the approximation; the reader can look in any standard reference text on
calculus for more details. For illustration, we again vse the function f{x) = ¢* and
the value xo = 0. From elementary calculus we know that the slope of the curve
y = ¢* at the point (x, €*) is f’{x) = ¢*. Hence the slope at the point (0, 1} ix
f{0) = 1. Therefore, the tangent line to the curve at the point (0, 1) is y = 1 + x
This is the same formula that would be obtained if we used N = 1 in Theorem 4.1:
that is, Pi(x) = f(0) + f'(0)x/1! = 1 + x. Therefore, Pi(x) is the equation of the
tangent line to the curve. The graphs are shown in Figure 4.3.

Observe that the approximation ¢* = 1 4+ x is good near the center x¢ = 0 and tha
the distance between the curves grows as x moves away from 0. Notice that the slope-
of the curves agree at (0, 1). In calculus we learned that the second derivative indicate-
whether a curve is concave up or down. The study of curvature! shows that if twu
curves y = f(x)and y = g(x) have the property that f(xp) = g(xo), f'(x0) = g'(x0).
and f"{xg) = g”(xo) then they have the same curvature at xp. This property would be
desirable for a polynomial function that approximates f(x). Corollary 4.1 shows tha
the Taylor polynomial has this property for N = 2,

!'The curvature K of a graph v = f(x)} at (xg, yp) is defined by K = | £ (xgdt/ (1 +[f (xg) |23+
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y=e*

Figure 4.3 The graphs of y = ¢”
and y = Pi{x)=14x.

Corollary 4.1.  If Py(x) is the Taylor polynomial of degree N given in Theorem 4.1.
then

(6) PPy = fPxg) for k=0, 1,.... N.

Proof. Set x = xp in equations (2) and (3), and the result is Px(xg) = f(xg). Thus
statement (6) is true for k = 0, Now differentiate the right-hand side of (2) and get

N ) N=l c(k+1)
M Pw=3 {k _(j‘;i DY L0t

Set x = xp in (7) to obtain Py (xp) = f'(xg). Thus statement (6) is true for k = 1.
Successive differentiations of (7) will establish the other identities in {6). The details
are left as an exercise. .

Applying Corollary 4.1, we see that y = P2(x) has the properties f(xg) = P2(xg),
f'(xo) = P3(xo), and f ”(x0) = Pj(xq); hence the graphs have the same curvature
at xp. For example, consider f{x) =e¢* and Pa(x) = L +x + x2/2. The graphs are
shown in Figure 4.4 and it is seen that they curve up in the same fashion at (0, 1).

In the theory of approximation, one seeks to find an accurate polynomial approx-
imation to the analytic function® f(x) over [a, b]. This is one technique used in de-
veloping computer software. The accuracy of a Taylor polynomiat is increased when
we choose N large. The accuracy of any given polynomial will generally decrease as
the value of x moves away from the center xg. Hence we must choose N large enough
and restrict the maximum value of |x — xg| so that the error does not exceed a specified
bound. If we choose the interval width to be 2R and xg in the center (i.e., |[x —xp| < R),

2The function f(x) is analytic at xg if it has continvous derivatives of all orders and can be
represented as a Taylor series in an interval about xg.
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Figure 44 The graphsof y=e*andy = Po(x) = 1 +
x+x2/2.

Table 4.3  Vatues for the Error Bound |emror| < e® RY*1/(N + 1)! Using the
Approximation e* =~ Py(x)}for (x| < R

R=120, R=15, R=140, R =05,

x} < 2.0 x| < 1.5 Xl <10 x| <0.5
& 2 Ps(x) 0.65680499 0.07090172 0.00377539 0.00003578
%~ Pe(x) 0.18765857 0.01519323 0.00053934 06.00000256
& 2 Py(x) 0.04691464 0.00284873 0.00006742 0.00000016
e* & Pg(x) 0.01042548 0.00047479 0.00000749 006000001

the absolute value of the error satisfies the relation
N+1

(8) ferrorf = [En(x}| < STk

where M < max{| FVtU(z)| : xg— R < z < xo+ R}. If N is fixed and the derivatives
are uniformly bounded, the error bound in (8) is proportional to R¥*! /(N + 1)! and
decreases if R goes to zero as N gets large. Table 4.3 shows how the choices of these
two parameters affect the accuracy of the approximation e* = Py (x} over the interval
{x| < R. The error is smallest when N is largest and R smallest. Graphs for Py, Ps,
and P4 are given in Figure 4.5.

Example 4.2. Establish the error bounds for the approximation e* =~ Pg(x) on each of
the intervals |x| < 1.0 and |x| = 0.5.
If Ix| < 1.0, then letting R = 1.0 and | f®c)| = |¢°] < '¥ = M in (8) implies that
el.O(l.O)g
9!

lerrori = [Eg(x)] < = {.00000749,
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y=Fx)
y=Pyx)

¥ = Rx)

Figure 4.5 The graphs of y = &%, y = Pa(x), y = Pa(x),

and y = Py(x).

¥y
Ix10-7L

y= Eg(x)
2x 10771
1x 1077}
: : . * Figure 4.6 The graph of the error
-0 05 0.0 05 1.0 y = Eolx) = €% — Po(x).

if |x| < 0.5, then letting R = 0.5 and ff(g)(c)[ = jef] < %% = M in (8) implies that

e%3(0.5)°
9N

Example 4.3. If f(x) = &%, show that N = 9 is the smallest integer, so that the |error] =

|En(x)| < 0.0000005 for x in [—1, 1]. Hence Py(x) can be used to compute approximate

values of * that will be accurate in the sixth decimal place.
We need to find the smallest integer N so that

lerror] = |Eg(x)| < 22 0,00000001. n

eC(I)N-H

= |E < —

lerror] = [En(x)| < TEST

In Example 4.2 we saw that N = 8 was too small, so we ty N = 9 and discover
that |[Ex(x)f < e'(1)F1/(9 4+ 1)1 < 0.000000749. This value is slightly larger than

< 0.0000005.
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desired; hence we would be likely to choose N = 10. But we used ¢° < ¢! as a crude
estimate in finding the error bound. Hence 0.000000749 is a little larger than the actual
error. Figure 4.6 shows a graph of Eg(x) = ¢ — Py(x). Notice that the maximum vertical
range is about 3 x 107 and oceurs at the right end point (1, E9(1)). Indeed, the maximum
error on the interval is Eg(1) = 2.718281828 — 2.718281526 =~ 3.024 x 10~7. Therefore,
N =9 is justified. ]

Methods for Evaluating a Polynomial

There are several mathematically equivalent ways to evaluate a polynomial. Consider,
for example the function

) fo)=@x-1nd

The evaluation of f will require the use of an exponential function. Or the binomial
formula can be used to expand f{x) in powers of x:

5. /8
10 fao=). (k)xs—"(-n"

k=0
= x® — 8x7 4 28x% — 56x° + 70x* — 56x + 28x% — 8x + 1.

Horner’s method (see Section 1.1), which is also called nested multiplication, can
now be used to evaluate the polynomial in (10). When applied to formula (10), nested
mulitiplication permits us to write

(11} f(x) = {((({({({(x — B)x + 28)x — 56)x + 70x — 56)x + 28)x — 8)x + 1.

To evaluate f(x) now requires seven muitiplications and eight additions or sub-
tractions, The necessity of using an exponential function to evaluate the polynomial

has now been eliminated.
We end this section with the theorem that relates the Taylor series in Table 4.1 and

the Taylor polynomials of Theorem 4.1.

Theorem 4.2 (Taylor Series). Assume that f(x} is analytic and has continuous
derivatives of all order N = 1, 2, ..., on an interval (a, b) containing xp. Suppose that
the Taylor polynomials (2) tend to a limit

N k)
(12) S@ = lim Py(r)= lim 3 f—k@(x - xo)",
k=0 '

then f(x) has the Taylor series expansion

X flkd
(13) fo=31 k(_’“’) & — xo)*.

k=0
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Proof. ‘This follows directly from the definition of convergence of series in Sec-
tion 1.1. The limit condition is often stated by saying that the error term must go
to zero as N goes to infinity. Therefore, a necessary and sufficient condition for (13)
to hold is that

M) x = xg)VH

14 im E = [i -
(14 m EN ) = lim (N + D) 0.
where ¢ depends on N and x. .

Exercises for Taylor Series and Calculation of Functions

1. Let f{x) = sin(x) and apply Theorem 4.].
{a) Use xp =0and find Ps(x), P7(x), and Py(x).
(b) Show thatif |x| = I then the approximation
, P L
sm(x)~x—§+§—i+a
has the error bound | Eg(x}| < 1/10! < 2.75574 x 10~7.
(¢) Usexo = /4 and find Ps(x), which involves powers of (x ~ 7 /4),
2. Let f(x) = cos(x) and apply Theorem 4.1.
(a) Use xg = 0and find Py(x), Ps(x), and Fz(x).
(b) Show thatif |x| = 1 then the approximation
o
COS(X)NI~5+-4—!_E+§
has the error bound | Eg(x)| < 1/9! < 2.75574 x 1079,
(e} Usexp = m/4 and find P4(x), which involves powers of (x — 7 /4).

3. Does f(x) = x'/? have a Taylor series expansion about xy = 07 Justify your answer,
Does the function f(x) = x'/2 have a Taylor series expansion about xo = 17 Justily
YOur answer. .

4. (a) Find a Taylor polynomial of degree N == 5 for f(x) = 1/(1 + x) expanded

about xg = 0.
{b) Find the error term Es(x) for the polynomial in part (a).

5. Find the Taylor polynomial of degree N = 3 for f(x) = e™**/2 expanded about
xg=0.

6. Find the Taylor polynomial of degree N = 3, P3(x), for f(x) = x* — 2x2 + 2x
expanded about xg = 1. Show that f(x) = P3(x).
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7. (2) Find the Taylor polynomial of degree N = 5 for f(x) = x'/2 expanded about (¢) Show that the error term for P (x) is
xo =4
(b) Find the Taylor polynomial of degree N = 5 for f(x) = x'/2 expanded about En) = (1) x N+
X0 =9 . M =N T DA+ or T
() Determine which of the polynomials in parts (a) and (b) best approximates
(6.5)'/2, (d) Evaluate P3(0.5), P5(0.5), and Py(0.5). Compare with In(1.5).

8. Use f(x) = (2 + x)!/2 and apply Theorem 4.1. {e) Show that if 0.0 < x < 0.5 then the approximation

{(a) Find the Taylor polynomial P3(x) expanded about xp = 2. " JER L R
() Use P3(x) to find an approximation to 31/2. (x) /= x — > + 7" e -5 + 5
Find thy i alue of | f(c)| on the interval I < ¢ < 3 and find a bound
© f;:;E;x?rxmumv oot has the error bound | Eg| < 0.00009765. ...
9. Determine the degree of the Taylor polynomial Py{x) expanded about xp = 0 that 14. Binomial series. Ig; fx)=(1+x)? and xa = 0.
should be used to approximate e®} so that the error is less than 107°. (@) Showthat f'(x)=p(p—1)---(p —k+ D1 +x)P*,

10. Determine the degree of the Taylor polynomial Px (x) expanded about xg = m that (b) Show that the Taylor polynomial of degree N is

should be used to approximate cos(33: /32) so that the error is less than 10-°,
11. (a) Find the Taylor polynomial of degree N = 4 for F(x) = [ cos(t?)dr ex-
panded about xp = 0.
(b) Use the Taylor polynomial to approximate F(0.1).
() Find a bound on the error to the approximation in part (b). EnG)=p(p—1)---(p— MM /(1 + V-2 (N 4 Y.

— 1)x? —D-{p~— N
Puy =14 pr+ BEZDE o PO D (b= Nt DX

(¢) Show that

12. (a) Use the geometric series
(d) Set p = 1/2 and compute P2(0.5), P4(0.5), and Ps(0.5). Compare with

1 2=I—.1:7'+Jnc"‘—Jc6+xe‘—--- for {x] <1, (1512,
1+x (e) Show thatif 0.0 < x < 0.5 then the approximation
and integrate both sides term by term to obtain 5 3 . s
(S LA U L A AP 2
x5 2 8 16 128 256
arctan(x) =x — — + — ~ —+---  for |x| < 1.
305 7 has the esror bound {Es| < (0.5)5(21/1024) = 0.0003204 . ...
(b) Use x/6 = arctan(3~'/2) and the series in part (a) to show that () Show that if p = N is a positive integer, then
A R _ NN — 1)x? Nl | N
V. NP PN U Eap- i IR Pr(x) =1+ N+~ b Va1 i,
3 5 7 9
Notice that this is the familiar binomial expansion.
(¢) Use the series in part (b) to compute 7 accurate to eight digits. 15.  Find c such that | Ea] < 107% whenever |x — xg < c.
Fact. & == 3.141592653589793284 . . .. (8) Let f(x) = cos(x) and xg = 0.
13. Use f(x) = In(l + x) and xp = 0, and apply Theorem 4.1. (b) Let f(x) = sin(x) and xp = 7,/2.
{a) Show that £f® (x) = (—1)*~1((k — DY/(1 + 0. (©) Let f(x)=¢"andxp=0.
{b) Show that the Taylor polynomial of degree N is 16. (a) Supposethaty = f(x) is an even function {i.e., f(—x) = f(x) for all x in the
2 3 4 Nol N domain of f). What can be said about Py (x)?
Pviny=x— o 4yt ch (b) Suppose that y = f(x) is an odd function (i.e., f(—x) = — f(x) for all x in the

2 73T 4 N ' domain of £). What can be said about Py (x)?
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17. Lety = f(x)bea polynomial of degree N. If f(xq) > Oand f'(xq). ..., f™(xo) =
0, show that all the real roots of f are less than xg. Hint. Expand f in a Taylor
polynomial of degree N about x.

18. Let fix) = ¢*. Use Theorem 4.1 to find Py(x), for N = 1,2,3,..., expanded
about xp = 0. Show that every real root of Py (x) has multiplicity less than or equal
to one. Note. If p is a root of multiplicity M of the polynomial P{x), then p is a root
of multiplicity M — 1 of P'(x).

19. Finish the proof of Corollary 4.1 by writing down the expression for P‘g‘)(x) and
showing that

PO(xp) = fP(xg) for k=23, ..., N.

Exercises 20 and 21 form a proof of Taylor's theorem.

20. Let g(1) and its derivatives g% (1), for k = 1, 2,..., N + 1, be continuous on the
interval (a, b), which contains xp. Suppose that there exist two distinct points x and
xo such that g(x) = 0, and g(x0) = g'(x0) = ...g"¥ (x0) = 0. Prove that there
exists a value ¢ that lies between xo and x such that g+ (c) = 0.

Remark. Note that g(t) is a function of 7, and the values x and xg are to be treated
as constants with respect to the variable 1.

Hint. Use Rolle’s theorem (Theorem 1.5, Section I.1) on the interval with end
points xg and x to find the number ¢, such that g'(c1) = 0. Then use Rolle’s theorem
applied to the function g’(t) on the interval with end points xp and c; to find the
number c; such that g”{c2) = 0. Inductively repeat the process until the number
cn+1 is found such that g™+ (cyy1) = 0.

21. Use the result of Exercise 20 and the special function

(I —XO)N+1
gty = f() = Pu() — EN()(— ey

where Py(x) is the Taylor polynomizal of degree N, to prove that the error term
Exn{(x) = f(x) — Pn(x) has the form

(x — xo)N‘Ll

= FN+HD)
En(x)y=1f () T

Hint. Find g™¥*+1{z) and evaluate itat t = c.

Algorithms and Programs

The matrix nature of MATLAB allows us to quickly evaluate functions at a large nurn-
ber of values. If X=[-1 0 1], then sin(X) will produce [sin(-1) sin(0) sin(1}]1.
Similarly, if X=-1:0.1:1, then Y=sin(X) will produce a matrix Y of the same dimension
as X with the appropriate values of sine. These two row matrices can be displayed in the

4.2.
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form of a table by defining the matrix D = [X* Y’] (Note. The matrices X and Y must be
of the same length.)
1. (a) Use the plot comunand to plot sin(x), Ps(x), Pr(x), and Py(x) from Exercise
1 on the same graph using the interval —1 < x < 1.
(b) Create a table with columns that consist of sin(x), Ps(x), Py(x), and Ps(x)
evaluated at 10 equally spaced values of x from the interval [—1, 1].

2. (a) Use the plot command to plot cos(x), Pa{x), Ps{(x), and Ps(x) from Exercise
2 on the same graph using the interval 1 < x < 1.
(b) Create a table with columns that consist of cos(x), Ps(x), Ps(x), and Pg(x)
evaluated at 19 equally spaced values of x from the interval [—1, 1].

Introduction to Interpolation

In Section 4.1 we saw how a Taylor polynomial can be used to approximate the func-
tion f(x). The information needed to construct the Taylor polynomial is the value
of f and its derivatives at xy. A shortcoming is that the higher-order derivatives must
be known, and often they are either not available or they are hard to compute.
Suppose that the function y = f(x) is known at the N + 1 points (xg, yo). .. .,
(xn. yn), where the values x; are spread out over the interval [a, b] and satisfy
as<xp<xy<---<xy<b and y = flxp).
A polynomial P(x) of degree N will be constructed that passes through these N + 1
points. In the construction, only the numerical values x; and y; are needed. Hence
the higher-order derivatives are not necessary. The polynomial P(x) can be used to
approximate f (x} over the entire interval (a, b]. However, if the error function E(x) =
F(x) — P(x) is required, then we will need to know f¥+D(x) and a bound for its
magnitude, that is

M =max{|fY V) a<x <b)

Situations in statistical and scientific analysis arise where the function y = f(x)
ts available only at N + 1 tabulated points (xg, ¥), and a method is needed to approx-
fmate f(x) at nontabulated abscissas. If there is a significant amount of error in the
tabulated values, then the methods of curve fitting in Chapter 5 should be considered.
On the other hand, if the points (xx, v;) are known to a high degree of accuracy, then
the polynomial curve y = P(x) that passes through them can be considered. When
Xy < x < Xy, the approximation P(x} is called an interpolated value. If either
X < xporxy < x,then P{x) is called an extrapolated value. Polynomials are used to
design software algorithms to approximate functions, for numerical differentiation, for
mumerical integration, and for making computer-drawn curves that must pass through

specified points.
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The tangent ling
has slope P’(4).

2.0 )- (5.5, P(5.5)) 20}

L3 @, P(4y)

i.0
G5F 05
0.0 L I 1 I I Ly 0.0 I I 1 X 1 L x
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Figure 4.7 (b) The approximating
polynomial P(x) is differentiated and
P’(x} is used to find the slope at the in-
terpolation point (4, P(4)).

Figure 4.7 (a) The approximating
polynomial £ (x) can be used for inter-
polation at the point (4, P(4)) and ex-
trapolation at the point (5.5, P(5.5)).

Let us briefly mention how to evaluate the polynomial P(x):

N-1

(1) P(x)=anx® +an_1xV b b e + avx + ag.

Homer’s method of synthetic division is an efficient way to evaluate P(x). The deriva-
tive P’'(x) is

@ P'(x) = Nayx"" 1+ (N —Day_1x¥" 2+ 4+ 2ax + a4
and the indefinite integral /(x) = f P(x) dx, which satisfies I'(x) = P(x), is
N+1 N 3 2
__ aNx aN-1X o, ax aix
3 IHx) = N T N + +—~-3 +—-—--2 +aopx +C,

where C is the constant of integration. Algorithm 4.1 (end of Section 4.2) shows how
to adapt Horner's methed to P'(x) and I (x).

Exampie 4.4. The polynomial P(x) = —0.02x3 + 0.2x? — 0.4x + 1.28 passes through

the four points (1, 1.06), (2, 1.12), (3, 1.34), and (5, 1.78). Find (a) P(4), (b) P'(4).

() f14 P{x)dx, and (d) P(5.5). Finally, (¢) show how to find the coefficients of P(x}.
Use Algorithm 4.1(i)—(iii) (this is equivalent to the process in Table 1.2) with x = 4.

(a) by = a3 = —0.02
by =az+ byx =02+ (—0.02)(4) =0.12
bt =a1 + bx = -04+(0.12)(4) = 0.08
bp =ap+ byx = 1.28 + (0.08)(4) = 1.60.

SEC, 4.2 INTRODUCTION TO INTERPOLATION 201

¥

2.0 l‘

15

10

05
Figure 4.8 The approximating
polynomial P(x) is integrated and

0.0 its antiderivative is used to find the

area under the curve for [ < x <4.

The interpolated value is P(4) = 1.60 {see Figure 4.7(a)).

(b} dy = 3a; = —0.06
dy = 2ar 4+ d2x = 0.4+ (—0.06){4) =0.16
dy = a; +dix = —-04 4 (0.16){4) = 0.24.

The numerical derivative is P'(4) = 0.24 (see Figure 4.7(b)).

(c) iy = 942 = —0.005

i = % + iqx = 0.06666667 + (—0.005)(3) = 0.04666667
ip = %‘ +ix = —0.2 + (0.04666667)(4) = —0.01333333
i1 = ap + f2x = 1.28 + (—0.01333333)(4) = 1.22666667
io =0+ i1x = 04 (1.22666667){4) = 4.90666667.

Hence [(4) = 4.90666667. Similarly, I(1) = 1.14166667. Therefore, f,4 P(x)dx =
74y — [{1) = 3.765 (see Figure 4.8).
(d} Use Algorithm 4.1(i} with x = 5.5.

by =a3; =-0.02

by =ay 4+ bix =024 (—0.02)(5.5) =0.09

by = a1 + bax = 0.4 4 (0.09)(5.5) = 0.095
bp = ap + brx = 1.28 + (0.095)(5.5) = 1.8025.

The extrapolated value is P(5.5) = 1.8025 (see Figure 4.7(a)).
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Table 4.4  Values of the Taylor Polynomial T (x) of Degree 5, and the
Function In{1 + x) and the Error In(1 + x) — T(x) on [0, 1]

Taylor polynomial, Function, Error,

x T(x) In{l + x) In(1+x)—T(x)
0.0 0.0000000¢ 0.00000000 0.00000000
0.2 0.18233067 0.18232156 —0.00000911
0.4 0.33698133 0.33647224 —0.00050909
0.6 0.47515200 0.47000363 —0.00514837
08 0.61380267 0.58778666 —0.02601601
1.0 0.78333333 0.69314718 —0.09018615

{e) The methods of Chapter 3 can be used to find the coefficients. Assume that P{x) =
A + Bx + Cx? + Dx*; then at cach value x = 1,2,3, and 5 we get a linear equation
involving A, B, C,and D.

Atx=1:A+1B+ 1C+ 1D=1.06
Atx=2:A428B+ 4C+ 8D=1.12

4
@) Atx=3:A+3B+ 9C+ 21D =134
Atx=5:A+5B+25C+ 125D =1.78

The solutionto (4)is A =1.28, B = —-04,C =0.2,and D = —-0.2. ¥

This method for finding the coefficients is mathematically sound, but sometime:
the matrix is difficult to solve accurately. In this chapter we design algorithms specifi-
cally for polynomials.

Let us return to the topic of using a polynomial to calculate approximations to a
known function. In Section 4.1 we saw that the fifth-degree Taylor polynomial for
FixY=1n(l+x)is

P2 B B
(5) Tx)=x 2+3 4+5.

If T(x) is used to approximate In{l + x) on the interval [0, 1], then the error is O at
x = 0 and is largest when x = 1 (see Table 4.4). Indeed, the error between T(1) and
the correct value In(1) is 13%. We seek a polynomial of degree 5 that will approximate
In(1 + x) better over the interval [0, 1]. The polynomial P(x) in Example 4.5 is an
interpolating polynomial and will approximate In(1 + x) with an error no bigger than
0.00002385 over the interval [0, 1].

Example 4.5.  Consider the function f{x) = In(1 + x) and the polynomial

P(x) = 0.02957206x ~ 0.12895295x* + 0.28249626x
— 0.48907554x2 + 0.99910735x
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Table 4.5  Values of the Approximating Polynomial P(x) of Example 4.5 and the Function
F(x) = In(1 + x) and the Emor E(x) on [—0.1, 1.1]

Approximating polynomial, Function, Error,
x Pix) flx}=1n(1+x) E(x) = f(x) — P{x)
-0.1 —0.10509718 —0.10536052 —0.00026334
0.0 0.00000000 0.00000000 0.00000000
0.1 0.09528988 0.09531018 0.00002030
02 0.18232156 0.18232156 0.00000000
03 0.26237015 0.26236426 —0.00000589
0.4 033647224 033647224 0.00000000
05 0.40546139 0.40546511 0.00000372
0.6 0.47000363 0.47000363 0.00000000
0.7 0.53063292 0.53062825 —0.00000467
0.8 0.58778666 0.58778666 0.00000000
0.9 0.64184118 0.64185389 0.00001271
1.0 069314718 0.69314718 0.00000000
1.1 0.74206529 0.74193734 ~0.00012795
y
06 - y=In(l +x)
04 +
0.2 p
Figure 4.9 The graph of y =
L L ! L L x  P(x), which “lies on top™ of the

0.0 0.2 0.4 0.6 0.8 1.0 graph y = In(1 + x).

based on the six nodes xx = &/Sfork =0, 1, 2, 3, 4, and 5. The following are empirical
descriptions of the approximation P(x} == In{l + x).

1. P(xg) = f(x) at each node (see Table 4.5).

2. The maximum error on the interval [—0.1, 1.1] occurs at x = —0.1 and |errorf <
0.00026334 for —0.1 < x < 1.1 (see Figure 4.10). Hence the graph of y = P(x}
would appear identical to that of y = In (1 + x) (see Figure 4.9).

3. The maximum error on the interval [0, 1] occurs at x = 0.06472456 and |error] <,
0.00002385 for 0 < x < 1 (see Figure 4.10).
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¥y
0.00002 - y=E@) /\
T — X
0. 0.4 0.6 08 1)
=0.00002 (|
—0.00004]

Figare 4,10 The graph of the error y = E(x) =

In(1 +x) — P(x).

Remark. At a node x; we have f(xz) = P(x;}. Hence E(x;) = 0 at a node. The graph ¢
E(x) = f(x)— P{(x) looks like a vibrating string, with the nodes being the abscissa wher

there is no displacement.

E

Algorithm 4.1 (Polynomial Calcuius).

To evaluate the polynomial P(x), its

derivative P’(x), and its integral { P(x) dx by performing synthetic division.

INPUT N {Degree of P(x}}
INPUT A{D), A(l),..., A(N} {Coefficients of P(x}}
INPUT C {Constant of integration}
INPUT X {Independent variable}

(i) Algorithm to Evaluate P(x)

B(N) := A(M)

FOR K = N — | DOWNTC 0 DO
B(K):= A(K)+ B(K+ 1) % X

PRINT “The value P(x} is", B(Q)

Space-saving version:

Poly := A(N)

FOR K = N — 1 DOWNTOO0DO
Poly := A(K) + Poly » X

PRINT "The value P(x) is”, Poly

(ii} Algorithm to Evaluate P’ (x)

DN~ 1) :=N=x*A(N)

FOR K = N — 1 DOWNTO 1 DO
DE-1)=K~AKY+ D(K)x X

PRINT “The value P'(x) is”, D(O)

Space-saving version:

Deriv .= N x A{(N)

FOR K = N - 1 DOWNTO | DO
Deriv := K * A(K) +Derivs X

PRINT “The value P/(x) is”, Deriv

(iii) Algorithm to Evaluate I (x)
HN+ 1) :=AN/N+ D)
FOR K = N DOWNTO | DO
Ky =AK-1)/KE+T(KAD»X
) =C+I{1)*=X
PRINT “The value [ (x) is”, J(0)

Space-saving version:
Integ := A(NY/(N + 1}
FOR K = ¥ DOWNTO 1 DO
Integ := A(K — 1)/K + Integ % X
Integ = C + Integ « X
PRINT “The value [(x) is™, Integ
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Exercises for Introduction to Interpolation

L.

Consider P(x) = —0.02x3 + 0.1x2 — 0.2x + 1.66, which passes through the four
points (1, 1.54), (2, 1.5), (3, 1.42), and (5, 0.66).

(a) Find P(4).

(b) Find P’'(4).

(c) Find the definite integral of P(x) taken over [1, 4].

(d) Find the extrapolated value P(3.5).

(e) Show how to find the coefficients of P(x).

2. Consider P(x) = —0.04x3 + 0.14x2 — 0.16x + 2.08, which passes through the four
points (0, 2.08), (1, 2.02), (2, 2.00), and (4, 1.12).
{a} Find P(3).
(b) Find P'(3).
(¢) Find the definite integral of P(x) taken over [0, 3].
(d) Find the extrapolated value P(4.5).
(e) Show how to find the coefficients of P{x).
3. Consider P{(x) = —0.0292166667x + 0.275x2 —0.570833333x — 1.375, which
passes through the four points (1, 1.05), (2, 1.10), (3, 1.35), and (5, 1.75).
(a} Show that the ordinates 1.05, 1.10, 1.35, and 1.75 differ from those of Exam-
ple 4.4 by less than 1.8%, yet the coefficients of x* and x differ by more than
42%.
(b) Find P(4) and compare with Example 4.4.
(c) Find P'(4) and compare with Example 4.4.
(d) Find the definite integrai of P(x) taken over [1, 4] and compare with Exam-
ple 4.4,
{e) Find the extrapolated valuze P(5.5) and compare with Example 4.4.
Remark. Part (a) shows that the computation of the coefficients of an interpolating
polynomial is an ili-conditioned problem.
Algorithms and Programs
1. Write a program in MATLAB that will implement Algorithm 4.1. The program
should accept the coefficients of the polynomial P(x) = ayx™ +ay_1xV" 1+ - +
a3x® +aix +apasanl x N marix: P = [aN aj-—y - ap @ ag].
2. For each of the given functions, the fifth-degree polynomial P(x) passes through

the six points (0, £(0)), (0.2, £(0.2)}, (0.4, £(0.4)), (0.6, f(0.6)), (0.8, £(0.8)),
(1, £{1)). The six coefficients of P(x) are aq, a1, ..., as, Where

P(x) = asx® + asx* + aax® + a3x® + a1x + ao.



(i) Find the coefficients of P(x) by solving the 6 x 6 system of linear equations
ag + arx + aax’ + aix’® 4+ agxt + asx> = fix;)

usingx; = (f —1)/5and j =1, 2, 3, 4, 5, 6 for the six unknowns {ak}f;o.

(ii) Use your MATLAB program from Problem 1 to compute the interpolated va;
ues P(0.3), P(0.4), and P(0.5) and compare with £(0.3), Sf(0.4), and £(0.5
respectively.

(iif) Use your MATLAB program to compute the extrapolated values P(—0.1) an*

P{1.1) and compare with f{—0.1) and f(1.1), respectively.

(iv) Use your MATLAB program to find the integral of P(x) taken over [0, |!
and compare with the integral of f(x) taken over [0, 1]. Plot fix}and P(x)
over [0, 1] on the same graph.

(v) Make & table of values for P(xy), f(xz), and E(xg) = Flxe) — P(xy), where
x, =k/100fork =0,1,...,100.

(@) fx)=¢
(b)  f{x) =sin(x)
(€} flx)=(x+Dn=tY

3. A portion of an amusement park ride is to be modeled using three polynomials. The
first section is to be a first-degree polynomial, P, (x), that covers a horizontal dis
tance of 100 feet, starts at a height of 110 feet, and ends at a height of 60 feet. The
third section is to also be a first-degree polynomial, () (x), that covers a horizontal
distance of 50 feet, starts at a height of 65 feet, and ends at a height of 70 feet. The
middle section is to be a polynomial, P(x) (of smallest possible degree), that covers
a horizontal distance of 150 feet.

(a) Find expressions for P(x), Pi(x), and Q;(x) such that P(100) = Py(100).
P(100) = P{(100), P(250) = Qy(250), and P'(250) = 01 (250) and the
curvature of P(x) equals the curvature of P;(x) at x = 100 and equals the
curvature of @ (x) at x = 250.

(b) Plot the graphs of P;(x), P(x), and @) (x) on the same coordinate system.

(c) Use Algorithm 4.1(iii) to find the average height of the ride over the given hori-
zontal distance.

Lagrange Approximation

Interpolation means to estimate a missing function value by taking a weighted aver-
age of known function values at neighboring points. Linear interpolation uses a line
segment that passes through two points, The slope between (xp, yp) and (x], y;) is
m = (y1 — yo)/{x) — xp), and the point-slope formula for the line y=m(x—xp)+vo
can be rearranged as

X — X

(]) y=P(X)=y0+(y1_y0)x]—xo.

When formula (1) is expanded, the result is a polynomial of degree < 1. Evaluation of
P(x) at xg and x| produces vg and y|, respectively:
P(x0) = yo + (¥1 — yoX(0) = yo,

@ PG) = yo + (1 — (1) = 3.
The French mathematician Joseph Louis Lagrange used a slightly different method to
find this polynomial. He noticed that it could be writien as

X —Xxp

x—
(3) y=FR) =yo — -y
Each term on the right side of (3) involves a linear factor; hence the sum is a polynomial
of degree < 1. The quotients in (3) are denoted by

X —x X —Xp

and Ljq(x)= .
Xo — X1 X1 — X

) Lio(x) =

Computation reveals that Ly g{xg) = 1, L1,0(x1) =0, L1,1(x0) = 0, and.Ll_l (x))=1
so that the polynomial Py (x) in (3) also passes through the two given points:

% Piixp)=yo+n{0) =y and Pi(xy) = (0} +y1 = ».

The terms Ljo(x) and Lq,1(x) in {4) are called Lagrange coeﬁiciemt palynamigls
based on the nodes xg and x;. Using this notation, (3} can be written in summation
form

1
(6) Pi(x) =) yLialx).
k=0

Suppose that the ordinates y; are computed with the formula y; = f (xk.). If Py (x.) is
used to approximate f{x) over the interval [xp, x1], we call the_ process interpolation.
If x < xp (or x; < x), then using P;(x) is called extrapolation. The next example

illustrates these concepts.

Example 4.6. Consider the graph y = f(x) = cos(x) over [0.0, 1.2].
(a) Use the nodes xg = 0.0 and x; = 1.2 to construct a linear interpolation polyno-
mial Pi{x). -
{b) Use the nodes xg = 0.2 and x; = 1.0 to construct a linear approximating polyno-

mial Q(x). .
Using (3) with the abscissas xg = 0.0 and x| = 1.2 and the ordinates yp = co0s(0.0} =

1.000000 and y; = cos(1.2) = 0.362358 produces

x—12 0362358):-0'0
Pr(x) = 1.000000575— + 0. 1.2—00

= —0.833333(x — 1.2) + 0.301965(x — 0.0).
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Figure 4.11 (a) The linear approximation of y = P;(x) where the nodes xp = 0.0
and x; = 1.2 are the end points of the interval [g, b]. (b) The linear approximation of
¥ = Q1({x) where the nodes xp = 0.2 and x; = 1.0 lie inside the interval [a, b].

When the nodes xp = 0.2 and x; = 1.0 with yo = cos(0.2) = (.980067 and v o=
cos(1.0} = 0.540302 are used, the result is

x~1.0 x—02
= 0.980067 ———— + 0.5 il
Q) 03-1p OS2

= —1.225083(x — 1.0) + 0.675378(x — 0.2).

Figure 4.11(a) and (b} show the graph of y = cos(x) and compares it with y = P (x) and
¥y = (1(x), respectively. Numerical computations are given in Table 4.6 and reveal that
1(x) has less error at the points x; that satisfy 0.1 < x; < 1.1. The largest tabulated
error, f(0.6) — P (0.6) = 0.144157, is reduced to f(0.6) — O,(0.6) = 0.065151 by using
O1(x). =

The generalization of {(6) is the construction of a polynomial Py(x) of degree at
most N that passes through the N + 1 points (xg, Yo), {(x1, y1), ..., (x5, y~) and has
the form

N
Q) Pr(x) = yLyatx),
k=0
where Ly ; is the Lagrange coefficient polynomial based on these nodes;

(X —xp) (X = xp_ X — g1} - (X — xp)
(xk = x0) -+ - (X — X1}k — Xgg1) o< (X — Xy}

(8) Lnx(x)y =

It is understood that the terms (x — x;) and (x; — xx) do not appear on the right side of
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Table 4.6 Comparison of f(x) = cos(x) and the Linear Approximations Pj(x) and (,(x)

g S(xg) = cos(x} Py} Slxey = Py (xp) Q1(xz) Flxg) — (x0)
0.0 1.000000 1.000000 0.000000 1.090008 —(.090008
0.1 0.995004 0.946863 0.048141 1.035037 —0.040033
0.2 0.980067 0.893726 (.086340 0.980067 0.000000
0.3 0.955336 0.840589 0.114747 0.925096 0.030240
0.4 0.921061 0.787453 0.133608 0.870126 0.050935
0.5 0.877583 0.734316 0.143267 0.815155 9.062428
0.6 0.825336 0.681179 0.144157 0.760184 0.065151
0.7 0.764842 0.628042 0.136800 0.705214 0.059628
0.8 0.696707 0.574905 0.121802 0.650243 0.046463
09 0.621610 0.521768 0.099842 0.595273 0.026337
1.0 0.5400)2 0468631 [ARVEATERY 0,540302 D000
1.1 0.453596 0.415495 0.038102 0.485332 —0.031736
1.2 0.362358 0.362338 0.000000 0.430361 ~(0.068003

equation (8). It is appropriate to introduce the product notation for (8), and we write

IT}=ox — %))
2k
9 Lyi(xy= —F——.
H?;o(xk - x;)
J#k
Here the notation in (9) indicates that in the numerator the product of the linear
factors (x — x;) is to be formed, but the factor (x — x¢) is to be left out (or skipped).
A similar construction occurs in the denominator.
A straightforward calculation shows that, for each fixed £, the Lagrange coefficient
polynomial Ly 4 (x) has the property

(100 Lwa(x;)=1 when j=+k and Lwi(x;)=0 when j # k.

Then direct substitution of these values into (7) is used to show that the polynomial
curve y = Py(x) goes through (x;, y;}:

(1D Pn(xj)=vyoLyo(x;) +-- -+ y;Ly jlx;) +-- -+ yyLynix;)

=y + - +y; )+ +yn0) = y;.

To show that Pyf{x) is unique, we invoke the fundamental theorem of algebra,
which states that a polynomial T(x) of degrec < N has at most N roots. In other
words, if T'(x) is zero at N + 1 distinct abscissas, it is identically zero. Suppose that
Py (x) is not unique and that there exists another polynomial On(x) of degree < N
that also passes through the N + 1 points. Form the difference polynomial T(x) =
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Figure 4.12 (a) The quadratic approximation polynomial y = P»(x) based on the
nodes xop = 0.0, x; = 0.6, and x; = 1.2. (b) The cubic approximation polynomial
¥ = P3(x) based on the nodes xp = 0.0, xy =04, x» = 0.8, and x3 = 1.2.

Pr(x} — @n(x). Observe that the polynomial 7'(x) has degree < N and that T'(x;) =
Py(x;) — QOn(xj) =yj—y; =0,for j=0,1,..., N. Therefore, T(x) = ¢ and it
follows that O n(x) = Py (x).

When (7) is expanded, the result is similar to (3). The Lagrange quadratic interpo-
lating polynomial through the three points (xgp, yo), (x1, y1), and (xz, y3) is

(x —x1){x — x2) | (x — xp)(x — x2} ) (x — x)(x — x1}
(xg — x1 )Xo — x2) {(x1 — x0)(xy — x2) (x2 — xp)(xz — x1)’

(12) Px) =y

The Lagrange cubic interpolating polynomial through the four points (xg, yo), (x, ¥1).
(x2. ¥2), and (x3, ¥3) is

(x —xp){x —x2)(x —x3) (x — xp){x — x2)(x — x3)
0 — ¥1)(x0 — 7)(x0 —x3) | ° ' (¥1 — To)x1 — x2)(x1 — 13)
. (x — xp){x — X1 {x — x3) X (x — xp){x —x1)(x ~ x2) ‘
(x2 — xg}x2 — x1)(x2 — x3) (x3 — xp)(x3 — x1)(ra — x2)

(13) Ps3(x) = yo

Example 4.7. Consider y = fi(x) = cos(x) over [0.0, 1.2].

(a) Use the three nodes xg = 0.0,x; = 0.6, and x = 1.2 to construct a quadrati
interpolation polynomial P (x).

{b) Use the four nodes xo = 0.0, x; = 0.4, x; = 0.8, and x3 = 1.2 to construct a cubi
interpolation polynomial Ps(x).
Using xg = 0.0, x; = 0.6, xp = 1.2 and yp = cos{(0.0} = 1, y; = cos(0.6) = (.82533¢
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and y» = cos(1.2) = 0.362358 in equation (12) produces

(x —0.0(x — 1.2)
(0.6 —0.0)(0.6 — 1.2)

x — 0.6)(x — 1.2)
0006012 2823336
(x — 0.0)(x — 0.6)
+ 0362358 A 12— 0.6)
— 1.388889(x — 0.6)(x — 1.2) — 2.292599(x — 0.0)(x — 1.2)
+0.503275(x — 0.0)(x — 0.6).

P:(x)=1.0

Using xg = 0.0, x; = 0.4, x3 = 0.8, x3 = 1.2 and yg = c0s(0.0) = 1.0, y; = cos(0.4) =
0.921061, y2 = cos(0.8) = 0.696707, and y3 = cos(l.2) = 0.362358 in equation (13
produces

(x—04)(x —0.8)(x—1.2)
0.0—-0.4)(0.0-083)(0.0—-1.2)
(x — 0.0)(x — 0.8)(x — 1.2)
(0.4—-0.0)(0.4—-0.8)(0.4-1.2)
(x —0.0¥x —0.4)(x — 1.2}
(0.8 —0.0)(0.8 —0.4){0.8 —1.2)
(x —0.0)(x — 0.4)(x — 0.8)
(1.2-0.0)(1.2-0.4)(1.2—-0.8)
= —2.604167(x — 04)(x — 0.8)(x — 1.2)
+ 7.195789(x — 0.0)(x — 0.8){x — 1.2)
-~ 3.443021(x — 0.0)(x — 0.4)(x — 1.2)
+ 0.943641(x — 0.0)(x — 0.4)(x ~ 0.8).

P3(x) = 1.000000

+0.921061

+ 0.696707

+ 0.362358

The graphs of y = cos(x) and the polynomials y = P»{x) and y = P3(x) are shown in
Figure 4.12(a) and (b), respectively. ]

Error Terms and Error Bounds

Itis important to understand the nature of the error term when the Lagrange polynomial
is used to approximate a continuous function f(x). It is similar to the error term for
the Taylor polynomial, except that the factor (x — xo)V*! is replaced with the product
(x — x}(x — x1) - - - (x — xp). This is expected because interpolation is exact at each
of the N + 1 nodes xx, where we have En{(xx) = f(xx) — Py(xe) =y — yi = 0 for
k=0,1,2,....N.

Theorem 4.3 (Lagrange Polynomial Approximation). Assume that f € CN*![q, b}
and that xp, x1, ..., x5 € [a, b]are N + 1 nodes. If x € [a, b], then

14) f{x) = Py(x) + En(x),
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where Py (x) is a polynomial that can be used to approximate f(x):
N
(15) )= Pyx) =Y fE)Lna().
k=0

The error term E y{x} has the form

(x — x)x —x1)- - (x —xn) fY V(o)
(N+1)! '

(16) Enx(x) =

for some valae ¢ = c(x) that les in the interval [a, b].

Proof. As an example of the general method, we establish (16) when N = 1. The
general case is discussed in the exercises. Start by defining the special function g(1) as
follows

(t —x0)(t — x1)

an g0) = f(t)y — Pi(r) — E; (x)m'

Notice that x, xp and x| are constants with respect to the variable ¢ and that g(r) eval-
uates to be zero at these three values; that is,

g0 = £00)— Pytx) — By SR E T ey pya) - By =0

(x — x){x — x1)
{xo — x0) (x0 — x1)
{x — xp)(x —x1)
(x| — xp){x1 — x1)
(x — xp)(x —x1)

= f{xg) — Pi{xg) =0,

g(xo) = fixo) — Prlxe} — Er(x)

= f(x1} = P (x)) =0

glx)) = fix1) — Piix) — Ey(x)

Suppose that x lies in the open interval (xq, x1). Applying Rolle’s theorem to g(f)
on the interval [xg, x] produces a value dyp, with xg < do < x, such that

(18) g'(dg) = 0.

A second application of Rolle’s theorem to g(¢) on [x, x;] will produce a value 4,
with x < di < xj, such that

(19) g'td)) = 0.

Equations (18) and (19) show that the function g{t)iszeroatt = dpandt = d.
A third use of Rolle’s theorem, but this time applied to g'(r} over [dy, d|], produces a
value ¢ for which

(20) gPe)=0.
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Now go back to (17) and compute the derivatives g’(¢) and g”(t):

(r—xo)+ (t —xy)
(x —xp)(x ~x1) ’

2
(x —x0)(x — x1)”
In (22) we have used the fact the Py(t) is a polynomial of degree N = L; hence its
second derivative is P;’(r) = 0. Evaluation of (22) at the point ¢ = ¢ and using (20)
yields

(21) gy=f'tty— P{(t) — E1(x)

(22) g = f(t) - 0— E1(x)

2
(x — xp)(x ~ x1)’
Solving (23) for E}(x) results in the desired form (16) for the remainder:
(x —x0)(x = x) fP(c)
2! ’
and the proof is complete. .

(23) 0= f"(c) - E1(x)

(24) Ej(x)=

The next result addresses the special case when the nodes for the Lagrange poly-
nomial are equally spaced x; = xo + hk, fork = 0, 1, ..., N, and the polynomial
Py (x) is used only for interpolation inside the interval [xg, xy].

Theorem 4.4 (Error Bounds for Lagrange Interpolation, Equally Spaced Nodes).
Assume that f(x) is defined on [a, ], which contains equally spaced nodes x; =
xo + hk. Additionally, assume that f(x) and the derivatives of f(x), up to the order
N + 1, are continuous and bounded on the special subintervals [xg, x11, [x0, x2], and

[xo, x3], respectively; that is,
(25) LFYD (0] < Mypr for xp < x < xw,

for N = 1, 2, 3. The error terms (16) corresponding to the cases N = 1, 2, and 3 have
the following useful bounds on their magnitude:

BM

(26) |Ei{x)] < ——=  valid for x € [xp, x1),
M

@n B2 < 522 J§3 valid for x € [xg, x2],
M.

(28) |E3(x)| < 24" valid for x € [xg, x3].

Proaf. 'We establish (26) and leave the others for the reader. Using the change of
variables x — xg = ¢ and x — x; = — h, the error term E (x) can be written as

(2 — ) FP(c)

(29) Ei(x) = Ey(xo +1) = =

for 0<:t<h
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The bound for the derivative for this case is
(30) Pl <M forxg<c<x.

Now determine a bound for the expression (12 = ht) in the numerator of (29); ¢z’
this term & (r} = 12 — ht. Since ®’(t) = 2t — h, there is one critical point r = A’
that is the solution to ®/(t) = 0. The extreme values of ®(z) over [0, k] occur eithe r
at an end point $(0) = 0, ¢(h) = 0 or at the critical point &(h/2) = —h2/4. Since
the latter value is the largest, we have established the bound

|—h* _
=

(30 IP(Y = ¢ — e} < for <t <h.

Using (30) and (31) to estimate the magnitude of the product in the numerator 1, : 2V
results in

PO fP @) _ HM;

(32) LEy() = a1 =3

and formula (26) is established.

Comparison of Accuracy and O (A1)

The significance of Theorem 4.4 is to understand a simple relationship between the
size of the error terms for linear, quadratic, and cubic interpolation. In each case the
error bound | Exn(x)| depends on % in two ways. First, BN+ is explicitly present so
that | Ex (x)] is proportional to #¥*!. Second, the values My.; generally depend o
h and tend to | F N+ (xg)| as h goes to zero. Therefore, as h goes to zero, |Ex(x)
converges to zero with the same rapidity that A¥*! converges to zero. The notatior
O(hM+Y) is used when discussing this behavior. For example, the error bound (26}
can be expressed as

|Ej(x)| = Oh%)  valid for x € [xp, x].

The notation O (k%) stands in place of #2M5/8 in relation (26) and is meant to convey
the idea that the bound for the etror term is approximately a multiple of A2; that is,

|E1(x)] < Ch? = 0.
As a consequence, if the derivatives of f(x) are uniformly bounded on the in-

terval || < 1, then choosing N large will make AV + gmall, and the higher-degree
approximating polynomial will have less error.

SEC.4.3 LAGRANGE APPROXIMATION 215

0.008

0.0008

y= E3(x)

0.0004 |- A

0.2 04 06 0% 1.0 1.

0.004

X

-0.004 —-0.0004

-0.008 ~0.0008 |-

{w ®)

Figure 4.13 (a) The error function £5{x} = cos{x) — P;(x). (b) The emror function
Ea{x) = cos(x) — Py(x).

Example 4.8. Consider y = f(x} = cos(x) over [0.0, 1.2]. Use formulas (26) through
(28) and determine the error bounds for the Lagrange polynomials P;(x), P2(x), and Pi(x)
that were constructed in Examples 4.6 and 4.,7.
First, determine the bounds Ma, M3, and M4 for the derivatives | f @ (x)j, 17 ).
and | £ ¥ (x}{, respectively, taken over the interval (0.0, 1.2]:
|F P = |- cos(x)] < |- cos(0.0)] = 1.000000 = My,
If®x)| = |sin(x)| < |sin(1.2)] = 0.932039 = M,
[FP Y = |cos(x)| < [¢os(0.0)| = 1.000000 = M.
For Py(x) the spacing of the nodes is & = 1.2, and its error bound is

KM, - (1.2)%(1.000000)
g - 8
For P, (x) the spacing of the nodes is A = 0.6, and its error bound is

(33) |Eyx) = = 0.180000.

W - (0.6)3(0.932039)
93 ~ 93

For P3(x) the spacing of the nodes is k = 0.4, and its error bound is

(34) | E2x)| = = (.012915.

My - (0.4)*(1.000000)
24 — 24
From Example 4.6 we saw that [ E[(0.6)| = | c0s(0.6) — P;(0.6)| = 0.144157, so

the bound 0.180000 in (33} is reasonable. The graphs of the error functions £3 (x) =
cos(x) — Pa(x) and E3(x) = cos(x} — P3(x) are shown in Figure 4.13(a) and (b),

= 0.001067. »

£35) |E3(x}| <
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Table 4.7 Comparison of f{x) = cos(x) and the Quadratic and Cubic Polynomial
Approximations P;(x) and P;(x)

X Flxg) = cos(xg) Po(xy} Ea(xy) Pa(xy) Ea(xy)
0.0 1.000000 1.000000 0.0 1000000 0.0

0.1 0.995004 0.990911 0.004093 0.995835 —0.000831
0.2 0.980067 0.973813 0.006253 .980921 —0.000853
0.3 0.955336 0.948707 0.006629 0.955812 —-0.000476
0.4 0921061 0.915592 0.005469 0.921061 0.0

0.5 0.877583 0.874468 0.003114 0.877221 0.00036!
0.6 0.825336 0.825336 0.0 0.824847 0.00059
0.7 0.764842 0.768194 —0.003352 0.764491 (.00035.
0.8 0.696707 0.703044 —0.006338 0.696707 ¢.0

0.9 0.621610 0.629886 —-0.008276 0.622048 —0.00043>
1.0 0.540302 0.548719 —0.008416 0.541068 —(.0007¢€-
1.1 0.453596 0.459542 —0.005946 0.454320 —( 00072
1.2 0.362358 0.362358 0.0 0.362358 0.0

respectively, and numerical computations are given in Table 4.7. Using values in the
table, we find that |E;(1.0}| = |cos(1.0) — Pz(1.0)| = 0.008416 and |E5(0.2)| =
| cos(0.2) — P5(0.2)| = 0.000855, which is in reasonable agreement with the bour
0.012915 and 0.001607 given in (34) and (35), respectively.

MATLAB

The following program finds the collocation polynomial through a given set of poir: -
by constructing a vector whose entries are the coefficients of the Lagrange interpo. -
tory polynomial. The program uses the commands poly and conv. The poly ¢o-
mand creates a vector whose entries are the coefficients of a polynomial with specifi. |
roots. The conv commands produces a vector whose entries are the coefficients o: -
polynomial that is the product of two other polynomials.

Example 4.9. Find the product of two first-degree polynomials, P(x} and Q(x), w
roots 2 and 3, respectively. :

>>P=poly{(2)
P=

t -2
>>Q=poly(3)
Q:

1 -3
>>conv(P,Q)
ans=

1-56

Thus the product of P(x) and Q(x) is x* — 5x + 6.
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| Program 4# {Lagrange Approximation). To evaluate the Lagrange polynomial

u’ () =D 4o YeLni(x) basedon N + 1 points (xx, i) fork=0,1,..., N.
function [C,L]=lagran(X,Y)

?Input ~ X is a vector that contains a list of abscissas
f - Y is a vector that contains a list of ordinates
fDutput - C is a matrix that contains the coefficients of
f the Lagrange interpolatory pPolynomial

f - L is a matrix that contains the Lagrange

A coefficient polynomials

w=length(X);

n=u—1;

L=zeros(w,w);
WFa

]

= the Lagrange coefficient polynomials
k=1:n+1
ve1;
for j=1l:n+1
if k~=j
V=conv{V,poly(X(j)))/(X(X)-X(j});
=nd
end
L{k,:)=V;
end

“Datermine the coefficiemts of the Lagrange interpolating
polynomial
C=TsL;

Exercises for Lagrange Approximation

I. Find Lagrange polynomials that approximate f(x) = x7,
(a) Find the linear interpolation polynomial Pr(x) using the nodes xg = —1 and
xp =0,
(b) Find tke guadratic interpolation poiynomial P (x) using the nodes xp = —1I,
=0 andx; = 1.
(¢} Findthe cubic interpclation polynomial P3{x) using thenodes xp = ~1,x; =0,

Xy = ],Llﬂd.x3 = 2.
(d) Find the lirear interpclation polynomial P)(x) using the nodes xg = | and
X =2

(e} Find the quadratic interpolation polynomial Po{x) using the nodes xq = @,
x1=1,and x3 = 2.
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Let f{x) =x+2/x.

(a) Use quadratic Lagrange interpolation based on the nodes xp = 1, x; = 2, and
x2 = 2.5 to approximate f(1.5) and f(1.2).

{b) Use cubic Lagrange interpolation based on the nodesxg =05, x; =1, x2=_
and x3 = 2.5 to approximate f(1.5) and f(1.2).

. Let f(x) = 2sin(7x/6), where x is in radians.

{a) Use quadratic Lagrange interpolation based on the nodes xo = 0, x; = 1, an.l
x3 = 3 to approximate f(2) and f(2.4).

tb) Use cubic Lagrange interpolation based on thenodesxg =0, x1 =1,x2 = -
and x3 = 5 to approximate f(2) and f(2.4).

. Let f{x) = 2sin(wx/6), where x is in radians.

(a) Use quadratic Lagrange interpolation based on the nodes xo = 0, x = 1, and
" x7 =3 toapproximate f(4)and f(3.5).
(b) Use cubic Lagrange interpolation based on the nodes xg =0, x; = 1, xp = 7
and x3 = 5 to approximate f(4) and f(3.5).

. Write down the error term Ea(x) for cubic Lagrange interpolation 1o fixy, where

interpolation is to be exact at the four nodesxp = —1,x; =0, x2 =3,and x4 = 4
and f{x) is given by

(a) flx)=4x3-3x+2

h fix)y= xt -2

© fx)y= x3 ~ 5x4

. Let f(x) =x".

(a) Find the quadratic Lagrange polynomial P2(x) using the nodes xp = 1, x1 =
1.25,and x2 = 1.5.

(b) Use the polynomial from part (a) to estimate the average value of f(x) over il
interval [1, 1.5].

{¢) Use expression (27) of Theorem 4.4 to obtain a bound on the error in approsi-
mating f (x) with P2(x).

. Consider the Lagrange coefficient polynomials L3 «(x) that are used for quadratic

interpolation at the nodes xo, x|, and x2. Define g(x) = Laglx) + La1(x) -
Lya(x)y—1.

(a) Show that g is a polynomial of degree < 2.

(b) Show that g(xz) =0fork =0,1,2.

(c) Show that g(x) = 0 for all x. Hint. Use the fundamental theorem of algebra

. Let Lyo(x), Ly1{(x),..., and Ly x(x) be the Lagrange coefficient polynom:::!-

based on the N + 1 nodes xg, x1, ..., and xy. Show that Zf:o Ly x(x)y=1for .
real number x.

. Let f(x) be a polynomial of degree < N. Let Py (x) be the Lagrange polynomia; !

degree < N based on the N + 1 nodes xg, X1, ..., Xn. Show that f(x) = Py(x) li:
all x. Hint. Show that the error term En({x) is identically zero.
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10. Consider the function f(x} = sin(x) on the interval {0, 1]. Use Theorem 4.4 to

determine the step size 4 so that

(a) linear Lagrange interpolation has an accuracy of 10~ (i.e., find & such that
[Ep{(x}| < 5% 1077).

{b) quadratic Lagrange interpolation has an accuracy of 10~% (i.e., find # such that
|E2(x)] < 5 x 1077).

(¢) cubic Lagrange interpolation has an accuracy of 10~% (ie., find & such that
|E3(x)} < 5 x 1077).

A1, Start with equation (16} and N = 2, and prove inequality (27). Let x; = x5 + h,

x7 = xp + 2A. Prove that if xg < x < x; then

I 2K’
Ix — xollx — xplx — x2] = W
Hint. Use the substitutions t = x —x), t+h =x —xp,andt — h = x — x3 and the
function v() = > — th? on the interval —h <t < h. Set v'(r) = 0 and solve for ¢ in
terms of k.

12, Linear interpolation in two dimensions. Consider the polynomialz = P{x, y) = A+

Bx—+Cy that passes through the three points {xg. ¥o. zg). (x1. ¥1, 21}, and (x2, ¥2, z2).
Then A, B, and C are the solution values for the linear system of equations

A+ Bxg+Cyo=120
A+Bx1+Cvi=2z;
A4+ Bxy + Cyr = 3.

(a) Find A, B, and C so that z = P(x,y) passes through the points (1, 1, 5).
(2,1,3),and (1,2,9).

(b) Find 4, B, and C so that z = P(x, y) passes through the points (1, 1, 2.5),
(2,1,0),and (1,2, 4).

(¢} Find A, B, and C so that z = P(x, y) passes through the points (2, 1, 5),
{1,3,7),and (3, 2,4).

(d) Can values A, B, and C be found so that z = P(x, y) passes through the points
(1,2,5),(3,2,7),and (1, 2, 0)? Why?

13. Use Theorem 1.7, the Generalized Rolle’s Theorem, and the special function

£ = £() = Py () — En(r) 2000 —X1) = G = xn)
(x —xpHx —x1) -+ (x —xn)

where Py(x) is the Lagrange polynomial of degree N, to prove that the error term
En(x) = f(x) — Py(x) has the form

f(N+l)(C)

En(x) = (x —xo)(x —x1) -+ (x —nv)m.

Hint. Find g¥+V{(r} and then evaluate it at r = c.
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Algorithms and Programs

1. Use Program 4.1 to find the coefficients of the interpolatory polynomials in Prob-
lem 2(i) a, b, and ¢ in the Algorithms and Programs in Section 4.2, Plot the graphs
of each function and the associated interpolatory polynomial on the same coordinate
systen.

2. The measured temperatures during a 5-hour peticd in a suburb of Los Angeles on
November § are given in the following table.

{a) Use Program 4.1 to construct a Lagrange interpolatory polynomial for the data
in the table.

(b) Use Algorithm 4.1(iii} to estimate the average temperature during the given
5-hour period. '

(¢) Graph the data in the table and the polynomial from part (a) on the same coordi-
nate system. Discuss the possible error that can result from using the polynomial
in part (a) to estimate the average temperature.

Time, PM. | Degrees Fahrenheit
66
66
65
64
63
63

[~ ST S FOR T

4.4 Newton Polynomials

It is sometimes useful to find several approximating polynomials Py (x}, Pa{x), oaey
Py(x) and then choose the one that suits our needs. If the Lagrange polynomials
are used, there is no constructive relationship between Py—j(x) and Py{x). Each
polynomial has to be constructed individually, and the work required to compute the
higher-degree polynomials involves many computations. We take a new approach and
construct Newton polynomials that have the recursive pattern

(1) Py (x) = ap + ar{x — xo),
(2) Po(x) = ap + a1(x — xp) + az{x — x0)(x — x1),
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(3) Py(x) = ap + a1(x — xg) + az(x — x0)(x — x1)
+ az(x — xp)(x — x1){x — x3),

@ Pn(x) = ag + ai(x — xp) + a2(x — xg)(x ~ x1)
+azlx —xp)(x — x1){x — x2)
+aalx —xo)x —x)(x —x2)(x —x3) + - --
+an{x —x0)--- (x —xn_1).

Here the polynomial Py (x) is obtained from Py_1(x) using the recursive relationship
E)) Pn(x) = Py_1(x) + an(x — x0)(x — x1}(x — x2) - -+ (x — xn_1).

The poiypomjaj (4) is said to be a Newton polynomial with N centers XQ, X
-+, Xy-1. It involves sums of products of linear factors up to T

an(x —xo)(x —x)(x —x2) - (x — xN_y),

‘&0 Py (x) will simply to be an ordinary polynomial of degree < N,

Examl?le 4.10.  Given the centers xg = 1, x; = 3, X3 = 4, and x3 = 4.5 and the
coefficients ap = 5, a; = —2, ay = 0.5, a3 = —0.1, and a2 = 0.003, find P (.x) Pa(x)
Ps(x). and Py(x) and evaluate Pr(2.5) for k = 1,2, 3, 4. T e
Using formulas (1} through (4), we have

Pix)=5-2x-1),

Polx) =5 —2(x — 1)+ 0.5(x — 1)(x — 3),

P3(x)y = Po(x) — 0.1(x — 1}{x — 3)(x — 4),

Pa(x) = P3(x) + 0.003(x — D{x — 3}x — 4)x —4.9).
Evaluaiing the polynomials at x = 2.5 results in

PI(25)=5-2(1.5) =12,

P3(2.5) = P1(2.5) + 0.5(1.5)(—0.5) = 1.625,

Py(2.5) = P,(2.5) — 0.1(1.5(—0.5)(—1.5) = 1.5125,

P4(2.5) = P3(2.5) + 0.003(1.5)(—0.5)(—1.5)(=2.0) = 1.50575. n

‘Nested Multiplication

if _N i's fixed and the polynomial Py (x) is evaluated many times, then nested multi-
pl:c.atron.should be used. The process is similar to nested multiplication for ordin

polynomials, except that the centers x; must be subtracted from the independent -
able x The nested multiplication form for P3(x) is P e

()] Pi(x) = ((as{x — x2) + a2} (x ~ x1) + @) (x — xp) + ag.
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To evaluate P;(x) for a given value of x, start with the innermost grouping and form
successively the quantities

§3 =as,

S2 = S3(x —x2) +az,
S1 =8 ~-x1)+al,
Sp = Si(x — x0) + ap.

(€]

The quantity So is now P3(x).

Example 4.11. Compute P3 (2.5) in Example 4.10 using nested multiplication.
Using (6), we write

Pi(x) = ((-0.1(x =N +05)(x -} —-D(x — 1) +5.

The values in (7) are

53 = —0.1,
5 =-0125-4+05=065,
51 = 0.65(2.5-3)— 2 = —2.325,

S0 = —2.325(2.5 - 1) + 5 =1.5125.

Therefore, P5(2.5) = 1.5125. [

Polynomial Approximation, Nodes, and Centers

Suppose that we want to find the coefficients a; for all the .polynomjals Pi{(x}, ...,
Py (x) that approximate a given function f (x). Then P (x) will be based on the centehrs
X0, Xi, ..., X5 and have the nodes xg, X, ..., Xi+1- For the polynomial Py(r) the
coefficients ag and @1 have a familiar meaning. In this case

(8) Pi(xg) = f(xo) and  Pi(x)) = flx1).
Using (1) and (8) to solve for ap, we find that
9 £(xp) = P1(xo0) = ap + a1(x0 — xp) = do.
Hence ag = f (xg). Next, using (1), (8), and (9), we have
fx1) = Pi(x1) = a0+ a1(x1 — xg) = f(xo} +a1(xy — xo0},
which can be solved for a1, and we get

fx1) = f(x0)
a) = ————.

(10) 1 — %o
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Hence a; is the slope of the secant line passing through the two points (xp, f(xg))
and (xy, f(x1)).

The coefficients ag and a, are the same for both P, (x) and Po(x). Evaluating (2)
at the node x, we find that

(11 S (x2) = Pa(xa) = ap 4+ ay(x2 — xp) + az(x3 — xp)xz — x).
The values for ap and ay in (9) and (10) can be used in (1 1) to obtain

_ fx2) —ap — a1(x2 — xo)
(x2 = x0)(x2 — x1)
_ (f(xz) = fxo)  fx1) —f(xo)) /(xz —xp)

X2 —Xxo X1 — X0

az

For computational purposes we prefer to write this last quantity as

(12) a = (f(xz) — fG) _ foa) - f(xo)) -

X2 — X X] — Xp

The two formulas for a; can be shown to be equivalent by writing the quotients
over the commeon denominator (x; — x1)(x2 — xp)(xy — xp). The details are lefi for
the reader. The mumerator in (12) is the difference between the first-order divided
differences. In order to proceed, we need to introduce the idea of divided differences.

Definition 4.1 (Divided Differences). The divided differences for a function f(x)
are defined as follows:

Flxel = flxe),

Flaeer, xp] = L2 = flol
X — Xk—)
1 i — -2 _
“ Slxpoz, X1, x] = Flxe-1, xel = flok-2, 1]’
Xk — Xg—2
ez, X1, xx) — Flxe—3, xe—2, xe_1]

SIxe—3, Xi—2, X511, x] =
Xp = Xk—3

The recursive rule for constructing higher-order divided differences is

ey, oo ;) — flxa—i, ..., xp ]
(14) Flotemjs Xp—jts -y Xi) = ks W~ b k-l
Xk —xk._,-
and i§ used to construct the divided differences in Table 4.8. A

The coefficients a; of Py(x) depend on the values fxj)forj=0,1,...,k The
next theorem shows that g, can be computed using divided differences:

(t5) ax = flxo, x1, ..., x).
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Table 4.8  Divided-difference Table for y = f(x)

Xy Flxel .1 F i (RO R J e I I i S |
xg Slxol

xy Sflx] Slxg, x1]

X2 Sflxal Slxy. x7] Jlxg, x1, %21

x3 Jlx3] Flxa, x3] flxr. x2. x3] Slxg, x3, X2, x31

7} Sflxa] Flxs, x4l Sflxa, x3, x4] flxy.x2, %3, %4 Slxp, x1, x2, x3, x4]

Theorem 4.5 (Newton Polynomial). Suppose that xg, x1, ..., xn are N + 1 distinct
numbers in [a, £]. There exists a unique polynomial Py (x)} of degree at most N with
the property that

flx;)=Pn(xj) forj=0,1,...,N.
The Newton form of this pelynomial is
(16) Py(x)=ap+ai(x —xp)+ - +anlx —xp){x — x1) - (x — xN-1),
where @y = flxp, X1, ..., x¢)], fork=0,1,..., N.

Remark. If {(x;, y j)}ff=0 is a set of points whose abscissas are distinct, the values
X;) = yj can be used to construct the unique polynomial of degree < N that passes
=D £gr
through the N + 1 points.

Corollary 4.2 (Newton Approximation). Assume that Py (x} is the Newton poly-
nomial given in Thecrem 4.5 and is used to approximate the function f(x), that is,

7 fx) = Py(x) + Enix).

If f € C¥*Y[a, b), then for each x € {a, b] there corresponds a number ¢ = ¢(x) in
(a, ), so that the error term has the form

(x —XU)(I — Xl) e (x _xN)f(N+1)(C)
N+ D! ’

(18) Ey(x) =

Remark. The error term E y (x) is the same as the one for Lagrange interpolation, which
was introduced in equation (16) of Section 4.3.

It is of interest to start with a known function f (x} that is a polynomial of degree N
and compute its divided-difference table. In this case we know that f(¥+1(x) = 0
for all x, and calculation will reveal that the (N + 1)st divided difference is zero.
This will happen because the divided difference (14) is proportional to a numerical
approximation for the jth derivative.
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Table 4.9
First Second Third Fourth Fifth
flivided divided divided divided divided
X Flxzl difference difference difference difference difference
Xp = -3
=2 0 3
=3 15 5 6
x3=4| 48 33 9 1
x4 = 105 57 12 i 0
x5 =6| 192 87 15 1 0 0
Table 4 10 Divided-Difference Table Used for Constructing the Newton Polynomials
Py(x) in Example 4.13
X SFlxe] .1 .. B AP N §
Xp = 0.0 100000“)
x=1.0 0.5403023 ~0.4596977
xp=20| —04161468 —0.9564491 —0.2483757
x3=3.0| —0.9899925 —0.57338457 0.1913017 0.1465592
x=40| —0.6536436 0.3363499 0.4550973 0.0879318 —0.0146568

Example 4.12. Let f(x) = x% — 4x. Construct the divided-difference table based on the
nodesxp = 1,x; = 2,..., x5 = 6, and find the Newton polynomial P3(x) based on xg, x;,
X2, and x3.

See Table 4.9. -

. The coefficients ap = ~3, a; = 3, a» = 6, and az = 1 of Py(x) appear on the
diagonal of the divided-difference table. The centers xo=1,xi =2,andx; = 3 are
the values in the first column. Using formula (3), we write

Pix) = =343x—D+6(x - ){x—2) + O —D(x = 2)x — 3).

Example 4.13. Construct a divided-difference table for f(x) = cos(x) based on the five}
points (k, cos{k)), for k = 0, 1, 2, 3, 4. Use it to find the coefficients @, and the four
Newton interpolating polynomials Py (x), fork = 1,2, 3, 4.

For simplicity we round off the values to seven decimal places, which are displayed
in Table 4.10. The nodes xg, x|, x2, x3 and the diagonal elements ag, a;, a7, as, ag in



226 CHAP.4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

¥y y
1.0 1.0
0.5 05
1
-0.5 -0.5F
-1.0F -1.0F

g ) = Figure 414 (b) Graphs of y = cos(x)
Figure 4.14 (a) Graphs of y = cos(x) ; 1 o
i (¢ Iynomial y = and the quadratic Newton polynomial

T aaad o e oo y = P3(x) based on the nodes xp =

the nodes xg = 0.0 and
f]l (:)ll.J(;i.SGd ormen ¢ 0.0, x; = 1.0, and x; = 2.0.

Table 4.10 are used in formula (16), and we write down the first four Newton polynomials:

P (x) = 1.0000000 — 0.4596977(x — 0.0),
Pa(x) = 1.0000000 — 0.4596977(x — 0.0) — 0.2483757(x — 0.0¥(x — 1.0},
P5(x) = 1.0000000 — 0.4596977(x — 0.0) — 0.2483757(x — 0.0)(x — 1.0)
+ 0.1465592(x — 0.0)(x — 1.0)(x — 2.0},
Ps(x) = 10000000 — 0.4596977(x ~ 0.0) — 0.2483757(x — 0.0)(x — L.OY
+ 0.1465592(x — 0.0)(x — 1.0)(x — 2.0)
— 0.0146568(x ~ 0.0)(x — 1.0)(x — 2.00{(x — 3.0).

The following sample calculation shows how to find the coefficient a;.

Flx1]1 — flxol _ 0.5403023 — 10000000 04596977,

flxo.x) = ——— 1.0-0.0 =
. flol - fln] _ —04161488 - 05403023 _ o .00
flrx)=—"r—r—= 20-10 : :
flon, xo] = flxg, 1] _ —0.9564491+ 04596977 _ oo
az = flxo,x1, 12 = X2 - xo = 20-00

The graphs of y = cos(x) and y = Pi(x), y = Pr(x), and y = P3(x) are shown in

Figure 4.14(a), (b), and (c), respectively. . .
¢ Fotr computational purposes the divided differénces in Table 4.8 need to be stored in an

array which is chosen to be D(k, j). Thus (15) becomes

(19 Dk, j) = Flxg—jo X j41s..., 5] forj =k

| @n P(x) =dpo+di,1(x — x0) + do2(x ~ xp}(x — x1)
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¥
1.0
0.5+~
i Figure 4.14 (c) Graphs of
0.5k ¥y = cos{x) and the cubic New-
ton polynomial ¥y = P;(x) based
10 on the nodes xp = 0.0, x; = 1.0,

x3 = 2.0, and x3 = 3.0.

Relation (14} is used to obtain the formula to recursively compute the entries in the array;

Dk,j=1)~Dk—1,j-1)
Xp — Xp—j ’

(20} D(k, j) =

Notice that the value a; in (15) is the diagonal element a;, = D(k, k). The algorithm for
computing the divided differences and evaluating Py (x) is now given. We remark that
Problem 2 in Algorithms and Programs investigates how to modify the algorithm so that
the values {az} are computed using a one-dimensional array. ]

Program 4.2 (Newton Interpolation Polynomial). To construct and evaluate the
Newton polynomial of degree < N that passes through (xz, ¥2) = (xx, f(x4)) for
k=0,1,..., N:

FoosHdy N = x0)(x —x1) - (x — xn_)),

where

dk,O =¥t and dk.j =

tunction [C,D]=newpoly(X,Y)

%nput - X is a vector that contains a list of abscissas
% - Y is a vector that contains a list of ordinates
%0utput - C is a vector that contains the coefficients

% of the Newton intepolatory polynomial

% - D is the divided-difference table

n=length(X);
=zeros(n,n);

D(:,1)=y";
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Y% Use formula (20) to form the divided-difference table
for j=2:n
for k=j:n
D(k,j)=(D(k,j-1)-D(k—1,j-1))/(X(k)~X(k—j+1));
end
end
YDetermine the coefficients of the Newton interpolating
Ypolynomial
C=b(n,n);
for k=(n-1):-1:1
C=conv (C,poly(X(k)));
m=length(C);
Clm)=C(m)+D{k,k);
end

Exercises for Newton Polynomials

In Exercises 1 through 4, use the centers xg, xt, ¥2, and x3 and the coefficients ag, a1, a2, a3,
and a, to find the Newton polynomials Py{x), P2(x), P3(x}, and P4(x), and evaluate them
at the value x = ¢. Hint. Use equations (1) through (4) and the techniques of Example 4.9.

L. ap=4 a=-1 ax=04 a3 =0.01 a4=-0.002

xo=1 x=3 n=4 x3=45 c=25

2. ap=15 a=-2 ay=05 a3 =—0.1 a4=0003
xp=0 xi=1 x=2 x3=3 ¢c=25

Ja=7 a =3 a =10.1 a3 =005 a3=-004
xp=-1 x3=0 n=1 x3=4 c=3

4 ag=-2 a=4 a = —0.04 a3=006 a4=0.005
x=-3 x1=-~-1 xz=1 x3=4 c=2

In Exercises 5 thorugh 8:

(a) Compute the divided-difference table for the tabulated function.
(b) Write down the Newton polynomials Pi{(x}, P2(x), P3 (x), and Pa(x).
(¢) Evaluate the Newton polynomials in part (b) at the given values of x.

(d) Compare the values in part {c) with the actual function value f(x).
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5. fx) =x/2 6. flx) =3.6/x
x=45,75 x=25,35
k| oxe | flu) k| x| flxw)
0 | 4.0 | 2.00000 0 | 1.0 | 360
1 | 5.0 | 2.23607 1 |20 | 180
2 6.0 | 2.44949 2 3.0 1.20
3 | 7.0 | 264575 3 |40 | 090
4 8.0 | 2.82843 4 50 | 0.72
7. fx) = 3sin®(wx/6) 8. Fx)=e™*
x=135,35 x=0515
k| oxe | FQ) k| x| fow
0 00 | 000 0 | 0.0 | 1.00000
1 1.0 t 075 1 1.0 | 036788
2 20 | 225 2 2.0 | 0.13534
3 |30 | 3.00 3 | 3.0 | 0.04979
4 4.0 | 2.25 4 4.0 | 0.01832

9. Consider the M + 1 points (xp, yo), ..., {xp, ¥m).
(a) If the (N + 1)st divided differences are zero, then show that the (N + 2)nd up
to the Mth divided differences are zero.

(b) If the (N + 1)st divided differences are zero, then show that there exists a poly-
nomial Py {x) of degree N such that

Pyixp)=w fork=0,1, ..., M.

In Exercises 10 through 12, use the result of Exercise 9 to find the polynomial Py (x) that
goes through the M + 1 points (N < M).

10, — 17— 11, — 17— 12. ——
Lk | Yk X | Vi Xk | Yk
0| -2 1] 8 0| 5
1 2 2|17 1 5
2| 4 324 3] 3
31 4 4|29 3| s
4| 2 5132 4117
5(-2 6 |33 5|45
- - 6 |95
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13. Use Corollary 4.2 to find a bound on the maximum error (|E>(x)]) on the inter-

val [0, ], when the Newton interpolatory polynomial P (x) is used to approximate
f(x) =cos{wx)atthe centers x9 = 0, x; = /2, and x2 = .

Algorithms and Programs

1. Use Program 4.2 and repeat Problem 2 in Programs and Algorithms from Section 1 3.

2. In Program 4.2 the matrix D is used to store the divided-difference table.
(a) Verify that the following modification of Program 4.2 is an equivalent wayv 1o
compute the Newton interpolatory polynomial.

for k=0:N
Alk)=Y(k);
end
for j=1:N
for k=N:-1:j
AR =(A(K)-A(k-13)/(X(k)-K(k~-§));
end
end

(b) Repeat Problem 1 using this modification of Program 4.2

Chebyshev Polynomials (Optional)

We now turn our attention to polynomial interpolation for f(x) over [—1, 1] based
on the nodes —1 < xp < x1 < --- < xy < 1. Both the Lagrange and Newton

polynomials satisfy
JF(x)y = Pn{x) + En(x),
where
(n En(x) = Q(x)%:—_gi()i!)
and Q(x) is the polynomial of degree N + 1:
(2) Qx)y = (x ~ xp)(x —~ x1)---{x —xn).

Using the relationship

max_ i<, <1{| f VY (x0)})
(N +1n

[Ex(x)f < 1Q(x))
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Table4.11 Chebyshev Polynomials

To(x) through T7(x)
Tp(x) =1

Tl x)=ux .
Bx) =22 1

Ta(x) = 4x3 — 3y

Tylxy =8 —Bx2 + 1

T5(x) = 1637 — 20x3 + 52

Te(x) = 3228 —48x4 4 1822 — |
Tr(x) = 64x7 — 11255 £ 5623 — 7x

our task is to follow Chebyshev’s derivation on how to select the set of nodes {xx} ,‘:’_0
that minimizes max_j.<,<1{!Q(x)|}. This leads us to a discussion of Chebyshev poly-
nomials and some of their properties. To begin, the first eight Chebyshev polynomials
are isted in Table 4.11.

Properties of Chebyshev Polynomials

Property 1, Recurrence relation

Chehvshev polynomials can be generated in the following way. Set To(x) = 1 and
Tiia 1 = x and use the recurrence relation

(3 Tp(x) =2xTp1(x) — Th—a(x) for k=2, 3, ....

Property 2. Leading Coefficient
The coefficient of x¥ in Ty(x)is 2V~ when N > 1.

Property 3. Symmetry

When N = 2M, Thp(x) is an even function, that is,

@ Tay (—x) = Toy{x).
Wren N = 2M + 1, Tapr4(x) is an odd function, that is,

(5) Dom+1(—x) = —Tap41 (x).
Property 4. Trigonometric Representation on [~1, 1]

(3] Ty(x) =cos(N arccos(x)) for —1<x=<]|.
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¥
1.0 y= Tg(—‘)
y=T,(x)
3
. . . -
-1.0 —0.5 0.5 1.0
-0.5F
y=T,x) Figure4.15 Graphs of the Che
_ hev polynomials To{x), Ti(x),
=T. - 8 poly 0 i
y=Tin y=Ty0 ooy Ta(x) over [=1, 1].

Property 5. Distinct Zeros in [—1, 1]
Tn{x) has N distinct zeros x that lie in the interval [—1, 1] (see Figure 4.15):

2%+ 1
) xk:cos(%)—ﬂ—) for k=0, 1,.., N—1

These values are called the Chebyshev abscissas (nodes).
Property 6. Extreme Values

1t [Ta(x} <1 for —1=<x=<1,

Property 1 is often used as the definition for higher-order Chebyshev polynomials.

Let us show that 7T3(x) = 2xT2(x} — T1 (x). Using the expressions for 7| (x} and T2 (x)

in Table 4.11, we obtain

2xTa(x) — Tiix) = 2x(2x% — 1) — x = 4x° — 3x = Ta(x).

Property 2 is proved by observing that the recurrence relation doubles the leadipg :

coefficient of T,,_, (x) to get the leading coefficient of Ty (x).

Property 3 is established by showing that T2 (x) involves only even powers of x
and Typ+1(x) invelves only odd powers of x. The details are left for the reader.

The proof of property 4 uses the trigonometric identity

cos(k@} = cos{28) cos((k — 2)8) — sin(28) sin{{k — 2)8)
Substitute cos(26) = 2 cos?(#) — 1 and sin(26) = 2sin(#) cos(#) and get

cos(k8) = 2 cos(#)(cos(8) cos((k — 238} — sin(@) sin((k - 2)8)) — cos((k — 2)8)
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which is simplified as

cos(kB8) = 2 cos(f) cos((k — 1)8) — cos((k — 2)8).
Finally, substitute 8 = arccos(x) and obtain

{9) 2xcos((k — 1) arccos{x)) — cos{{k — 2) arccos{x)}
= cos(karccos(x)) for —1 <x < L.

The first two Chebyshev polynamials are Tp(x) = cos(Qarccos(x)) = | and
Fi(x) = cos(1 arccos(x)) = x. Now assume that T (x) = cos(k arccos(x)} for k = 2,
3,.... ¥ — 1. Formula (3) is used with (9) to establish the general case:

Tylx) = 2xTn_1(x) — Ty-2(x)
= 2x cos{(N — [) arccos(x)) — cos((N¥N — 2) arccos(x})
= cos(N arccos(x)} for —1 =<=x <1.

Properties 5 and 6 are consequences of Property 4.

Minimax

The Russian mathematician Chebyshev studied how to minimize the upper bound for
1En(x)]. One upper bound can be formed by taking the product of the maximum value
of |O(x)| over all x in {—1, 1] and the maximum value | f¥ "1 (x)/(N + 1)!] over
all x in [—1, 1]. To minimize the factor max{j@(x}|}, Chebyshev discovered that xq,
X1, ..., xy should be chosen so that Q(x) = (1/2¥) Ty 41 (x).

Theorem 4.6. Assume that N is fixed. Among all possible choices for Q(x) in equa-
tion (2), and thus among all possible choices for the distinct nodes [xk},?;oin [—1, 1]
the polynomial 7 (x) = Ty+1(x}/2" is the unique choice that has the property

ﬂaﬁl{IT(x)ll = _{rl"’fi1{|g(x)l}'

Moreover,
T®)| = !
(io) _{ngsl{l )} = 5
Proof The proof can be found in Reference [29]. .
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Table4.12 Lagrange Coefficient Polynomials Used to Form Pi(x)
Based on Equally Spaced Nodes x; = 1 + 2k/3

L3 p(x) = —0.06250000 + 0.06250000x + 0.56250000x2 — 0.56250000x3
L3a(x) = 0.56250000 — 1.68750000x — 0.56250000x2 + 1.68750000x3
L3 a(x) = 0.56250000 + 1.68750000x — 0.56250000x2 — 1.68750000x3
L3 3(x) = —0.06250000 — (.06250000x + 0.56250000x2 + 0.56250000x3

‘ The consequence of this result can be stated by saying that, for Lagrange interpo-
lation f(x) = Py{(x) + En(x) on[—1, 1], the minimum value of the error bound

(max{)Q(x)[}) (max{) f ¥ D x) /(N + D)

1s achi_eved when the nodes {x;} are the Chebyshev abscissas of Tny1(x). Asanil-
lustraﬂoq, we look at the Lagrange coefficient polynomials that are used in forming
P3(x). First we use equally spaced nodes and then the Chebyshev nodes. Recall that
the Lagrange polynomial of degree N = 3 has the form

(11  PAx) = Flxo)Laolx) + f(x1))L31(x) + fxz)L320x) + f)La3x).

Equally Spaced Nodes
If f(x) is approximated by a polynomial of degree at most N = 3 on [—1,1], the
equally spaced nodes xp = —1, x; = —1/3, 22 = 1/3, and x3 = 1 are easy to

use fo_r c_alculzjltions. Substitution of these values into formula (8) of Section 4.3 and
simplifying will produce the coefficient polynomials L3 ¢(x} in Table 4.12.

Chebyshev Nodes

When f(x) is to be approximated by a polynomial of degree at most N = 3 using
the Chebyshev nodes xg = cos(77/8), x; = cos(57/8), x; = cos{3m/8) ané X3 =
cos(x /8), the coefficient polynomials are tedious to find (but this can be’done by a
computer). The results after simplification are shown in Table 4.13.

Exampi.e 4.14. C_Tompare the Lagrange polynomials of degree N = 3 for f(x) = e* that
are obt%uned by using the coefficient polynomials in Tables 4.12 and 4.13, respectively.
Using equally spaced nodes, we get the polynomial

P{x) = 0.99519577 + 0.99904923x + 0.54788486x% + 0.17615196>.
This is obtained by finding the function values

flxo) ="V = 036787944,  f(xy) = 1/ = 0.71653131,
flxp) = M3 = 139561243,  f(x3) = eV = 2.71828183,
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Table 4.13  Coefficient Polynomials Used to Forrn Py{x} Based on the
Chebyshev Nodes x; = cos((7 — 2K /8)

Co(x) = —0.10355339 + 0.11208538x + 0.70710678x% — 0.76536686x2
Ci(x) = 0.60355339 — 1.57716102x —0.70710678x> + 1.84775906x3
Cr(x) = 060355339 + 1.57716102x — 0.70710678x* — 1.84775906x°
C3(x) = —0.10355339 — 0.11208538x + 0.70710678x2 + 0.76536686x>

and using the coefficient polynomials L3 ¢(x) in Table 4.12, and forming the linear combi-
nation

P(x) = 0.36787944L; o(x) + 0.71653131L3,1(x) + 1.39561243L3 2(x)
+2.71828183L3 3(x).

Similarly, when the Chebyshev nodes are used, we obtain

V{x) = 0.99461532 + 0.99893323x + 0.54290072x° + 0.17517569x°,

Notice that the coefficients are different from those of P(x}. This is a consequence of using
different nodes and function values:

fxg) = e~ 09287 = 039697597,
fxy) = 038268343 = 0 68202877,
Fxy) = 038268343 — 1 46621380,
Flxs) = €9P38795% = 2.51904417.

Then the alternative set of coefficient polynomials Cy(x} in Table 4.13 is used to form the
linear combination

V ()= 0.39697597Co(x) + 0.68202877C(x) -+ 1.46621380Ca(x) + 2.51904417C3(x).

For a comparison of the accuracy of P(x) and V (x), the error functions are graphed
in Figure 4.16(a) and (b), respectively. The maximum error |e¥ —~ P{x}| occurs at x =

0.75490129, and

le* — P(x)} < 000998481 for —1<x <1
The maximum error l¢* — V(x)] occurs at x = 1, and we get

" — V{x)| < 0.00665687 for —1=x =L

Notice that the maximum error in V {x) is about two-thirds the maximum exror in P(x).
Also, the error is spread out more evenly over the interval. -
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¥ Y

0.005|_ y=e*—P(x) 0.00 *eum)
-1.0 -0.5 05 1.0 —1.0\7 05 /1.0
~0.005 ~0.005|

~-0.010+ —(L010+
(a) (B)

Figure 4.16 (a) The error function y = e¢* — P(x) for Lagrange approximation over [—1, 1]
(b} The error function y = ¢* — V{x) for Lagrange approximation over [—1, 1].

Runge Phenomenon

We now look deeper to see the advantage of using the Chebyshev interpolation nodes.
Consider Lagrange interpolating to f(x) over the interval [—1, 1] based on equally
spaced nodes. Does the error Eny(x) = f(x) — Py{(x) tend to zero as & increases? For
functions like sin(x) or ¢*, where all the derivatives are bounded by the same constant
M, the answer is yes. In general, the answer to this question is no, and it is easy to find
functions for which the sequence { Py (x)} does not converge. If f(x) =1/(1+ 12z,
the maximum of the error term En{x) grows when N — oc. This nonconvergence
is called the Runge phenomenon (sce Reference [90], pp. 275-278). The Lagrange
polynomial of degree 10 based on 11 equally spaced nodes for this function is shown
in Figure 4.17(a). Wild oscillations occur near the end of the interval. If the number of
nodes is increased, then the oscillations become larger. This problem occurs because
the nodes are equally spaced!

If the Chebyshev nodes are used to construct an interpolating polynomial of de-
gree 10to f{x)=1/(14+ 12x2), the error is much smaller, as seen in Figure 14.17(b).
Under the condition that Chebyshev nodes be used, the error En(x) will go to zero
as N — oo. In general, if f(x) and f'(x) are continuous on [—1, 1], then it can be
proved that Chebyshev interpolation will produce a sequence of polynomials { Py (x)}
that converges uniformly to f(x) over [—1, 1].

Transforming the Interval

Sometimes it is necessary to take a problem stated on an interval [a, ] and reformu-
late the problem on the interval [c, d] where the solution is known. If the approxima-
tion Py(x)to f(x) is to be obtained on the interval [a, b], then we change the variable
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Figure 4.17 (a) The polynomial
approximation to y = 1/(1 + 12x?)
L +— x  based on 11 equally spaced nodes
0.5 1.0 aver [—1,1].

Figure 4.17 (b) The polynomial
approximation to y = 1/(1 + 12x?)

* — x based on 11 Chebyshev nodes over

$o that the problem is reformulated on [—1, 11:

b—a a+b X —a
12 x_( 3 )t+ > or t—zb-a-l'

wherea <x <band—1 <t < 1.
The required Chebyshev nodes of Ty () on[—1, 1] are

w
2N +2

(13 rk=cos((2N+1—2k) ) for k=90,1, .... N

and the interpolating nodes on [a, b} are obtained by using (12):

b—a+a+b
2 2

X =1 for k=0,1, ..., N.
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Theorem 4.7 (Lagrange-Chebyshev Approximation Polynomial). Assume that
Py(x) is the Lagrange polynomial that is based on the Chebyshev nodes given in (14).
If f € C¥*[a, b], then

2Ub — N+1
as) 700~ Py < g max (17 o))

Example 4.15. For f(x) = sin{x} on [0, = /4], find the Chebyshev nodes and the crror
bound (15) for the Lagrange polynomial Ps{x).
Formulas (12) and (13) are used to find the nodes;

_ (11 -2
xk_cos(—T 3 +§ for k=0,1, ..., 5.

Using the bound | £ (x)| < |—sin(w/4)| = 2712 = M in (15), we get

[F(x) — Pyix)| < (g) (a)z—” < 0.00000720, .

Orthogonal Property
In Exampie 4.14, the Chebyshev nodes were used to find the Lagrange interpolating
polynomial. In general, this implies that the Chebyshev polynomial of degree N can be
obtained by Lagrange interpolation based on the N + 1 nodes that are the N + 1 zeros
of Tw.1(x). However, a direct approach to finding the approximation polynomial is
to express Py (x} as a linear combination of the polynomials T, (x), which were given
in Table 4.11 Therefore, the Chebyshev interpolating polynomial can be written in the
form
N
(16) Pu(x) = Y _aTu(x) = coTo(x) + 1 Ty (x) + - - + en T (x).
k=0

The coefficients (¢} in (16) are easy to find. The technical proof requires the use

of the following orthogonality properties. Let

2k+1
17 = = .
an Xi cos(ﬂ2N+2) for k=0, 1, . N
N
(18) ZTj(xk)Tj(Xk) =0 when i # j,
k=0
N N+1 o
(19) ’gn(xk)r,-(xk) =—— wheni=j#0,
N
(20) D To(x)To(xk) = N + 1.
k=0

Property 4 and the identities (18) and (20) can be vsed to prove the following
theorem.
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Theorem 4.8 (Chebyshev Approximation}. The Chebyshev approximation poiyno-
mial Py (x) of degree < N for f(x) over [—1, 1] can be written as a sum of {T;(x)}:

N
21) O & Pyx) =) ¢;Ti(x).
j=1

The coefficients {c;} are computed with the formulas

(22) o=z +1Zf(xknro(m() =% +12f(xk)
and
c; = N 7 ’;f(xk)'[}(xk)
B i@k +1) __
(23) —N+12f(x)cos(—————2N+2 ) for j=1,2,..., N

Example 4.16. Find the Chebyshev polynomial P3(x) that approximates the function

flx) =" over[—1,1].

The coefficients are calculated using formulas (22) and (23), and the nodes x; =
cos(m(2k+1)/8) fork =0,1,2,3.

3
™ To(xp) = %Ze“ = 1.26606568,
k=0

&8

I
FNT
03

Eal
1l
[

) =

3
S Ty(x) = %Ze‘“xk = 113031500,

LS
-

li
&

k

3
ey =~ Ze"* To(xg) = = Zf* cos (21:2";‘ 1) = 0.27145036,

c3 = 3 Ze‘“T;;{xk) = 3 Zex" COos (37‘!’
k=0 k=0

Therefore, the Chebyshev polynomial P3(x) for e* is

24 P3(x) = 1.26606568Tn(x) + 1.130315007(x)
+ 0.2714503675(x) + 0.04379392T3(x).

If the Chebyshev polynomial (24) is expanded in powers of x, the result is
P3(x) = 0.99461532 + 0.99893324x + 0.54290072x> + 0.17517568x°,

2k + 1

) = 0.04379392.

which is the same as the polynomial V(x) in Example 4.14. If the goal is to find the
Chebyshev polynomial, formulas (22) and (23) are preferred. n
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MATLAB

The following program uses the eval command instead of the feval command use .

in earlier programs. The eval command interprets a MATLAB text string as an ex

pression or statement. For example, the following commands will quickly evaluat.

cosine at the values x = k/10fork=0,1,...,5:
>> x=0:.1:.5;
>>» eval{’cos(x)’)
ans =
1.0000 0.9950 0.9801 0.9553 0.9211 0.8776

Program 4.3 (Chebyshev Approximation). To construct and evaluate the Cheby-
shev interpolating polynomial of degree N over the interval [—1, 1], where

N
P(x)=) c;Tj(x)
j=0

is based on the nodes

IN+2
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CI)=C{GI+Y (k) *cos{(j-1)*z};
end
aend

C=2%C/(n+1);

C(13=C(1)/2;

Exercises for Chebyshev Polynomials {(Optional)

((2k+1):rr)
xp =cos| ————— }.

function [C,X,Yl=cheby(fun,n,a,b)
%Input - fun is the string function to be approximated

% - N is the degree of the Chebyshev interpolating
4 polynomial

% - a is the left end point

% - b is the right end point

%0utput - C is the coefficient list for the polynomial

% - X contains the abscissas

% - Y contains the ordinates
if nargin==2, a=-1;b=1;end
d=pi/(2*n+2);
C=zeros{i,n+1);
for k=1:n+1
X(k)=co=((2%k-1)%d);
end
X=(b-a)*X/2+(a+b)/2;
=x;
Y=eval (fun);
for k =1:n+1
z=(2+k-1)*d;
for j=l:n+1

1. Use property | and
(a) construct Ta(x) from T3(x) and T (x).
(b) construct Ts{x) from T4(x) and T3(x).
2. Use property 1 and
(a) consuuct T3(x) from T5(x) and Tyx).
(h) construct T7(x) from T (x) and Ts(x).

. Use mathematical induction to prove property 2.

3

4. Use mathematical induction to prove progerty 3.
5. F:nd the maximum and micimum values of T5(x).
6

. Find the maxirnum and minimum values of T3(x).
Hint. T(1/2) == 0 and '!‘3'(—1/2) =0

7. Find the maximum and minimum values of T4(x),
Hirt T)(0) =0, T;(27V%) = 0. and 7(—=2"12) _ 0.
8 Let f(x) =sin(x)on|~1,1"
{(a) LUse the coefficient polynomials ir Table 4.13 1o obtain the Lagrange-Chebyshev
pulynomial approximation P3(x).

(b) Find the error bound for | sin{x) — Paix),.

% Lel fix)=In{x +2)on[—1.1..
(a} LUse the coefficient polynomials in Table 4.13 to obtain the Lagrange-Chebyshev
polynornial approximation Py(x).
{b) Find the error bound for | In(x + 2) — P3(x)..

1@ The Lagrange polynomial of degree N = 2 has the form
floy = fleo) Lacle) + fl)La (x) — flaa)Lla2(x).

If the Chebyshev nodes xp = e0s3{5a /), x| = U, and x2 = cosin /D) are used, show
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that the coefficient polynomials are

x 22
Lao(x) = —-\/—5 + 3
4x?
Lyx)=1- 3
x  x?
Lrax) = —=+ —.
2,2(x) A3

11. Let f(x) =cos(x) on[-1, 1].
(a) Use the coefficient polynomials in Exercise 10 to get the Lagrange-Chebyshes
polynomial approximation Py(x).
(b) Find the error bound for | cos(x) — Pa(x)|.

12. Let f{x) =¢*on[-1,1].
(a) Use the coefficient polynomials in Exercise 10 to get the Lagrange-Chebyshe
polynormial approximation P»(x).
(b) Find the error bound for |¢* — Pa(x)|.

In Exercises 13 through 15, compare the Taylor polynomial and the Lagrange-Chebyshev
approximates to f(x) on[—1, 1]. Find their error bounds.

13. f(x) =sin{x) and N = 7; the Lagrange-Chebyshev polynomial is
sin(x) & 0.99999998x — 0.16666599x2 + 0.00832995x° — 0.00019297x”.
14. f(x) =cos(x) and ¥ = 6; the Lagrange-Chebyshev polynomial is
cos(x) = | — 0.49999734x% + 0.04164535x* — 0.00134608x5.
15. f(x) =¢* and N = 7; the Lagrange-Chebyshev polynomial is
e* 2 0.99999980 + 0.99999998x + 0.50000634x>
+ 0.16666737x° + 0.04163504x* + 0.00832984x°
+0.00143925x + 0.00020399x".

16. Prove equation (18).
17. Prove equation (19).

Algorithms and Programs

In Problems 1 through 6, use Program 4.3 to compute the coefficients {¢;} for the Cheby-
shev polynomial approximation Py (x) to f{x) over[—1,1], when{(ay N =4, (b) N = 5.
() N = 6, and (d) N = 7. In each case, plot f(x) and Py(x) on the same coordinat:
system.

1. f(x)=¢€" 2. f(x) =sin{x)

4.6
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3. f(x) =cos(x) 4. f(x) =In(x +2)
5 f)=(x+2)'72 6. flx) = (x +2)x+D
7. Use Program 4.3 (¥ = 5) to obtain an approximation for fol cos{x?) dx.

Padé Approximations

In this section we introduce the notion of rational approximations for functions. The
function f(x) will be approximated over a small portion of its domain. For example,
if f(x) = cos(x), it is sufficient to have a formula to generate approximations on the
interval [0, 7r/2]. Then trigonometric identities can be used to compute cos(x) for any
value x that lies outside [0, 7 /2).

A rational approximation to f(x) on [a, b] is the quotient of two polynomials
Py(x) and Qp(x) of degrees N and M, respectively. We use the notation Ry m(x)to
denote this quotient:

Prix)
Ou(x)

Our goal is to make the maximum error as small as possible. For a given arnount
of computational effort, one can usually construct a rational approximation that has a
smaller overall error on [a, ] than a polynomial approximation. Our development is
an introduction and will be limited to Padé approximations.

The method of Padé requires that f (x) and its derivative be continuous at x = 0.
There are two reasons for the arbitrary choice of x = 0. First, it makes the manipula-
tions simpler. Second, a change of variable can be used to shift the calculations over to
an interval that contains zero. The polynomials used in (1) are

(1) Ry mix) = for a <x<b.

@) PN(x)=po+pix + p2xt + - + pyxV
and
3) Opx) =1+ qix + x> + -+ gpyx™.

The polynomials in (2) and (3) are constructed so that £(x) and Ry pm(x) agree at
x = 0 and their derivatives up to N + M agree at x = 0. In the case Qo(x) = I, the
approximation is just the Maclaurin expansion for f(x}. For a fixed value of N + M
the error is smallest when Py (x) and Qs(x) have the same degree or when Py (x) has
degree one higher than Qyy(x).

Notice that the constant coefficient of Qp is gy = 1. This is permissible, because
it cannot be 0 and Ry pm(x) is not changed when both Py (x) and O (x) are divided
by the same constant. Hence the rational function Ry p (x) has N + M + I unknown
coefficients. Assume that f(x) is analytic and has the Maclaurin expansion

) f =a+ax+ax?+ - faxt+-..,
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and form the difference f(x)Qu(x) — Py{x) = Z(x):

0o . M . N ) 0 .
® (Bt () o= 5 et
Jj=0 i=0 j=0 F=NEM+1

The lower index j = M + N + 1 in the summation on the right side of (5) is choscn
because the first N 4+ M derivatives of f(x) and Ry m{x) are to agree atx = 0.

When the left side of (5) is multiplied out and the coefficients of the powers of .
are setequal tozerofork = 0,1, ..., N+ M, the result is a system of N + M 4 !
linear equations:

a—po=0
quag+a—pr =0
6) q280 +quay + a3 — p2 =0

Gyt apa+qa+az—p3=0
gMan-M +qm-1ay-m+1+ - +av— py =0

and
gMaN_m+1 T gm-1a8—m+2 + -+ q1an +any =0

guan-m+2 +am—1an—ms3 +---+qran+1 tawyr =0
N

gmMan +gm-rant1  +-o+qravim—1 +anem = 0.

Notice that in each equation the sum of the subscripts on the factors of each product
is the same, and this sum increases consecutively from 0 to N + M. The M equations
in (7) involve only the unknowns g1, 42, . ... ga and must be solved first. Then the
equations in (6) are used successively to find po, p1,.... py.

Example 4.17. Establish the Padé approximation

15,120 — 6900x* +313x*
15,120 + 660x2 + 13x4
See Figure 4.18 for the graphs of cos{x) and R4 4(x) over [—5, 5].
If the Maclaurin expansion for cos(x) is used, we will obtain nine equations in nine
unknowns. Instead, notice that both cos(x} and R4 4(x) are even functions and involve
powers of x2. We can simplify the computations if we start with f(x) = cos(x/?):

(8) cos(x) = R, 4(x) =

1 4 1, 1 4
2° " 720" 303207
In this case, equation (5) becomes

© f@ =1-2x+

! 1o 15 1 4 2 2
(1—5x+24x —720x +40‘320x — - (l+q|x+q2x)—po p1x — p1x

=0+0x+0x2+0x3+0x4+csx5+csx6+-~‘.
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¥

1.0

y= R4'4(I)
0.5
-5 \\-4 -3 -2/ -1 I \2 3 4//f5 ¥
=cos

y=eosto 0.5}
-1.0r

Figure 4.18 The graph of y = cos(x) and its Padé
approximation R4 4(x).

When the coefficients of the first five powers of x are compared, we get the following
system of linear equations:

1—pp=0
_%+QI‘P1=0
(10) L t@-m=0
24 2
i 1 1
F7—~20+a41—5f12=0

IR U
30320 707 T2 =0

“The iast two equattons in (10) must be solved first. They can be rewritten in a form that is
€a%y te solve:

1 —1
—12¢=— — = _-
q1 q2 0 and q1 + 304 7%

Fiestfind g2 by adding the equations; then find ¢,

11 1 13
i‘ = — —_—— = —_——
an ©?=1g (30 56) 15,120°

1 156 11

"= 15020 232

‘Now the first three equations of (10) are used. It is obvious that py = 1, and we can
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use g1 and ¢z in (11) to solve for p; and p;:

1 11 115

t2) P="2%353 = "
1 Il 13 313

P2= 51" 504 V15,120 - 15.120°

Now use the coefficients in (11) and (12) to form the raticnal approximation to f(x):

13 J 1 — 115x/252 + 313x2/15,120
(3) fa= 1+ 11x/252+ 13x2/15,120

Since cos(x) = f(x?), we can substitute x2 for x in equation (13) and the result is the
formula for Rs 4(x) in (8). ™

Continued Fraction Form

The Padé approximation R4 4(x) in Example 4.17 requires a minimum of 12 arithmetic
operations to perform an evaluation. It is possible to reduce this number to seven by
the use of continued fractions. This is accomplished by starting with (8) and findin:
the quotient and its polynomial remainder.

15,120/313 — (6900/313)x% + x*
15,120/13 + (660/13)x2 + x4
313 (296,280) ( 12,600/823 + x2 )

Rya(x) =

13\ 169 15.120/13 + (600/13)x2 + x*

The process is carried out once more using the term in the previous remainder. The
result is

Reatry < 33 _ 296,280/169
ST T3 T 15,120/13 + (660/13)x% + x4
12,600/823 + x2

a3 296.280/169

13 379,380 e 420,078,960/677,329
10,699 12,600/823 + x2

The fractions are converted to decimal form for computational purposes and we obtair

(14)  Ra4(x) = 24.07692308
1753.13609467
"~ 35.45938873 + x2 + 620.19928277/(15.30984204 + x2)’
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0.000020 |-
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-2x10°7L ¥ = En(x) 000010 y=Egx)
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-3x 10771
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(2) (&)
Figure 4.19 (a) Graph of the error Ex(x) = cos(x) — Ry4,4(x} for the Padé approxima-

tion Ry,4(x). (b) Graph of the error E p(x) = cos{x)~ Ps(x) for the Taylor approximation
Pg(x),

To evaluate (14}, first compute and store x2, then proceed from the bottom right term
in the denominator and tally the operations: addition, division, addition, addition, divi-
sion, and subtraction. Hence it takes a total of seven arithmetic operations to evaluate
R4 4(x) in continued fraction form in (14).

We can compare Ry 4(x) with the Taylor polynomial Ps(x) of degree N = 6,

‘which requires seven arithmetic operations to evaluate when it is written in the nested

form

1 1 1
15 Psx) =1+4x* -z +x* = — —x2
(15 s(x) =1+ x ( 5+x (24 55" ))
=1 +x%(—0.5 + x?(0.0416666667 — 0.0013888889x2)).

The graphs of Eg(x) = cos(x} — R4 4(x} and Ep(x) = cos(x) — Pg(x) over [—1, 1]
are shown in Figure 4.19(a) and (b), respectively. The largest errors occur at the
end points and are Ex(1) = -0.0000003599 and Ep(l) = 0.0000245281, respec-
tively. The magnitude of the largest error for Ry 4(x) is about 1.467% of the error
for Ps(x). The Padé approximation outperforms the Taylor approximation better on
smaller intervals, and over [—0.1, 0.1] we find that E¢(0.1) = —0.0000000004 and
Ep(0.1) = 0.0000000966, so the magnitwde of the error for Ra4(x) is about ©.384%
of the magnitude of the error for Ps(x).
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Exercises for Padé Approximations

1. Establish the Padé approximation:

2. (a)

(b)

3 (a)

(b)

4, (a)

(b)

(c}
5. {(a)

(b)

24+x
EX%R1.1(1)=2 .

Find the Padé approximation R 1(x) for f{x) = In{1 + x)/x. Hint. Start with
the Maclaurin expansion:

2
X x
f(x)=1—§+?""‘-

Use the result in part (a) to establish the approximation

6x + x2
6+4x

In(l4x) = Ra1(x) =

Find Ry,1(x) for f(x) = tan(x'/?)/x1/2, Hint. Start with the Maclauri
sion:
2x?

X
fO=l+z+5+-

Use the result in part (a) to establish the approximation

15x — x3

& Raala) = 15 g

Find Ry 1{x) for f(x) = arctan(x'/2)/x1/2. Hipt. Start with the Maclaur .
expansion:
2
X X
=1—-C+ ...
fx) 313

Use the result in part (a) to establish the approximation

15x + 4x3

arctan(x) = Rlz(.l’) = W

Express the rational function R3 2(x) in part (b) in continued fraction form.
Establish the Padé approximation:

12 + 6x + x2

¢ R = T

Express the rational function Rz 2(x) in part (a) in continued fraction form.
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6. (a) Find the Padé approximation Rz,2(x) for £(x) = In(1 + x)/x. Hint, Start with
the Maclaurin expansion:

2 3 4

X X
f(x)—1—5+?—?+?—---.

(b) Use the result in part (a) to establish

30x + 21x2 4 »3

In(1 = R = .
(12~ Rl = S0 e on

(¢} Express the rational function Rs »(x) in part {b) in continued fraction form.
(a) Find Ry 5(x) for f(x) = tan(x'/2)/x!/2, Hint. Start with the Maclaurin expan-
sion. '

x 2% 17x% e2xt
=1+ 4+ g2 0 L
Fe) st 3 Tams T

(b) Use the result in part (a) to establish

945x — 105x° + x°
945 — 420x2 + 15x*

tan{x) = Rs5 4(x) =

(¢} Express the rational function Rs 4(x) in part (b) in contintued fraction form.

8. (@) Find Ry2(x) for f(x) = arctan(x!/?)/x1/2. Hint. Start with the Maclaurin
expansion;

2 53 e

X X
f(x)=1-§+?—?+3—"'

(b} Use the result in part (a) to establish

945x + 735x° + 64x°

arctan(x) = Rsa(x) = 945 + 1050x2 + 22554

(c} Express the rational functionRs 4(x) in part (b) in continued fraction form.
. Establish the Padé approximation:

120 + 60x + 12x2 + x3
120 — 60x + 1202 4 x3°

e & Ry3(x) =

4 0, Establish the Padé approximation:

1680 + 840x + 180x2 + 20x3 + x4
1680 — 840x + 180x2 — 20x3 4- x*~

€' = Ryqlx)=
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Algorithms and Programs

1. Compare the following approximations te f(x) = e*.

Iay ) T + x4+ b
s) 6lx
124+ 6x+x

Pﬂdl: R _——_——
¢ Ra=En e
(a) Plot f(x), Tg(x), and R2,2(x) on the same coordinate systemn.
{b) Determine the maximum error that occurs when f(x) is approximate.: = i
Ts(x) and Rs »(x), respectively, over the interval [—1, 1].

. Compare the following approximations to f(x) = In(1 + x).

R B
Taylor: Ts(x)—x—?+?—_:‘..+_5ﬁ
30x + 21x2 4 &3

&: = —
Pad ka2 = 36 T on2
(a) Plot f(x), T5(x), and R3 2(x) on the same coordinate systetn,
(b) Determine the maximum error that occurs when f(x) is approximate. 1}
T5{x) and Rj3 3(x), respectively, over the interval [—1, 1].

. Compare the following approximations to f(x) = tan(x).

¥ 25 177 62xf
lor: T = DA T T
Taylor s =x+ T+ 75+ s togss
945x — 105x3 + x°

945 — 420x2 4 15x4

Padé: Rs4(x) =

{a) Plot f{x}, Ty(x), and Rs 4(x) on the same coordinate system.

(b) Determine the maximum error that occurs when f(x) is approximated with
To(x) and Rs 4(x), respectively, over the interval [—1, 1].

» Compare the following Padé approximations to f(x) = sin(x) over the interval

[—1.2, 1.2].

166,320x — 22,260x3 + 551x°
15(11,088 + 364x2 + 5x%)
11,511,339,840x — 1,640,635,920x2 + 52,785,432x5 — 479,249, 7
7(1,644,477,120 + 39,702,960x2 + 453,960x% + 2,623x5)

Rs54(x) =

Rre(x) =

(a) Plot f{x), Rs4(x), and Ry ¢(x) on the same coordinate system.
{b) Determine the maximun error that occurs when f(x) is approximated with
Rs,4(x) and R7 g(x), respectively, over the interval [—1.2, 1.2].

SEC, 4;6
5. (@)

(b)
(c)
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Use equations (6) and (7) to derive Rg g(x) and Rg g(x) for f(x) = cos(x) over
the intervai [—1.2, 1.2].

Plot f(x), R 6(x}, and Rg g(x) on the same coordinate system.

Determine the maximum error that occurs when Sf(x) is approximated with
Reg,6(x) and Ry g(x), respectively, over the interval [—1.2, 1.2].



Curve Fitting

Applications of numerical techniques in science and engineering often involve curve
fitting of experimental data. For example, in 1601 the Gerrnan astronomer Johann.es
Kepler formulated the third law of planetary motion, T = Cx37? where x is the dis-
tance to the sun measured in millions of kilometers, T is the orbital period measured
in days, and C is a constant. The observed data pairs (x, T') for the first four planets,
Mercury, Venus, Earth, and Mars, are (58, 88), (108, 225), (150, 365),and (228, 687),
and the coefficient C obtained from the method of least squares is C = 0.199769. The
curve T = 0.199769x % and the data points are shown in Figure 5.1.

T
750}
500 - T=0.199769 x3?2
250
Figure 5.1 The least-squares fit
T = 0.199769x3/2 for the first four
; L : - x  planets using Kepler's third law of

planetary motion.

252
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Least-squares Line

In science and engineering it is often the case that an experiment produces a set of
data points (x1, y1), ..., (xn. yn), where the abscissas {xi} are distinct. One goal of
numerical methods is to determine a formula ¥ = f(x) that relates these variables.
Usually, a class of allowable formulas is chosen and then coefficients must be deter-
mined. There are many different possibilities for the type of function that can be used.
Often there is an underlying mathematical model, based on the physical situation, that
will determine the form of the function. In this section we emphasize the class of linear
functions of the form

¢)) y=f(x)=Ax+ B.

In Chapter 4 we saw how to construct a polynomial that passes through a set of
points. If all the numerical values {x;}, { ¥} are known to several significant digits
of accuracy, then polynomial interpolation can be used successfully; otherwise it can-
rot. Some experiments are devised using specialized equipment so that the data points
will have at least five digits of accuracy. However, many experiments are done with
equipment that is reliable only to three or fewer digits of accuracy. Often there is an
experimental error in the measurements, and although three digits are recorded for the
values {x;) and {yz}, it is realized that the true value f(xg) satisfies

@ JF ) = v + e,

where ¢, is the measurement error.

How do we find the best linear approximation of the form (1) that goes near (not
always through) the points? To answer this question, we need to discuss the errors
{also called deviations or residuals):

3 ek = flu)~w for t<ks<N.

There are several norms that can be used with the residuals in (3) to measure how
farthe curve y = f(x) lies from the data.

@ Maximumerror:  Ex(f) = ymax HF ) — vl
N
5 Average error: E\f) = %; | Fxx) — yel,
" 1/2
{© Root.-mean—square Ex(f)= (—ﬁ Z | f(xz) — yklz) .
€ITOor: k=1

The next example shows how to apply these norms when a function and a set of
Jypoints are given.
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Table 5.1 Calculations for Finding E1(f) and E2( f) for

Example 5.1
i e fla)=86—16x | lel e
-1 10.0 10.2 0.2 0.04
0 9.0 8.6 0.4 0.16
1 7.0 7.0 0.0 0.00
2 5.0 5.4 0.4 0.16
3 4.0 3.8 0.2 0.04
4 30 2.2 0.8 .64
5 0.0 0.6 0.6 0.36
6 -1.0 —1.0 0.0 0.00
26 1.40

Example 5.1. Compare the maximum error, average errof, and rms error for the linvur
approximation y = f(x) = 8.6 — 1.6x to the data points (—1, 10), (0,9), (1,7, {2, ~
(3, 4Y, (4, 3),(5,0), and (6, —1}.

The errors are found using the values for f(xz) and e given in Table 5.1.

(7 Eoo(f) = max{0.2,0.4,0.0,0.4,0.2,0.8.0.6,0.0} = 0.8,
@) Ei(f) = %(2.5) — 0.325,

1.4\!/2
) Ex(f) = (?) 2 0.41833

We can sec that the maximum error is largest, and if one point is badly in error, its
value determines Eoo(f). The average error E1(f) simply averages the absolute value of
the error at the various points. It is often used because it is easy to compute. The erro
Ea(f) is often used when the statistical nature of the errors is considered.

A best-fitting line is found by minimizing one of the quantities in equations (4) through
(6). Hence there are three best-fitting lines that we could find. The third norm £2(f) is the
traditional choice because it is much easier to minimize computationally. ]

Finding the Least-squares Line

Let {(x, yk)]f:[ be a set of N points, where the abscissas {xz} are distinct. The least-
squares line y = f(x) = Ax + B is the line that minimizes the root-mean-square error
E2(f).

The quantity Eo(f) will be a minimum if and only if the quantity N(E2(f))* =
Zk’”’:] (Axy + B — y)* is a minimum. The latter is visualized geometrically by mini-
mizing the sum of the squares of the vertical distances from the points to the line. The
next result explains this process.

SEC. 5.1 LEAST-SQUARES LINE 255

¥

Figure 5.2 The vertical distances
between the points {(xz, y)} and
the least-squares line y = Ax + B.

X

Theorem 5.1 (Least-squares Line). Suppose that {(x, yk)}f;l are N points, where
the abscissas {x¢}f_, are distinct. The coefficients of the least-squares line

y=Ax+B

are the solution to the following linear system, known as the normal equations:
N N N
(fo) A+ (Zxk) B=> xiyk
k=1 k=1 k=1
N N
(Zxk) A+NB = Z}’k.
k=1

k=1

(to)

Proof Geometrically, we start with the line y = Ax + B. The vertical distance dj
from the point (xx, v¢) to the point (xg, Axy + B) on the line is dy = lAxzx + B — yi|
(see Figure 5.2). We must minimize the sum of the squares of the vertical distances d:

N N
an E(A,By=) (Ax;+B—y)* =) d}.
k=1 k=1

The minimum value of E(A, B) is determined by setting the partial derivatives
dE/3A and 3 E /3 B equal to zero and solving these equations for A and B. Notice that
{xx} and {y} are constants in equation (11) and that A and B are the variables! Hold
£ fixed, differentiate £(A, B) with respect to A, and get

dE(A, B)

12 dA

N N
=Y "20Ax+ B — y)(x) =2) (Axi + Bxe — xi0)
k=1 k=1
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Table 5.2 Obtaining the Coefficients for

Normal Equations
x 2

k Yk Xg Xk Yk
-1 10 1 —-10
0 9 0 0
1 7 1 7
2 5 4 10
3 4 9 12
4 3 16 12
5 0 25 0
6 -1 36 -6
20 37 92 25

Now hold A fixed and differentiate E(A, B) with respect to B and get

JdE(A, B)

(13) 9B

N N
=3 2Ax+B—y) =2 (Axc+ B — y).
k=1 k=t
Setting the partial derivatives equal to zero in (12) and (13), use the distributive
properties of summation to obtain

N N Iid N
(14) O=Z(Axf+3xk—xkyk)=Afo+BZxk—Exkyk,
k=1 k=1 k=1 k=1

N N N
(15) 0= (Ax+B-y)=A) m+NB-) n. .
k=1 k=1 k=1

Equations (14) and {15) can be rearranged in the standard form for a system and
result in the normal equations (10). The solution to this system can be obtained by one
of the techniques for solving a linear system from Chapter 3. However, the method
employed in Program 5.1 translates the data points so that a well-conditioned matrix is
employed (see exercises).

Example 5.2. Find the least-squares line for the data points given in Example 5.1.
The sums required for the normal equations (10) are easily obtained using the values
in Table 5.2. The linear system involving A and B is

92A+20B =125
20A+ 8B =137
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A

Figure 5.3 The least-squares line
y = —1.6071429x + 8.6428571.

The solution of the linear system is A = —1.6071429 and B = 8.6428571. Therefore, the
least-squares line is (see Figure 5.3)

¥y = —1.607142%x + 8.6428571 [

The Power Fit y = AxM

Some situations involve f(x) = Ax™, where M is a known constant. The example of
planetary motion given in Figure 5.1 is an example. In these cases there is only one
parameter A to be determined.

Theorem 5.2 (Power Fit). Suppose that {(x, yx}}{_, are N points, where the ab-
scissas are distinct. The coefficient A of the least-squares power curve y = Ax is
given by

R )

Using the least-squares technique, we seek a minimum of the function E(A):

N
(17 E(Ay = (Ax} — y).
k=1

In this case it will suffice to solve E’(A) = 0. The derivative is

N N
(18) E'(A) =23 (Axt =y () =23 (AxPM — xM yp).
k=1 k=1
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Table 5.3  Obtaining the Coefficient for a Power Fit

Time, ¢ Distance, di dy tf rf
0.200 0.1960 0.00784 0.0016
0.400 0.7850 0.12560 0.0256
0.600 1.7665 0.63594 0.1296
0.800 3.1405 2.00992 0.4096
1.000 4.9075 490750 1.0000

7.68680 1.5664
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A=sumxy/sumx2;
B=ymean-A*xmean;

Exercises for Least-squares Line

In Exercises 1 and 2, find the least-squares line y = f(x) = Ax + B for the data and

Hence the coefficient A is the solution of the equation

N N
(19) 0=A> x" =3 x¥n.
k=1 k=1

which reduces to the formula in equation {16).

Example 5.3. Students collected the experimental data in Table 5.3. The relation is
d = 51 gt2, where d is distance in meters and ¢ is time in seconds. Find the gravitational
constant g.

The values in Table 5.3 are used to find the summations required in formula (16), where
the power used is M = 2.

The coefficient is A = 7.68680/1.5664 = 4.9073, and we get d = 4.9073:% and
g =24 = 9.7146 m/sec?. .

The following program for constructing a least-squares line is computationally sta-
ble: it gives reliable results in cases when the normal equations (10} are ill conditioned.
The reader is asked to develop the algorithm for this program in Exercises 4 through 7.

Program 5.1 (Least-squares Line). To construct the least-squares line y = Ax +
B that fits the N data points (x1, y1), ..., (xn§, YN).

function [A,B]l=lsline(X,Y)

%Input - X is the lxn abscissa vector

% - Y is the 1xn ordinate vector

%0utput - A is the coefficient of x in Ax + B

% - B is the constant coefficient im Ax + B

xmean=mean(X) ;
ymean=mean (Y) ;
sumx2=(X-xmean)*(X-xmean) ’;
sumxy=(Y-ymean) * (X-xmean) ’ ;

calculate E2(f)

L (a) (b)
Xk Yo | flxr) Xk Ye | flxe)
-2 1 1.2 -6 7 7.0
—1 2 1.9 -2 5 4.6
0 3 2.6 0 3 3.4
1 3 3.3 2 2 22
2 4 4.0 6 0 —-0.2
(©)
Xie Ye | Flxp)
—4 -3 -3.0
-1 -1 -0.9
0 0 0.2
2 1 1.2
3 2 1.9
2. (a) )
Xk Y | flxe) X Ye | flxg)
—4 1.2 0.44 —6 —-5.3 | —6.00
-2 2.8 3.34 -2 -3.5 | -2.84
0 6.2 6.24 0 -1.7|-1.26
2 7.8 2.14 2 0.2 0.32
4 13.2 ] 12.04 6 4.0 3.48
(c)
Xk Ye | fixx)
—8 | 68| 7.32
-2 5.0 3.81
0 2.2 2.64
4 0.5 0.30
6 —-1.3 | -0.87

_ 3. Find the power fit y = Ax, where M = 1, which is a line through the origin, for the
data and calculate E»( f).
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{a) {b)
Xk v | flxx) Xk Yo | fOw)
-4 -3 -2.8 3 1.6 1.722
—1 ~1 -0.7 4 24 2.296
0 0 0.0 5 29 2.870
2 1 1.4 6 34 3.444
3 2 2.1 8 4.6 4,502
(©)
Xk e | FGx)
1 1.6 1.58
2 2.8 3.16
3 4.7 4.74
4 6.4 6.32
5 8.0 7.90

. Define the means ¥ and ¥ for the points {(xx, yx)}_, by

1 ¥ 1 &
X.Eﬁzxk and y=NZyk.
k=1 k=1
Show that the point (¥, ¥) lies on the least-squares line determined by the given set of
points.

. Show that the solution of the system in (10) is given by

i N N N

A=— (Nzxk)’k - ZXk ZYk) ,
o k=1 k=1 =1
A N N

B=— (foZyk - > x Zxk)’k) :
L Ve k=1 k=1

where

Hint. Use Gaussian elimination on the system in (10).

. Show that the value of D in Exercise 3 is nonzero.
Hint. Show that D = N Yi | (xx — %)%

. Show that the coefficients A and B for the least-squares line can be computed -
follows. First compute the means X and ¥ in Exercise 4, and then perform the calcu-
lations:

N 1 N
—2 — . - =—_ =
C= ;m -0 A=g ;(xk Dy -5, B=7- AX.
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Hint. Use X; = x; — X, Yr = yx — ¥ and first find the line ¥ = AX.

. Find the power fits y = Ax2 and y = Bx? for the following data and use E2(f) to
determine which curve fits best.
(a) (b)
Xk Yk Xk Yk
20] 5.1 20| 59
23| 7.5 23 8.3
26| 106 261t 107
29| 144 29 137
3.2 19.0 32 170

. Find the power fits y = A/x and y = B/x? for the following data and use E;(f) 1o

determine which curve fits best.

(@) (b)
Xk Yk Xk Yk
05| 7.1 0.7 8.1
08| 44 09| 49
1.1 32 1.1 33
1.8 1.9 16| 16
40( 09 30| 05

(a} Derive the normal equation for finding the least-squares linear fit through the
origin y = Ax.

{(b) Derive the normal equation for finding the least-squares power fit y = Ax?.

() Derive the normal equations for finding the least-squares parabola y = AxZ+ B.

Consider the construction of a least-squares line for each of the sets of data points
determined by Sy = {(%, (%)2)},’:’:1, where N = 2,3,4,.... Note that, for each
value of & the points in Sy all lie on the graph of f(x) = x2 over the closed interval
{0, 1]. Let Xy and ¥ be the means for the given data points (see Exercise 4). Let ¥
be the mean of the values of x in the interval [0, 1], and let 3 be the mean (average}
value of f(x) = x? over the interval [0, 1].

(a) Show limy so0 Xy = X.
(b) Show limyoec Ty = 7.

Consider the construction of a least-squares line for each of the sets of data points:

k k
Sn ={e —a)ﬁ +a, f((b —a)ﬁ +a))}f=1

for N = 2,3,4,.... Assume that y = f(x} is an integrable function over the closed
interval [a, b]. Repeat parts {a) and (b) from Exercise 11.
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Algorithms and Programs

1. Hooke’s law states that F =

kx, where F is the force (in ounces) used to stretch
a spring and x is the increase in its length (in inches). Use Program 3.1 to find an
approximation to the spring constant & for the following data.

@

()

Xk Fr
0.2 53
041 10.6
061 159
0.8 | 21.2
1.0 264

2. Write a program to find the gravitational constant g for the following sets of data. Us
the power fit that was shown in Example 5.3.

(a) (h) -
Time, Distance, di Time, #; Distance, dy
Q0.200 0.1960 0.200 0.1965
0.460 0.7835 0.400 0.7855
Q.600 1.7630 0.600 1.7675
0.800 3.1345 0.800 3.1420
1.000 t 4 8975 1.000 4.,9095
3. The following data give the distances of the nine planets from the sun and their side
reat period in days.
Digtance from Sidereal period
Planet sun (km x 105) (days)
Mercury 57.59 87.99
Venus 108.11 224.70
Earth 149.57 365.26
Mars 227.84 686.98
Jupiter 778.14 4,3324
Saturn 1427.0 10,759
Uranus 2870.3 30,684
Meptune 44999 60,188
Pluto 5909.0 9,710

Modify your program from Problem 2 to also calculate E»(f). Use it to find the
power fit of the form y = Cx3/2 for (a) the first four planets and (b) all nine planets.

4. (a) Find the least-squares line for the data points {(x;, yk)}?cil, where x; = (0.1)k
and y. = X + cos(k!/?).

(b} Calculate Ex( F).

{c} Plot the set of data points and the least-squares line on the same coordinate

systemt.
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Curve Fitting

Data Linearization Method for y = Ce4*

Suppose that we are given the points (x;, y1), (x2, ¥2), . .., (x5, yn) and want to fit an
expontential curve of the form

i1 y=0C e

The first step is to take the logarithm of both sides:

vl In(y) = Ax + In(C).

Then introduce the change of vanables:

3) Y=In{y), X=x, and B=In(C).
This results in a linear relation between the new variables X and ¥
@) Y =AX + B.

The original points (x;, yx) in the xy-plane are transformed into the points (X, Vi) =
(xx, In(¥;)) in the XY -plane. This process is called data linearization. Then the least-
squatres line (4) is fit to the points {(Xx, Yi)}. The normal equations for finding A and
B are

(gxk)ﬁw NB =iyk_

After A and B have been found, the parameter € in equation (1) is computed:

(5)

(6) C =eb

Exampie 5.4. Use the data linearization method and find the exponential fit y = C, et
for the five data points (0, 1.5), (1, 2.5), (2, 3.9), (3, 5.0), and {4, 7.5).
Apply the transformation (3) to the original points and obtain

7 [(Xi, Ye2} = {0, In(L.5), (1, n2.5)), (2. In(3.5)), (3, n(5.0)), (4, In(7.5))
o = {(0, 0.40547), (1,0.91629), (2, 1.25276), (3, 1.60944), (4, 2.0149(}}.

These transformed points are shown in Figure 5.4 and exhibit a linearized form. The equa-
tion of the least-squares line ¥ = AX + B for the points (7) in Figure 5.4 is

(8) Y =0.391202X + 0.457367.
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A 1 I 1

X Figure 54 The transformed -

0 1 2 3 4 points {(Xg, ¥;)}.

Table 5.4  Obtaining Coefficients of the Normal Equations for the Transformed Data Points
{(Xx, Y3}

Sec.5.2 CURVEFITTING

X Yi Xy ¥ = Iny) x? XY,
0.0 1.5 Q.0 0.405465 0.0 0.000000
1.0 2.5 1.0 0.916291 1.0 0.916291
2.0 35 2.0 1.252763 4.0 2.505526
3.0 5.0 3.0 1.609438 9.0 4.828314
4.0 7.5 4.0 2.014903 16.0 8.059612
10.0 6.198860 30.0 16.309743
=X =24 =¥ X; =X XYy

Calculation of the coefficients for the normal equations in (5) is shown in Table 5.4.
The resulting linear system (5) for determining A and B is

30A + 10B = 16.309742

9
®) 10A+ 5B = 6.198860.

The solutionis A = 0.3912023 and B = 0.457367. Then € is obtained with the calculation
C = 247367 — 1,579910, and these values for A and C are substituted into equation {1)
to obtain the exponential fit {(see Figure 5.5):

(10} y = 1.579910e%312055 (fit by data linearization). u

265

Figure 5.5 The exponential fit
L : : —x y = 1.579910¢%3"1205% obtained by
3 4 using the data linearization method.

Nonlinear Least-squares Method for y = Ce”x

Suppose that we are given the points (x1, 1), (x2, ¥2), - - - (xn, y) and want {o fitan
exponential curve:

A
(1D y = Ce™.
The nonlinear least-squares procedure requires that we find a minimum of
N
(12) E(A,C) =Y (Ce™ — y)*.
k=1

The partial derivatives of E(A, C) with respect to A and C are

N
a3) O _ 337 (Ce™ - y(Cxie™™)
gA =
and
N
(14) OF _ 23 (Cet™ — yyie™™).
ac k=1

When the partial derivatives in (13) and (14) are set equal to zero and then simplified,
the resulting normal equations are

N N
Axy
c Zxkelf\xk _ Zxkyke T =),
k=1 k=1

(15) N i B
CY e — ) yet* =0
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The equations in (15) are nonlinear in the unknowns A and € and can be solved using
Newton's method. This is a time-consuming computation and the iteration involved
requires good starting values for A and C. Many software packages have a built-in
minimization subroutine for functions of several variables that can be used to minimize
E(A, C) directly, For example, the Nedler-Mead simplex algorithm can be used to
minimize (12) directly and bypass the need for equations (13) through (15).

Example 5.5, Use the least-squares method and determine the exponential fit y = Ce#*
for the five data points (0, 1.5), (1, 2.5), (2, 3.5), (3, 5.0), and (4, 7.5).
For this solution we must minimize the quantity E(A, C), which is

E(A,C) = (C — 1.5 + (Ce* — 252 + (Ce** — 3.5

16
(16) + (Ce3A — 5.002 + (Ce*A - 7.5)%.

We use the fmins command in MATLAB to approximate the values of A and C that miun
mize E(A, C). First we define E(A, C) as an M-file in MATLAB.

function z=E{u)

A=u(1);

C=u(2);

2z=(C-1.5).72+{(C.#exp(4)-2.5} . 2+(C.*exp(2*A)-3.5) . "2+. .,
(C.*axp(3%4)-5.0). 24 (C.*exp(4*4)-7.5) .7 2;

Using the fmins command in the MATLAB Cemmand Window and the initial values
A= 10and C = 1.0, we find
>»fmins (PE’, [1 11)
ans =

0.38357046580073 1.61089952247928

Thus the expenential fit to the five data points is
an y = 1.6108995¢%3835795 (it by nonlinear least squares).

A comparison of the solutions using data linearization and nonlinear least squares 15
given in Table 5.5. There is a slight difference in the coefficients. For the purpose oi
interpolation it can be seen that the approximations differ by no more than 2% over 1he
interval [0, 4] (see Table 5.5 and Figure 5.6). If there is a normal distribution of the errors
in the data, (17) is usually the preferred choice. When extrapolation beyond the range of
the data is made, the two solutions will diverge and the discrepancy increases to about 6«
when x = 10.

Transformations for Data Linearization

The technique of data linearization has been used by scientists to fit curves such .~
y = Ce* y = Aln{x) + B, and y = A/x + B. Once the curve has been chosen,
1 spitable transformation of the variables must be found so that a linear relation is
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Table 5.5  Comparison of the Two Exponential Fits

X Ve 1.579980'39]201 1.610980‘383571:
0.0 1.5 1.57%9 1.6109
1.0 2.5 2.3363 2.3640
2.0 3.5 3.4548 3.4692
3.0 5.0 5.1088 5.0911
4.0 7.5 7.53548 7.4713
5.0 11.1716 10.9644
6.0 16.5202 16.0904
7.0 24.4293 23.6130
8.0 36.1250 34.6527
90 53.4202 50.8535
16.0 l 78.9955 74.6287

¥
80
60}
sof
M-
7 T T T —— X Figure 56 A graphical compari-
0 2 4 ] B 10 son of the two exponential curves.

obtained. For example, the reader can verify that y = D/(x + C) is transformed
inio a linear problem ¥ = AX + B by using the change of variables (and constants)
X =xy,Y = y,C = —1/A, and D = —B/A. Graphs of several cases of the
possibilities for the curves are shown in Figure 5.7, and other useful transformations
are given in Table 5.6.

Linear Least Squares

The linear least-squares problem is stated as follows. Suppose that N data points
{ixy, ye)} and a set of M linear independent functions {f;(x)} are given. We want
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Table 5.6 Change of Variable(s) for Data Linearization

Fuanction, y = f(x) Linearized form, ¥ = Ax + B Change of variable(s) and constants
A 1 1
= — B =A— B = -, =
y=_+ y=A-+ Y=y
b + e 2 X Y
= —X — = =
Y=ryc YW wE=y
c="tp="8
T A A
L ! Ax+ B X y =1
= e X =X, = -
’ Ax+ B ¥ * ¥
= L _alis x=1y=]
YT ax+ B y  x Txt Ty
y=Aln(x)+ B y=Aln(x)+ B X=Ihx),¥Y=y
y=CeM In(y) = Ax + In(C) X =x Y =In)
C=ef
y=Cx4 In(y) = Aln(x) + In(C) X =1n(x). ¥ =In(y
C=eB
y=(Ax+ B)? y 2= Ax4+ B X=x¥Y=y2
y = Cxe~Dx In (X) = —Dx + In(C) X=x,¥=In (1)
X X
C=eB.D=-4
L ln(L 1) Ax + In(C) X Y =1 L 1)
= —_— = Ax =X, =Inf| «~ —
YT T cerr y i y
C = ¢% and L is a constant
that must be given

to find M coefficients {c;} so that the function f(x) given by the linear combination

M
(18) fxy=3 cifix)
j=1

1
y= i A=4,B=-3 y=CxeD%C=12,D= =— 1=
(Ax + B D=1 Yo T L=5C=20,4=2

Figure 5.7  Possibilities for the curves used in “data linearization”.

will minimize the sum of the squares of the errors

N N M 2
(19)  Elcy,cz,....cM) = Z(f(xk) -y)i= Z (( ijj(xk)) - )‘k) .
k=1 Jj=1

k=1
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For E to be minimized it is necessary that each partial derivative be zero (i.e.,
AE/3c; =0fori =1,2,..., M), and this results in the system of equations

N M
20) Z((Zc,-fj(xk))—yk) (i) =0 fori=1,2, ..., M.

k=1 j=1

Interchanging the order of the summations in (20) will produce an M x M system
of linear equations where the unknowns are the coefficients {c;}. They are called the
normal equations:

M {N N
(21) Z (Zfi(xk)fj(xk)) cj= Zf,-(xk)yk fori=1 2, .... M.
k=1

i=1 \i=1

The Matrix Formulation

Although (21) is easily recognized as a system of M linear equations in M unknowns,
one must be clever so that wasted computations are not performed when writing the
system in mamix notation. The key is to write down the matrices F and F’ as follows:

Al)  falx)) oo fulx)
fitx2)  falx2) o fulxo)

F=1Ax3) folxs}y -+ fu(x3)

f:(;w) fz(;w) fM(.xN)

i) Alx)  Alx3) - filaw)
R} flxy f2x3) - flxn)

F!

fuixl) fM&xz) fMixz.) fM(‘XN)

Consider the product of F’ and the column matrix ¥:

Hix)  fitx) fAilxs) - filew) bJ|
) FY = fz(:n) fZ(;XZ) fz(:xs) e fz(jw) J:z
fulx)) fMtXZ) fMixa) e fM(xN) y;v

The element in the /th row of the product F'Y in (22) is the same as the ith element in
‘he column matrix in equation (21); that is,

N
23) Zfi‘(xk)yk=mwi F'-lyi » ... wl.
k=1

Sec. 5.2 CURVE FITTING 271

Now consider the product F'F, which is an M x M matrix:

F'F =
Ay e - fulx)
filay A Hlxk) - filaew)
by falx) falx)y oo Palxw) Am) - folxa) fu(x2)
) _ _ . fitxa)  folxs) - fu(xa)
(e fux2)  fulxs) - fuGew) f (;r,v) fZ(L‘TN) . fM(‘XN)

The element in the ith row and jth column of F'F is the coefficient of ¢; in the
ith row in equation (21); that is,

N
Q) ) ) fi) = FEDF00) + HODF) + o+ fiGw) fGw).
k=1

When M is small, a computationally efficient way to calculate the linear least-squares
coefficients for (18) is to store the matrix F, compute F'F, and F’Y and then solve
the linear system

(25) F'FC = F'Y forthe coefficient matrix  C.

Polynomial Fitting
When the foregoing method is adapted to using the functions { fj(x) = x/~!} and the
index of summation ranges from j = 1 t0 j = M + 1, the function f(x) will be a
polynomiai of degree M:

M

(26) fxy=ci+cx+eax®+ - +oppx™.
We now show how to find the least-squares parabola, and the extension to a poly-

nomial of higher degree is easily made and is left for the reader,

Theorem 5.3 (Least-squares Parabola). Suppose that {(xg, y,q)}}i‘"___1 are N points,

where the abscissas are distinct. The coefficients of the least-squares parabola

27 y=fx)=Ax+Bx+C

are the solution values A, B, and C of the linear system

N N N N
(}:xf) A+ (Zx,?) B+ (Zx,f) C= Zykxf,
k=1 k=1 t k=1

=
N N N N
(28) (fo) A+ (fo) B+ (Zxk) C=3yexi,
k=1 =1 k=1 k=1
N N N
(fo) A+ (Zxk) B+ NC= Z)’k
k=1 k=1 =1
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Table 5.7  Obtaining the Coefficients for the Least-Squares Parabola of Example 5.6

X Yk xE P xp Xg 3k v
-3 3 9 27 81 —9 27
0 1 0 0 0 0 0
2 1 4 8 16 2 4
4 3 16 64 256 12 48
3 8 29 45 353 5 79

Proof. The coefficients A, B, and C will minimize the quantity:

N
(29) E(A, B,C)=) (Ax}+ Bxy +C — y)?
k=1

The partial derivatives dE/9A, dE /9B, and 9 E/9C must all be zero. This results in

3E(A, B, C) AR 1,2
0="""r— =2 Bx; +C —
A k=l(Axk + Bxp + i) (xg),
dE(A,B,C) & i
(30) 0= —— = Z;Mxk + Bxi+ C — yi) (xp).
3E(A, B, C N
0= EABC) (AxE + Bxy + C - y)' ().
aC k=1

Using the distributive property of addition, we can move the values 4, B, and C
outside the summations in (30} to obtain the normal equations that are given in (28). o

Example 5.6. Find the leas{-squares parabola for the four points (—3,3), (0, 1), (2. 1),
and (4, 3). .
The entries in Table 5.7 are used to compute the summations required in the linear
system (28).
The linear system (28) for finding A, B, and C becomes
353A+45B+29C =79
45A+29B+ 3C= 5
29A+ 3B+ 4C = 8.
The solution to the linear systemis A = 585/3278, B = —631/3278,and C = 1394/1639,
and the desired parabola is (see Figure 5.8)
_ 585 , 631 1394

— 2 _
Y= 37 T 3g” + 1630 — 0.178462x° — 0.192495x + 0.850519. ]
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i ' L ' . . — x Figure 5.8 The least-squares
-3 -2 -1 0 1 2 3 4 parabola for Example 5.6.

Polynomial Wiggle

It is tempting to use a least-squares polynomial to fit data that is nonlinear. But if the
data do not exhibit a poiynomial nature, the resulting curve may exhibit large oscilla-
tions. This phenomenon, called polynomial wiggle, becomes more pronounced with
higher-degree polynomials. For this reason we seldom use a polynomial of degree 6 or
above unless it is known that the true function we are working with is a polynomial.

For example, let f{x) = 1.44/x? + 0.24x be used to generate the six data points
(0.25,23.1), (1.0, 1.68), (1.5, 1.0), (2.0, 0.84), (2.4, 0.826), and (5.0, 1.2576). The
result of curve fitting with the least-squares polynomials

Pa(x) = 22.93 — 16.96x + 2.553x2,
P3(x) = 33.04 — 46.51x + 19.51x% — 2.296x°,
Py(x) = 39.92 — 80.93x + 58.39x2 — 17.15x + 1.680x%,

and

Ps(x) = 46.02 — 118.1x + 119.4x% — 57.51x + 13.03x* — 1.085x°

is shown in Figure 5.9(a) through (d). Notice that P3(x), P4(x), and Ps(x) exhibit a
large wiggle in the interval [2, 5]. Even though Ps(x) goes through the six points, it
produces the worst fit. If we must fit a polynomial to these data, P2(x) should be the
choice.

The following program uses the matrix F with entries f;(x) = x/~! from equa-
tion (18).
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(@) (b)

(©) )

Figure 8.9 (a) Using P2(x) to fit data. (b) Using P3(x) to fit data, (¢} Using P4(x) to

fit data. (d) Using Ps(x) to fit data.

mial of degree M of the form
Py(x)=c1 +cx+ C3x2 +--- +chM‘l + CM.;.1XM

that fits the N data points {(xk, Yk},

Program 5.2 (Least-squares Pelynomial). To construct the least-squares polyno-

lspoly(X,Y,M)
%Input - X is the lxn abscissa vector
) - Y is the 1lxn cordinate vector
% - M is the degree of the least-squares polynomial
% Output - C is the coefficient list for the polynomial
n=length(X);
B=zeros(1:M+1);
F=zeros(n,M+1);
%Fill the columns of F with the powers of X
for k=1:M+1
F(GLR)=K .~ (k-1);
end

function C

%Solve the linear system from (25}
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A=F*F;
B=F'*Y’;
C=A\B;
C=f1ipud(C) ;

Exercises for Curve Fitting

275

1. Find the least-squares parabola f(x) = Ax? + Bx + C for each set of data.

(a) {b)
Xk Y X Yk
-3 15 -3 [-1
-1 5 -1 25
1 1 1 25
3 5 3 1
2. Find the least-squares parabola f(x) = Ax? + Bx + C for each set of data.
(a) (b) (©
Xi Yk Xk Yie Xk Yie
-2 |58 -2 2.8 -2 10
-1 1.1 -1 21 -1 1
¢ 3.8 0 3.25 0 (]
1 33 I 6.0 1 2
2 |-15 2 11.5 2 9

3. For the given set of data, find the least-squares curve:
(@) f(x) = Ce**, by using the change of variables X = x, ¥ = In(y), and C = 5,
from Table 5.6, to linearize the data points.

(h) f(x) = Cx*, by using the change of variables X = In(x), ¥ = In(y), and
C = 5, from Table 5.6, to linearize the data points.
(e} Use E;(f) to determine which curve gives the best fit.

Xk Yk
1 0.6
2 1.9
3 4.3
4 7.6
5 12.6
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- 8 — 8
4, For the given set of data, find the least-squares curve: (8) Assume that L =8 x 10 (b) Assume that L =8 x 10
(a) f(n= Ce?*, by u.sing t‘he change of\v:ariables X=x,Y =In(y),and C = PR Year s Py Year % P
from Table 5.6, to linearize the data points.
(b) f{x} = 1/(Ax + B), by using the change of variables X = x and ¥ = 1/y. 1800 —-10 53 1900 | O 76.1
from Table 5.6, to linearize the data points. 1850 -3 232 1920 | 2 | 106.5
i ] . 1900 0 76.1 1940 | 4 | 1326
(¢) Use Ea(f) to determine which curve gives the best fit. 1950 5 152.3 1960 6 | 1807
1980 ) 8 | 226.5
Xi Yk . .
n Exercises 8 through 15, carry out the indicated change of variables in Table 5.6, and
-1 6.62 lerive the linearized form for each of the following functions.
H 3.94
1 2.17 A D
2 1.35 8. y=_+B8B 9.y=x+c
3 0.89 1 x
i y= =
Y= Ax+ B Wy=278
2.y=Aln{x)+ B 13, y=Cx4
14, y=(Ax+ B)™? 15. y = Cxe™ D=

5. For each set of data, find the least-squares curve:
(8) f(x) = Ce™, by using the change of variables X = x, Y = In(y),and C = ¢'" i6. (a) Follow the procedure outlined in the proof of Theorem 5.3 and derive the normal
equations for the least-squares curve f(x) = A cos(x) + B sin(x).

¢(b) Use the results from part (a) to find the least-squares curve f{x) = A cos(x) +
B sin(x) for the following data:

from Table 5.6, to linearize the data points.

(b) f(x) = (Ax + B)~2, by using the change of variables X = x and ¥ = y !/~
from Table 5.6, to linearize the data points.

(¢) Use E2(f) to determine which curve gives the best fit.

(i) (ii) Xg Yk
Xy Yk X Yk
-~3.0{ ~0.1385
-1 13.45 -1 13.65 ~1.5| —=2.1587
0 3.01 0 1.38 0.0! 0.8330
1 0.67 1 0.49 1.5 22774
2 0.15 3 0.15 30| -0.5110

6. Logistic population growth. When the population P(t) is bounded by the limiting
value L, it follows a logistic curve and has the form P(r) = L/(1 + Ce™"). Fing A
and C for the following data, where L is a known value. 17. The least-squares plane z = Ax + By + C for the N points (x1. y1, 21 ...,
(@ (0,200, (1,400), (2, 650), (3, 850), {4,950), and L = 1000. {xx. YN, Zn) is obtained by minimizing
(b) {0, 5000, (1, 1000), (2, 1800y, (3, 2800), (4, 3700), and L = 5000.
N
7. Use the data for the U.S. population and find the logistic curve P(z). Estimate the E(A,B,O) = Z(Ax" + By + C — z)*.
population in the year 2000. : k=1
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Derive the normal equations:

N N N N

(fo) A+ (Zxkyk) B+ (Zxk) C= szxk,
k=1 k=1 k=1 k=1
N N N N

( xm:) A+ (Z)’f) B+ (Z J’k) C=) un
k=1 =1 k=1 k=]
N N N

(Zx;) A+ (Zyk) B+ NC = sz.

k=1 k=1 k=1

18. Find the least-squares planes for the following data.
@ (1,1,1,(1,2,9),(2,1,10),(2,2,11), (2,3, 12)
M (1,2,6),(2,3,7),(1,1,8),(2,2,8).,(2,1,9
© (3,1,-3,2,1,~-1),2,2,0,01,1,1),(1,2,3)

19. Consider the following table of data

Xk Yr
10§ 20
201 5.0
3.0 100
401 17.0
501! 26.0

When the change of variables X = xy and ¥ = 1/y are used with the func
v = D/(x + C), the transformed least-squares fit is
_ —17.719403

Y 5476617
When the change of variables X = x and ¥ = 1/y are used with the function
1/(Ax + B), the ransformed least-squares fit is

_ 1
¥ = T0.1064253% + (.4987330°

Determine which fit is best and why one of the solutions is completely absurd.

Algorithms and Programs

1. The temperature cycle in a suburb of Los Angeles on November 8 is given in

accompanying table below. There are 24 data points.
(a) Follow the procedure outlined in Example 5.5 (use the fmins command) to
the least-squares curve of the form f(x) = A cos(Bx)+C sin(Dx) forthe g

set of data.
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(b} Determine E2(f).
(¢) Plot the data and the least-squares curve from part (a) on the same coordinate
system.

Time, pm. | Degrees Time,am. | Degrees
1 66 1 58
2 66 2 58
3 65 3 58
4 64 4 58
5 63 5 57
6 63 6 57
7 62 7 57
8 61 8 58
9 60 9 60
10 60 10 64
11 59 11 67
Midnight 58 Noon 68

33 Interpolation by Spline Functions

lfulynomjal interpolation for a set of N + 1 points {(xg, yk)}f_o is frequently unsatis-
Iucu.wry. As discussed in Section 5.2, a polynomial of degree N can have N — | relative
fMmarima and minima, and the graph can wiggle in order to pass through the points.
j-‘\ nother method is to piece together the graphs of lower-degree polynomials Sy (x) and
imnterpolate between the successive nodes (x, y&) and (xg11, yi41) (see Figure 5.10).

(0, yp)

Gy In-yp

5 I
T T } } t 4 } x

L)
X X% X3 *k e XN-1 Xy

Figure 5.18 Piecewise polynomial interpolation.
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(*g Yo

Gy _pynoy)

Xy Yar)
y I— i . i 4 L x
T 1 T LI L T 1
o5 B e Xy -1 Xy

Figure 5.11 Piecewise linear interpolation (a linear spline).

The two adjacent portions of the carve y = Si(x) and y = Sp41(x), which lie above
(i, xk+1] and [xieq 1, Xe42], respectively, pass through the common knof (xx41, yi11)-

The two portions of the graph are tied together at the knot (x¢+3, Y¢+1), and the set of

functions {S;(x)} forms a piecewise polynomial curve, which is denoted by S(x).

Piecewise Linear Interpolation

The sitplest polynomial to use, a polynomial of degree 1, produces a polygonal path
that consists of line segments that pass through the points. The Lagrange polynomial
from Section 4.3 is used to represent this piecewise linear curve;

X = X4l X — Xi
(1) Sp(x) = p———— + ypp1———  for xp = x < Apyi.
X — X4t Xr41 — Xk

The resuliing curve looks like a broken line (see Figure 5.11).
An equivalent expression can be obtained if we use the point-slope formula for a
line segment:

Sp(x) = Y + dp(x — xz),

where diy = (¥i+1 — i)/ (Xx+1 — xk). The resulting linear spline function can be
written in the form

[ Yo+ do(x ~ xo) for x in [xp, x1],
v +di(x —xp) for x in [xy, x3],
(2 S(x) = ) .
Vi + de(x — xp) for x in [xg, xg41],
LNy R dnoyfx —xy-1) forxin{xy—q, xp]
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The form of equation {2} is better than equation (1) for the explicit calculation of
S(x), It is assumed that the abscissas are ordered xp < x1 < -+ < xy_1 < xy. For
a fixed value of x, the interval [x;, xj.;] containing x can be found by successively
computing the differences x — xy, ..., % — X, X — xg+p until k 4 1 is the smallest
integer such that x — xz| < 0, Hence we have found & so that x; < x < xz41, and
the value of the spline function S(x) is

Y Sxy=5x)=w+d{x—xi) for xx=<x < x4

These techniques can be extended to higher-order polynomials. For example, if an
odd number of nodes xg, X1, ..., X2ar is given, then a piecewise guadratic polyno-
mial can be constructed on each subinterval {xop, xo442]), fork =0, 1, ..., M ~ 1.
A shortcoming of the resulting guadratic spling is that the curvature at the even nodes
xa; vhanges abruptly, and this can cause an undesired bend or distortion in the graph.
The second derivative of a quadratic spline is discontinuous at the even nodes. If we
use piecewise cubic polynomials, then both the first and second derivatives can be
made continuous.

Piecewise Cubic Splines

The fitting of a polynomial curve to a set of data points has applications in CAD
{computer-assisted design), CAM (computer-assisted manufacturing), and computer
graphics systems. An operator wants to draw a smooth curve through data points that
are not subject to error. Traditionally, it was common to use a french curve or an ar-
chitect’s spline and subjectively draw a curve that looks smooth when viewed by the
eye. Mathematically, it is possible to construct cubic functions Si(x} on each inter-
val [x¢, xr41] so that the resulting piecewise curve y = S{x) and its first and second
derivatives are all continuous on the larger interval [xg, x, 1. The continuity of 5'(x)
means that the graph y = S(x) will not have sharp corners. The continuity of 3" (x)
means that the radius of curvature is defined at each point.

Definition 5.1 (Cubic Spline Interpolant). Suppose that {{x;, yk)};;V —gare N +1
points, wheré¢ @ = xg < x1 < --- < xny = b, The function $(x) is called a cubic
spline if there exist N cubic polynomials 5;(x) with coefficients sx.0, 84,1, $,2, and
st3 that satisfy the properties:

L S(x) = Sk(x) = 5k,0 + S, 06 — xx) + 55,200 — %)% + 5p.3(x — x)?

forx € [xg, xp+1)Jand k=0, 1,..., N — 1.
. S(xx) = wn fork=0,1,...,N.
NI S (xpr1) = Sg1{xe+1} fork=0,1,....N=2.
V. S (xes1) =S;;+1(xk+l) fork=0,1,...,N -2,
V.o Sy (ge1) = S (1) fork=0,1,...,.N-2. R
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Property ! states that §(x} consists of piecewise cubics. Property II states that the
piecewise cubics interpolate the given set of data points. Properties Il and IV requir:
that the piecewise cubics represent a smooth continuous function. Property V state-
that the second derivative of the resulting function is also continuous.

Existence of Cubic Splines

Let us try to determine if it is possible to construct a cubic spline that satisfies proper-
ties I through V. Each cubic polynomial Sx(x) has four unknown constants (s o. s,|.
k.2, and s¢ 3); hence there are 4N coefficients to be determined. Loosely speaking.
we have 4N degrees of freedom or conditions that must be specified. The data point.
supply N + 1 conditions, and properties III, IV, and V each supply ¥ — I conditions
Hence, N + 14 3(N — 1) = 4N — 2 conditions are specified. This leaves us two addi-
tional degrees of freedom. We will call them end-point constraints: they will involve
either 5'(x) or §”(x) at xg and xy and will be discussed later. We now proceed with
the construction.

Since S(x) is piecewise cubic, its second derivative §”(x) is piecewise linear on
[xg, x¥]. The linear Lagrange interpolation formula gives the following representation

for §”(x) = 8} (x):
X — X X — X
() S{(x) = 8" () —2tL .

+ 8"k 41)
X — Xp+1 X,

k+1 — Xk

Use my = S"(x1), mp+1 = " (xp+1), and by = xp41 — xi in (4) to get

" s my
(5) Si0) = e =0 + = (x — xp)
forx; <x <xppyandk =0,1,..., N — 1. Integrating (5) twice will introduce tv

constants of integration, and the result can be manipulated so that it has the form

m Myl
©) Sk0) = (et =0 + =2 =30+ Pl — x) + gk(x = xp).
6hy 6hy
Substituting x; and xz4 into equation (6) and using the values y;, = Sp(x;) and
Yeq1 = Si(xp41) yields the following equations that involve py and g, respectively;

m Mi+1
M &= _Glh% + pyhy  and  ype = 6+ hi + qehi.
These two equations are easily solved for p; and g;, and when these values are sub-

stituted into equation {(6), the result is the following expression for the cubic function
Si(x):

m
Sp(x) = =X (g = 1P+ (x>
® 6hy 6h,
Yk mkhk) _ Vel mirthe)
+ (hk 3 (xg+1 —x)+ ( e 5 )(x Xi).
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Notice that the representation (8) has been reduced to a form that invoives only
the unknown coefficients {m,}. To find these values, we must use the derivative of (8),
which is

m m
S = = Grars = 1P 4 S (r — x)?
9 2hy 2hy
@ _ (}i_fc _ mkhk) L Vet Mgy
hy 6 hy he

Evaluating (9) at x4 and simplifying the result yield

1% Splxy) = —?hk - m?lhk +dy, where di= ZH—;!;yE
k

Similarly, we can replace k by k — 1 in (9) to get the expression for S}, (x) and
evaluate it at x; to obtain

. my My
(11 Sim1 () = htet + —hp + die.
Now use property IV and equations (10) and (11) to obrain an important relation
involving mg—y, My, and my 1

{12) hi—imi—1 + 2(he—1 + hedmg + hampg = ug

where yy = 6(dy —dy—y) fork=1,2,....N - L.

Construction of Cubic Splines

Observe that the unknowns in (12) ave the destred values {#1;), and the other terms
dre constants obtained by performing simple arithmetic with the data points {{xg, y)}.
{:here_fore, in reality system (12) is an underdetermined system of N — 1 linear equa-
tiens involving ¥ + 1 unknowns. Hence two additional equations must be supplied.
They are used to eliminate my from the first equation and my from the (N ~ 1)st
equation in system (12). The standard strategies for the end-point constraints are sum-
marized in Table 5.8.

Consider strategy (v) in Table 5.8. If mg is given, then hgmg can be computed, and
the first equation (when & = 1) of (12)is

(13) 2(ho + hiymy + hima = uy — homg.

Similarly, if m  is given, then hy_my can be computed. and the last equation (when
k=N-1of(12)is

(i4) An-ampy_2+ 2hy-2+hn_DmN-i =uy-1 — hy_imy.
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Table 5.8 End-point Constraints for a Cubic Spline

Description of the strategy Equations involving mg and m y

(1) Clamped cubic spline: spec-
ify 8 (xp), §'(xn)
(the “best choice” if the

3
mg = ng;(do - 8 {xp)) - %

derivatives are known) 3 m
my = (') —dy—1) ~ IN-1
N-1 2
(i) Natural cubic spline my=0my =0
{a “relaxed curve™)
(iii) Extrapolate S$”(x) to the
dpoints
enapo ho(mg — m1)
my=my — —————,
h
hy_1imy—1 —my_2)

my =mpy_1 +
hy_z

(iv)  §”(x) is constant near the
endpoints

(v) Specify §”(X) at each
endpoint

mo=mp,my =mpy_j

my = §"(xg). my = 5" (xy)

Equations (13) and (14) with (12) used fork = 2,3, ..., N =2 form N — 1 lmnes
equations involving the coefficients my, ma, ..., my_1.

Regardless of the particular strategy chosen in Table 5.8, we can rewrite equa-
tions 1 and N — 1 in (12) and obtain a tridiagonal linear system of the form HM = V,
which involves m(, ma, ..., my—J:

b mp v]

a; by 2 m2 vz

(15) ., : = :
ay_3 by-z cnoa||ma-2 UN-2
an—z by-1| [ mr- UN—|

The linear system in (15) is strictly diagonally dominant and has a unique solu-
tion (see Chapter 3 for details). After the coefficients {m} are determined, the spline

SEC.5.3 INTERPOLATION BY SPLINE FUNCTIONS 285

coefficients {s ;} for S¢(x) are computed using the formulas

hi(Cmy +m
5k, 0 = Yk, Sp) =dy — —-————-—k( k6 k"H)’
o= T M M
! 27 ' 6h,

Each cubic polynomial 5;(x) can be written in nested multiplication form for effi-
cient computation;

(in Se(x) = ((sx 3w + s 2)w + s Dw+ ¥, where w=x—x;

and 5 (x) is used on the interval x; < x < xz4|.

Equations (12) together with a strategy from Table 5.8 can be used to construct a
cubic spline with distinctive properties at the end points. Specifically, the values for #g
and m y in Table 5.8 are used to customize the first and last equations in (12) and form
e system of N — 1 equations given in (15). Then the tridiagonal system is solved for
the remaining coefficients m, ma, ..., my—;. Finally, the formulas in (16) are used to
determine the spline coefficients. For reference, we now state how the equations must
e prepared for each different type of spline.

Ead-point Constraints

The following five lemmas show the form of the tridiagonal linear system that must be
solved for each of the different endpoint constraints in Table 5.8.

Lethma 5.1 (Clamped Spline). There exists a unique cubic spline with the first
derivative boundary conditions §'(a) = dy and S'(b) = dy.

Proof. Solve the linear system
3
(Eho + Zhl) my+ hyms = uy — 3(dg — 5" (xg))
Ri_ymg_1 + 2(he—1 + hiymi + Rpmpe) = ug for k=2, 3, ..., N=-2

3
hy_amy_2+ (2hn—2 + SAN-Dmy-1 = un-t = 3(8'(xn) - dn-1). .

Remark. The clamped spline involves slope at the ends. This spline can be visualized
as the curve obtained when a flexible elastic rod is forced to pass through the data
points, and the rod is clamped at each end with a fixed slope. This spline would be
useful to a draftsman for drawing a smooth curve through several points.

Lemma 5.2 (Natural Spline). There exists a unique cubic spline with the free
baundary conditions §”(a) = 0 and 57(b) = 0.
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Proof. Solve the linear system

2(hg + hdmy + himz = ug
he_img_1 + 2(hg—1 + hiymy + ke = i for k=2,3, ..., N-2
hy_amy—z +2(hy—2+ AN-DMN-1 = UN-1. .

Remark. The natural spline is the curve obtained by forcing a flexible elastic rod
through the data points, but letting the slope at the ends be free to equilibrate to the
position that minimizes the oscillatory behavior of the curve. It is useful for fitting ¢
curve to experimental data that are significant to several significant digits.

Lemma 5.3 (Extrapolated Spline). There exists a unique cubic spline that uses
extrapolation from the interior nodes at xi and x; to determine §”(a) and extrapolatiot

from the nodes at xy_; and xy_ to determine S”(b).

Proof. ~Solve the linear system

h2 k3
3ho+ 201 + -2 |my + [ A1 — 2 | m2=u
h1 hl

hi_1mg—1 + 2(he—1 + h)me + hemir = i for k=2,3, ..., N=-2
n2 1
(hN—z - hN_l) my-2+ (Zthz +3hy-1+ %) MN—] = UN-1- *

Remark. The extrapolated spline is equivalent to assuming that the end cubic is aB
extension of the adjacent cubic; that is, the spline forms a single cubic curve over the
interval [xg, x2] and another single cubic over the interval [xy_2, xn1.

Lemma 5.4 (Parabolically Terminated Spline). There exists a unique cubic spline
that uses S”(x) = 0 on the interval [xg, x1] and §”{x) = 0 on [xy-1. xw)

Proof. Solve the linear system

(3ho + 2MYmy + hyma = )
hy_imgo1 + 2(hg—1 + hiyme + himpyy = ug  for k= 2,3 ..., N2
hy_amy—2+ (Qhy_2 +3hN-1)MN-1 = UN-1.

Remark. The assumption that $”(x) = 0 on the interval [xg, x1] forces the cubic‘§ '

degenerate 10 a quadratic over [xo, x1], and a similar situation occurs over [xn—1, XN
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Lex‘nma ‘5.5 (End-point Curvature-adjusted Spline). There exists a unique cubic
spline with the second derivative boundary conditions $”(a) and $” (b) specified.

Proof. Solve the linear system

2(ho + h1ymy + hymy = u; — hoS" (xq)
hpoamg—1 +2(hg—1 +hpyme +lympy =up for k=2,3, ..., N-2
hy-amy_ 2+ 2(hy 2+ hn_1Imy_1 =un_1 — hy_15"(xn). .

Remark. Tmposing values for §”(a) and S”(b) permits the practitioner to adjust the
curvature at each endpoint.

The next five ex.a'mples illustrate the behavior of the various splines. It is possible
10 mix thf: gnd conditions to obtain an even wider variety of possibilities, but we leave
these variations to the reader to investigate.

Example 5.7. Find the clamped cubic spline that passes ﬂu’ough (0,0), (1,0.5), (2,2.0),

~ and (3, 1.5) with the first derivative boundary conditions §'(0) = 0.2 and §'(3) = —1,

First, compute the quantities

hh=hy=hy=1

do = (y1 — y0)/ ho = (0.5~ 0.0)/1 = 0.5
d={—y»)/hh=20-05/1=15
dr = (y3 —¥2)/h2a = (1.5 = 2.0)/1 = -0.5
#1 = 6(d; —dp) =6(1.5-0.5) =6.0

uz = 6(dz —dy) = 6(—0.5 - 1.5) = —12.0.

Then use Lemma 5.1 and obtain the equations

3
(5 +2)m1 +my =60-3(05-02)=5.1,

3
mp+ (2 + E) mz = —12.0 ~ 3(—=1.0— (—0.5)) = —10.5.

when these equations are simplified and put in matrix notation, we have

35 LOp|my| _ 51
1.0 3.5||m2| | -105]
Ttisa straightforward task to computc the solution m; = 2.25 and m> = —3.72 Now
pply the equations in (i) of Table 5.8 (0 determine the coefticients mp and ma:
mg=305-02) ~ 3;% = —0.36,

my = 3(—1.0+0.5) — _—322 = 0.36.
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Figure 512 The clamped cubic
spline with derivative boundary condi-
tions: $°(0) = 0.2 and §'(3) = -1

Figure 5,13 The natural cubic spline
with $7(0) = 0 and 5”(3) = 0.

Next, the values mg = —0.36, my = 2.25, my = —3.72, and m3 = 0.36 are substitured
into the equations (16) to find the spline coefficients, The solution is

So(x) = 0.48x> — 0.18x% + 0.2x for0<x <1,
S1(x) = —1.04(x — 1) + 1.26(x — 1)?
(18) + 1.28(x — 1)+ 0.5 for 1<x<?2,
S2(x) = 0.68(x — 2)% ~ 1.86(x — 2)?
+0.68(x —2)+ 2.0 for 2<x <3
This clamped cubic spline is shown in Figure 5.12. n

Example 5.8. Find the natural cubic spline that passes through (0, 0.0), (1, 0.5), (2, 2.0,
and (3, 1.5) with the free boundary conditions $”(x) = 0 and $”(3) = 0.

Use the same values {hy), {di}, and {u;] that were computed in Example 5.7. Then
use Lemma 5.2 and obtain the equations

2(1 + Dmy +my = 6.0,
my +2(1 + Dmp = —12.0.

The matrix form of this linear system is

10 s)lm] =59

It is easy to find the solution m; = 2.4 and ma = —=3.6. Since mo= 5"(0) = 0 and
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m3 = $"(3) = 0, when equations (16) are used to find the spline coefficients, the result is

So(x) = 0.4x3 +0.1x for 0<x <1,
Si(x) = ~(x - 1* +1.2( - 1)?
(19) +13(x—-1)+0.5 for 1<x <2,
' Sr(x) = 0.6(x — 2)° — 1.8(x —2)2
+0.7(x ~2) +2.0 for 2<x <3,
“This natural cubic spline is shown in Figure 5.13, s

Example 5.9. Find the extrapolated cubic spline through (0, 0.0), (1, 0.5), (2, 2.0n, and
(3,1.9).

Use the values {A}, {di}. and {u;} from Example 5.7 with Lemma 5.3 and obtain the
linear system

B +24 Dmy + (1 — Dmy = 6.0,
I-—Dmi4+Q+3+1m=-120.

6.0 0.0][m] 6.0

00 6.0 |m:| [|-120]
and it is trivial to obtain m; = 1.0 and mz = —2.0. Now apply the equations in (iii) of
Table 5.8 to compute mg and m3:

The matrix form is

mp=10-(-2.0-1.0)=4.0,
my=-204(-2.0- 1.0) = —-5.0.

Finally, the values for {m;} are substituted in equations (16} to find the spline coefficients.

“The solution is

So(x) = —0.5x* +2.0x% — x for0<x <1,
S1(x) = =0.5(x — 1)* + 0.5(x — 1)?
20 +1.5x -1 +0.5 for 1<x <2,
S3(x) = —0.5(x — 2)° —~ (x — 2)°
+&x-2)+20 for 2<x < 3.
The extrapolated cubic spline is shown in Figure 5.14, »

Example 5.10.  Find the parabolically terminated cubic spline through (0, 0.0}, (1, 0.5),
2. 2.0), and (3, 1.5).
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20}

1.0

L L 1 ‘~ x  Figure 5.14 The extrapolated cu-
S5 1.0 13 20 25 3. bic spline.

Use (A}, {di), and {x;) from Example 5.7 and then apply Lemma 5.4 to obtain

34+ 2ymy 4+ my =60,
mi+2+3)m=—-12.0.

50 10][m] _[ 60
1.0 50]|ma] ™ [-120]

and the solution is m) = 1.75 and mz = —~2.75. Since §7(x) = 0 on the subinterval ur
each end, formulas (iv) in Table 5.8 imply that we have mg =m| = 1.75, and m3 = m- =
—2.75. Then the values for {m;} are substituted in equations (16) to get the solution

The matrix form is

So(x) = 0.875x2 — 0.375x for 0<x =<1,
$)(x) = ~0.75(x — 1? + 0.875(x — 1)?
+1.375(x - 1) + 0.5

S3(x) = —1.375(x — 2> + 0.875(x — 2) + 2.0

21
@b for l<x <32,

for 2<x <3.

This parabolically terminated cubic spline is shown in Figure 5.15. "

Example 5.11. Find the curvature-adjusted cubic spline through (0, 0.0), (1, 0.5
(2, 2.0), and (3, 1.5) with the second derivative boundary conditions 57(0) = —0.3 and
$7(3) =3.3.
Use {h}, {di}, and {u} from Example 5.7 and then apply Lemma 5.5 to obtain
20+ 1my +mz2 = 6.0~ (-0.3) = 6.3,
mp+2(1+ 1)ma = ~-12.0— (3.3) = ~15.3.

10 4o)[m]=[53]

The matrix form is
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y
20}
15 ¢
10}
05|
o5 10 15 20 25 a0 | leureSIS The parubolicaly

terminated cubic spline.

¥y

20F

1.5F

1.0F

05

Figure 5.16 The curvature ad-
et — justed cubic spline with §7(0) =
05 1.0 1.5 2.0 2.5 30 __0'3 and SI-'(3) = 33.

and the solution 1s m| = 2.7 and mz = —4.5. The given boundary conditions are used
to determine mg = $7(0) = —0.3 and m3 = S$”(3) = 3.3. Substitution of {m;} in

cquations (16) produces the solution

So(x) = 0.5x3 — 0.15x% + 0.15x for 0<x<l,
Sixy = —12(x — 1) + 1.35(x — 1)2
22 +135x—1)+0.5
$2(x) = 1.3(x = 2)° — 2.25(x - 2)*
+045(x —2) + 2.0

This curvature-adjusted cubic spline is shown in Figure 5.16. L

for ]l <x <2,

for 2<x <3.

Suitability of Cubic Splines

A practical feature of splines is the minimum of the oscillatory behavior that they
possess. Consequently, among all functions f(x} that are twice continuously differen-
tiable on [a, 5] and interpolate a given set of data poinis {(xi, yx)) f(‘"zo, the cubic spline
has less wiggle. The next result explains this phenomenon.
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Theorem 5.4 (Minimum Property of Cubic Splines). Assume that f € C{a, b]
and S(x) is the unique cubic spline interpolant for £ (x) that passes through the points
{(xk, f (xk))},’c":o and satisfies the clamped end conditions 5’ (a} = f'(a)and S'(p) =
f'(b). Then

b b
23 f (8"(x)dx < f (7" ()2 dx.

Proof.  Use integration by parts and the end conditions to obtain
b
| s @@ - s ax
‘ x=h b
=500 ) = SN[~ [ 5" - S ds
- a

b
=0ﬂ0—f.thfuy—¥unm;
Since §”(x) = 6s; 3 on the subinterval [x;, x¢4), it follows that

Xkt s
f S f (x) — S (x))dx = 65 3(F(x) — §(x)) B

14 X=Xg

fork=0,1,..., N — |. Hence _[:’ ST f{x) — $"(x)) dx = 0, and it follows thl

b b
(24) f 5" () " (x) dx = f (5" () dx.
Since 0 < (f"(x) — §"(x))2, we get the integral relationship
b
0< f (7" () ~ §"(x)2 dx

(25) b b b
= f () dx —2 f FU0S" (xydx + f (5"(x))2dx.
a a a

Now the result in (24) is substituted into (25) and the result is

b b
0< f (f"(x)y dx — f (5"(x)?* dx.

This is easily rewritten to obtain the relation (23) and the resuit is proved. ®

The following program constructs a clamped cubic spline interpolant for the datx
points {(xz, yk)}fzo. The coefficients, in descending order, of Sy(x), fork = 0, 1.
.-, N — 1, are found in the (k — 1)st row of the output matrix 5. In the exercises the

reader will be asked to modify the program for the other end-point constraints listed in
Table 5.8 and described in Lemmas 5.2 through 5.5.
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Program 5.3 {Clamped Cubic Spline). To construct and evaluate a clamped cubic
spline interpolant S(x) for the N + 1 data points {(xk, ye)}2-

function S=csfit(X,Y,dx0,dxn)

%Input - X is the 1xm abscissa vector

% - Y is the 1xn ordimate vector

% - dx0 = 8’(x0) first derivative boundary condition
% - dxn = 5'(xn) first derivative boundary condition
%Output - S: rows of S are the coefficients, in descending
% order, for the cubic interpolants

N=length(X)-1;

R=diff(X);

D=diff(Y)./H;

A=H(2:N-1):

B=2*(H(1:N-1)+H(2:N));

C=H(2:N)};

U=A%diff (D) ;

%#Clamped spline endpoint constraints
B{1)=B(1)-H(1}/2;
U(L)=U(1)-3*(D(1)-dx0};
B(N-1)=B(N-1)-H(N)/2;
U{N~-1}=U(N-1}-3%{dxn-D(N));
for k=2:N-1
temp=A(k-1) /B(k-1);
B(k)=B(k)-temp*C(k-1);
U(k)=U(k)-temp*U(k-1);
end

MIN)=U(N-1)/B(N-1};

for k=N-2:-1:1
M(k+1)=(U(k)-C(k) *M(k+2) )} /B (k) ;

end

M{1)=3*(D(1)-dx0) /H(1)-M(2)/2;

M{N+1)=3*(dxn-D{N)) /H(N)-M(N) /2;

for k=0:N-1
S(k+1,1)=(M(k+2)-M(k+1))/(6+%H(k+1));
S(k+1,2)=M(k+1}/2;
S{k+1,3)=D(k+1)-H(k+1)*(2+«M{k+1)+M(k+2)}}/6;
S(k+1,4)=Y (k+1);

end
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Example 5.12. Find the clamped cubic spline that passes through {0,0.00, (1.0 5
(2,2.0), and (3, 1.5) with the first derivative boundary conditions $/(0) = 0.2 and (31 =
—-1.
In MATLAB:

>>X=[0 1 2 3]; Y=[0 ¢.5 2.0 1.5];dx0=0.2; dxn=-1;
>>8=esfit(X,Y,dx0,dxn)
g =

0.4800 -0.1800 0.2000 O

-1.0400 1.2600 1.2800 0.5000
0.6800 -1.8600 0.6800 2.0000

Notice that the rows of S are precisely the coefficients of the cubic spline interpolant- in
equation (18) in Example 5.7. The fo.'owing commands show how to plot the cubic spline
interpolant using the polyval command. The resulting graph is the same as Figure 5.1
>>x1=0:.01:1; yi=polyval(S(1,:),x1-X(1));
>>x2=1:,01:2; y2=polyval(S(2,:) ,x2=-X(2});
55x3=2:.01:3; y3=polyval(S(3,:),x3-X(3));
>>plot(x1.yl,x2,y2,x3,y3,X,Y,’.’) -

Exercises for Interpolation by Spline Functions

1. Consider the polynomial S(x) = ap +a1x + a2x2 +azx3.
(a} Show that the conditions S(1) = 1, §'(1) =0, 5(2) = 2,and §'(2) = 0 producc
the system of equations

a+ a1+ a2+ az=1
ar+2a;+ 3a3=0
ao +2a) +4a; + 8a3 =2
ay +4ar + 12a3 =0

(b) Solve the system in part (a) and graph the resulting cubic polynomial.

2. Consider the polynomial S(x) = ap + aix + a2x? + asx>.
(a} Show that the conditions S(1) = 3, §'(1) = -4, $(2) = 1, and §'(2) = 2
produce the system of equations

a+ a+ o2+ a= 3
aj+2ar+ 3a3=-4
ap+2a) +4a2+ 8as= |
a+4a; +12a3 = 2

{(b) Solve the system in part (2) and graph the resulting cubic polynomial.
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14.

. Determine which of the following functions are cubic splines. Hint. Which, if any, of

the five parts of Definition 5.1 does a given function f (x) not satisfy?

¥—¥x+15x2—%x3 forl <x =<2
@ fE=1"0 wm 2, 11.3
T+Tx—21x +TI f0r25x53
11 — 24x + 18x% — 4x3 forl<x<?2
(b) flx)=
—54 + 72x — 30x2 + 4x3 for2<x <3
18— Bx +26x2— 11,3 forl<x <2
© fw=4 T H -
—70+—2—x—4012+121x3 for2<x <3
13 — 31x + 23x2 — 513 forl<x=<?2
d f)= B
—354+ 5Lx — 22x2 + 3x3 for2<x<3

. Find the clamped cubic spline that passes through the points (-3, 2), (-2, 0}, (1, 3),

and (4, 1) with the first derivative boundary conditions $'(=3} = —1 and $'(4) = 1.

. Find the natural cubic spline that passes through the points (-3, 2), (-2, 0}, (1, 3),

and (4, 1) with the free boundary conditions §”(—3) = 0 and §”(4) = 0.

. Find the extrapolated cubic spline that passes through the points (—3, 2), (-2, 0),

(1, 3), and (4, 1).

. Find the parabolically terminated cubic spline that passes through the points (-3, 2),

(—2,00, (1,3), and (4, 1}.

. Find the curvature-adjusted cubic spline that passes through the points (-3, 2),

{—2.0), (1, 3), and (4, 1) with the second derivative boundary conditions $(—3) =

-1 and 57(4) = 2.

{a) Find the clamped cubic spline that passes through the points {(x¢, f (xk))},:;o.
on the graph of f(x) = x + 2, using the nodes xo = 1/2,x; = 1,x2 = 3/2,
and x3 = 2. Use the first derivative boundary conditions $'(xg) = f'(xo) and
$'(x3) = f'(x3). Graph f and the clamped cubic spline interpolant on the same
coordinate system.

(b) Find the natural cubic spline that passes through the points {(x;, f (xk))}2=0, on
the graph of f(x) = x + % using the nodes xgp = 1/2,x; = 1,x2 = 3/2, and
x3 = 2. Use the free boundary conditions $”(xp) = 0 and §”(x3)} = 0. Graph
f and the natural cubic spline interpolant on the same coordinate system.

(a) Find the clamped cubic spline that passes through the points {(xx, f (xk)}]LO,
on the graph of f(x) = cos(x?), using the nodes xg = 0,x; = /7/2,x2 =
V3772, and x3 = /5m/2. Use the first derivative boundary conditions $'(xo) =
f'(x0) and §'(x3) = f'(x3). Graph f and the clamped cubic spline interpolant
on the same coordinate system.

(b) Find the natural cubic spline that passes through the points {(x, f (xk))]i=0,
on the graph of f(x) = cos(x?), using the nodes xo = 0,x] = /7/2, x5, =
V3772, and x3 = /5772, Use the free boundary conditions 5" (xp) = 0 and
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11,

12,

13.

14.

15.
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§"(x3) = 0. Graph f and the natural cubic spline interpolant on the sams
coordinate system.

Use the substitutions
Yl — X = B + (X — x)
and
Gt = x)° = k) + 3hFune — x) + 3hi(xe — x)2 4 (xx — x)°
to show that when equation (8) is expanded into powers of (x; — x), the coefficients
are those given in equations (16).

Consider each cubic function S (x) over the interval [xg, xz4q].
(a) Give a formula for |, ;"“ Se(x) dx.
Then evaluate j::f S(x) dx in part (a) of
(h) Exercise 10

Show how strategy (i) in Table 5.8 and system (12) are combined to obtain the equa-
tions in Lemma 5.1.

(£) Exercise 11

Show how strategy (iti) in Table 5.8 and system (12) are combined to obtain the

equation in Lemma 5.3.

(2) Using the nodes xp = —2 and x; = 0, show that f(x) = x° — x is its own
clamped cubic spline on the interval [—~2, 0].

(b) Using the nodes xg = —2, x; = 0, and x; = 2, show that f(x) = x3 - v is
its own clamped cubic spline on the interval [—2, 2]. Note. f has an inflection
point at xj.

(e) Use the results from parts (a) and (b) to show that any third-degree polynomial,
f(x) = ap +a1x + aax? 4+ a3x3, is its own clamped cubsic spiine on any closed
interval [a, b].

{d) What, if anything, can be said about the other four types of cubic splines de-
scribed in Lemmas 5.2 through 5.59

Algorithms and Programs

L

The distance dj that a car traveled at time # is given in the follwoing table. Use
Program 5.3 with the first derivative boundary conditions 5'(0) = 0 and $°(8) = 98
and find the clamped cubic spline for the points.

[+
£
[=.8
- -]

Time, 5 0
Distance, d, | 0 | 40 | 160 | 300 | 480

SEC.
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. Modify Program 5.3 to find the (a) natural, (b) extrapolated, (¢} parabolically termi-

nated, or {d) end-point curvature-adjusted cubic splines for a given set of points,

. Use your programs from Problem 2 to find the five different cubic splines for the

points (0, 1), (1,0), (2,0), (3. 1), (4,2), (5,2), and (6, 1), where S'(0) = —0.6,
5'(6) = —1.8, $”(0) = 1, and 5”(6) = —1. Plot the five cubic splines and the points
on the same coordinate system.

. Use your programs from Problem 2 to find the five different cubic splines for the

points (0,0), (I,4), (2.8), (3,9, (4,9), (5,8) and (6, 6), where S'(0) = 1,
§'(6) = —2. §”(0) = 1, and §”(6) = —1. Plot the five cubic splines and the points
on the same coordinate system.

. The accompanying table gives the hourly temperature readings (Fahrenheit) during

a 12-hour period in a suburb of Los Angeles. Find the natural cubic spline for the
data, Graph the natural cubic spline and the data on the same coordinate system. Use
the natural cubic spline and the results of part (a) of Exercise 12 to approximate the
average temperature during the 12-hour period.

Time, a.m. | Degrees || Time, a.m. | Degrees
4 58 7 57
2 58 8 58
3 58 9 60
4 58 10 64
5 57 11 67
6 57 Noon 68

Approximate the graph of f{x) = x — cos(x?) over the interval {—3,3] using a
clamped cubic spline.

§,4 Fourier Series and Trigonometric Polynomials

Scientists and engineers often study physical phenomena, such as light and sound, that

)

‘have a periodic character. They are described by functions f(x) that are periodic,

glx+ Py=g(x) for all x.

The number P is called a period of the function.

(2)

It will suffice to consider functions that have period 2. If g(x) has period P, then

fi(x) = g(Px/2m) will be periodic with period 2. This is verified by the observation

Px

2y =g(n+P)= (— = )
flx+ H)“g(g-i- )—g zn)—fx-
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4
' :

=27 L¢] 27 dr
Figure 5.17 A continuous function f(x) with period 2.

y
b
y=ftx) |
T —
: ! .‘ ! i + x
a=i f 5 ez Iy bL=b

Figure 5.18 A piecewise continuous function over [a, b].

Her_lceforth in this section we shall assume that f(x) is a function that is pericdic with
period 2z, that is,

3) flx+2m) = f(x) for all x.

The graph y = f(x) is obtained by repeating the portion of the graph in any interval

of length 2, as shown in Figure 5.17.
_ Examplf:s of functions with period 27 are sin(jx) and cos(jx), where Jis
integer. This raises the following question: Can a periodic function be represented

by the sum of terms involving a; cos(fx) and b ; sin(jx)? We wili soon see that the
answer is yes.

Deﬁl:utlon 5.2 (Pieceyvise Continuous). The function f(x) is said to be piecewise
continuous on [a, b] if there exist values fo, 1), ..., 1x witha = 15 < n o< ---
tx = b such that f(x) is continuous on each openintervalt; | < x < t; fori =1, .

..., K, and f(x) has left- and right-hand limits at each of the poi ituati
e nts ;.
is illustrated in Figure 5.18. points {1 The Slluatl(’:
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Definition 5.3 (Fourier Series). Assume that f(x) is periodic with period 27 and
that f(x) is piecewise continuous on [-7, 7]. The Fourier series S{x) for f(x)is

o
ag - . .
(1 S(x)= - + j§=l(aj cos(jx) + b sin(jx)).

where the coefficients a; and b; are computed with Euler’s formulas:

1 m
() aj=; fx)cos(jxydx for j=0,1, ...

batid

and

1 T
(&) b;:;[ fix)sin(jx)dx for j=1,2,.... A

The factor % in the constant term ag/2 in the Fourier series (4) has been introduced
for convenience so that ag could be obtained from the general formula (5) by setting
i = 0. Convergence of the Fourier series is discussed in the next result.

Theorem 5.5 (Fourier Expansion). Assume that S(x) is the Fourier series for f(x)
over [—7, 1. If f'(x) is piecewise continuous on [~7, 7] and has both a left- and
right-hand derivative at each point in this interval, then S(x) is convergent forall x €
[—, m]. The relation

S(x) = f(x)

holds at all points x € [—=, 7], where f(x) is continuous. If x = a is a point of
discontinuity of f, then

fla )+ fla™)

S(a) = 3

where f(a~)and f(a*)} denote the left- and right-hand limits, respectively. With this
understanding, we obtain the Fourier expansion:

- ap | = . .
17) flx) = 5 + ;(aj cos(jx) + b sin(jx)).

A brief outline of the derivation of formulas (5) and (6) is given at the end of the
section.
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Example 5.13. Show that the function f(x) = x/2 for —n < x < , extended periodi-
caliy by the equation f(x + 2r) = f(x), has the Fourier series representation

20 1yi+] : .
f(x)=z( 2) L. . sin(2x)  sin(3x)

sin(jx})=sin(x) - — 4+ ——~ _ ...,

Using Euler’s formulas and integration by parts, we get

xsin(jx) cos(jx)|®

f —cos(fx)dx =

21j 272 e
for j=1,2,3,...,and
1 /™ x —x cos(jx) sm(_;x) (~1)J“H
b= — = dx = -
i Jr[,, 2s1n(1x) x = ) + 27 ;
for j = 1,2,3,.... The coefficient ag is obtained by a separate calculation:

1 ™ x d 2w
“=z f 1=l
These calculations show that all the coefficients of the cosine functions are zeroThe
graph of f(x) and the partial sums

=0

sin(2x)

S2(x) = sin(x) —

S3(x) = sin(x) — S020) | sin(3x)

2 3
and
in(2 003 i
S4{x) = sin{x) — Sm(2 x) + smg x) _ S‘“i X}
are shown in Figure 5.19. _

We now state some general properties of Fourier series. The proofs are left a-
exercises,

Theorem 5.6 (Cosine Series). Suppose that f(x) is an even function; that is, sup-
pose f(~x) == f(x) holds for all x. If f(x) has period 2 and if f(x) and f'(x) are
piecewise continuous, then the Fourier series for f(x) involves only cosine terms:

(8) flxy= + Za, cos{fx),

j=1

where

N aj = %j{; f(x)cos(jx)dx for j=0, 1,
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¥ y= S4(x)

1.5 ¥ = 8;(0) v=f(x)

~1.5

Figure 5.19 The function f(x) = x/2 over [~m, #] and its trigono-
metric approximation Sz(x), S3(x) and Ss(x).

Theorem 5.7 (Sine Series). Suppose that f(x) is an odd function; that is, f(—x) =
—f(x) holds for all x. If f(x)} has period 2 and if f(x) and f'(x) are piecewise
continuous, then the Fourier series for f(x) involves only the sine terms:

(10) flx)= ij sin(jx),
j=1
where
(1D b; = %f f)sin(jx)dx  for j =1, 2,
0

Example 5.14. Show that the function f(x) = |x| for -7 < x < m, extended periodi-
cally by the equation f(x + 2x) = f(x), has the Fourier cosine representation

T cos((2j — 1x)
fo=7%-= Z

2i—1)?
2 N 13 )
T 4 cos{3x) cos(5x
=5-——(c0()+ 32 + 5 +)

The function f(x) is an even function, s0 we can use Theorem 5.6 and need only to
compute the coefficients {a;}:
2 2xsin(jx)  2cos{jx) |
aj=-—f xcos(fx}dx = al _(J )+ {x)
rJo i
_ 2cos(jm)—2  2((-1)) - D)

mj? - mj?

for j=1,23,....
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Since ({(—1}/ — 1) = 0 when j is even, the cosine series will involve only the odd terms.

The odd coefficients have the pattern
-4 —4 -4
W= BT BT

The coefficient gy is obtained by the separate calculation

Therefore, we have found the desired coefficients in (12). ]

Proof of Euler’s Formulas for Theorem 5.5.  The following heuristic argument as-
sumes the existence and convergence of the Fourier series representation. To deter-
mine ag, we can integrate both sides of (7) and get

T b4 o0
fix)dx = f (%0— + Z(aj cos(jx}+ b; sin(jx))) dx
- il j'_—l

g o0 b 4 jos]
(13 = a—°dx+2ajf cos(jx)dx + bjf sin(jx) dx
j=1 - i=!

—x -

Justification for switching the order of integration and summation requires a detailed
treatment of uniform convergence and can be found in advanced texts. Hence we have

shown that
1 b4
= — x)dx.

(14) w=5 [ 1@

To determine a,,, we let m > 0 be a fixed integer, multiply both sides of (7) by
cos{mx), and integrate both sides to obtain

15
( ) T ap . 4 o0 hio )
f(x}cos(mx)dx = > f cos(mx)dx + Zaj /r cos{jx) cos(rmx)d.
x - = -

00 b4
+ ij / sin(jx) cos(mx) dx.
j=1 -

Equation (15) can be simplified by using the orthogonal properties of thc. n’igonometflic
functions, which are now stated. The value of the first term on the right hand side
of (15} is

ag [~ _ap sin{mx) =
(16) — cos(mx)dx = T om e

-

=0
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The value of the term involving cos( Jx)cos(mx) is found by using the trigonometric
identity

(an cos(fx) cos(mx) = %cos((j +m)x) + %cos((j —m)x).

When j # m, then (17) is used to get

Fid n
aj[ cos(jx)cosimx)dx = %a;/ cos((j + m)x)dx
(18) - -

1 b
+§ajf cos({j —m)x)dx=0+0= 0.
m

When j = m, the value of the integral is

(19) amf cos(jx)cos(mx)dx = ap,7.

-

The value of the term on the right side of (15) involving sin{jx) cos(mx) is found
by using the trigonometric identity

(20) sin(jx) cos(mx) = % sin{(j + m)x) + % sin((j — m)x).

For all values of j and m in (20), we obtain

T

bjf sin(jx) cos(mx)dx = %bjf sin((j +m)x) dx
@) o -

1 b
+§bjf $in{(j —m)x)dx =0+0=0.
-7

Therefore, using the results of (16), (18), (19}, and {21) in equation (15), we conclude
that

i 4

{22) Ny = flx)ycos(mx)dx, form=1, 2, ....

-

Therefore, Euler’s formula (5) is established. Euler's formula (6) 1s proved
sim{iarly. .

Trigonometric Polynomial Approximation
Definition 5.4 (Trigonometric Polynomiaf). A series of the form

M
3 Tas(x) = 529 + ;(aj cos(jx) + b; sin(jx))

is called a trigonometric polynomial of order M. A
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Theorem 5.8 (Discrete Fourier Series). Suppose that {(x, ¥j )} o are N+1 ot
where y; = f(x;), and the abscissas are equally spaced:

2jm
24 R 7
(24) X; T+

If f(x) is periodic with period 27 and 2M < N, then there exists a trigonometric
polynomial Tj(x) of the form (23) that minimizes the quantity

for j=0,1, ..., N.

(25) il(f(xk) — Tar (i)
k=
The coefficients a; and b; of this polynomial are computed with the formulas
) N
(26) aj = ﬁ’;f(xk) cos(jxi) for j=0,1, ..., M,
and
) N
27 bj = WZ (xe)sin(jxg) for j=1,2, ..., M.

Although formulas (26) and (27) are defined with the least-squares procedure, they
can also be viewed as numerical approximations to the integrals in Euler’s formulas (5)
and (6). Euler’s formulas give the coefficients for the Fourier series of a continuous
function, whereas formulas (26) and (27) give the trigonometric polynomial coeffi-
cients for curve fitting to data points. The next example uses data points generated by
the function f(x} = x/2 at discrete points. When more points are used, the trigono-
metric polynomial coefficients get closer to the Fourier series coefficients.

Example 5,15, Use the 12 equally spaced points x; = — + kx /6, fork =1,2, ..., 12,
and find the mgonometnc polynomial approximation for M = 5 to the 12 data pomts
{(xk, f (xk))}k_l, where f(x) = x/2. Also compare the results when 60 and 360 points
are used and with the first five terms of the Fourier series expansion for f(x) that is given

in Example 5.13.
Since the periodic extension is assumed, at a point of discontinuity, the function value

f () must be computed using the formula
SO+ fat)  mj2—n/2

2 - 2
The function f(x) is an odd function; hence the coefficients for the cosine terms are all
zero (i.e., a; = Ofor all j). The trigonometric polynomial of degree M = 5 involves only
the sine terms, and when formula (27) is used with (28), we get
T5 (x) = 0.9770486 sin(x) — 0.4534498 sin(2x} + 0.26179938 sin(3x)

— .1511499 sin(4x) + 0.0701489 sin(5x).

={.

(28) Sy =

(29}
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L5F y=Tsx) o
10

05+

-3 -2 =1 1 2 3

5

o =15

Figure 520 The trigonometric polynomial T5(x) of degree
M =35, based on 12 data points that lie on the lne y = x/2.

Table 59 Comparison of Trigonometric Polynomial Coeffictents for
Approximations to f{x} = x/2 over [-x, 7]

Trigonometric polynomial ceefficients Fourier series
12 points 60 points 360 points coefficients
by 0.97704862 0.99908598 0.99997462 Lo
by | —0.45344984 —0.49817096 —0.49994923 -0.5
b3 0.26179939 0.33058726 0.33325718 0.33333333
by | —0.15114995 —0.24633386 —0.24989845" -0.25
bs 0.07014893 0.19540972 0.19987306 0.2

The graph of T5(x) is shown in Figure 5.20.

The coefficients of the fifth-degree trigonometric polynomial change slightly when the
number of interpolation points increases to 60 and 360. As the number of points increases,
they get closer to the coefficients of the Fourier series expansion of f(x). The results are

compared in Table 5.9.

The following program constructs matrices A and B that contain the coefficients a;
and b}, respectively, of the trigonometric polynomiat (23) of order M.
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Program 5.4 (Trigonometric Polynomials). To construct the trigonometric poly-
nomial of order M of the form

M
P(x) =2+ (ajcos(jx) + b; sin(jx))
=

based on the N equally spaced values x; = —& +2mk/N, fork =1,2,..., N. The
construction is possible provided that 2M + 1 < N.

function [A,Bl=tpcoeff(X,Y,M)

%Input - X is a vector of equally spaced abscissas in [-pi.pil
% - Y is a vector of ordinates

% - M ie the degree of the trigonmometric polynomial
%Output - A is a vector containing the coefficients of cos(jx)
% - B is a vector containing the coefficients of sin(jx)

N=length(X)-1;
max1=fix{((N-1)/2);

if M>maxl
M=max]i;
end
h=zeros(1,M+1);
B=zeros(1,M+1);
Yends={(Y{(1)+Y(N+1))/2;
Y(1)=Yends;
Y(N+1)=Yends;
A(1y=sum(Y);
for j=1:M
A(j+1)=cos(j*X)*Y’;
B(j+1)=sin{j*X)*Y’;
end
A=2xA/N;
B=2+B/N;
A(1Y=4(1)/2;

The following short program will evaluate the trigonometric polynomial P(x) of

order M from Program 5.4 at a particular value of x.
function z=tp(A,B,x,M)
z=A(1);
for j= 1:M

z=z+A(j+1)*cos (J*x)+B(j+1)*sin(j*x);
end
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For example, the following sequence of commands in the MATLAB command
window will produce a graph analogous to Figure 5.20.
>>x=-pi:.01:pi;
>>y=tp(4,B,x,M};
>>plot(x,y,X,Y,’0")

Exercises for Fourier Series and Trigonometric Polynomials

In Exercises 1 through 5, find the Fourier series representation of the given function.
Hint. Follow the procedures outlined in Examples 5.13 and 5.14. Graph each function
and the partial sums S7(x), S3(x), and S4{x) of its Fourier series representation on the
same coordinate system (see Figure 5.19).

1. f(x)=[

—1 for —m<x =<0 Z+x for -r<x<0

2; -_—
1 for0<x<m f& [%—x for0=x<nm
-1 for F <x<m
0 for —w<x<0 ]
. = - 4. = =Z T
37 Ix for0<x<m F&) ! for—2-<x-;7

=1 for —m <x < ¢

- —x for ——J'rﬁx<_2—"

5 f(x)= x for F=x<3%
n—x for % <X <
6. In Exercise 1, set x = 7/2 and show that

L 4 1 1 1
e [ i

4 35 7
7. In Exercise 2, set x = 0 and show that
AU WS N
g 7 3 st

8. Find the Fourier cosine series representation for the periodic function whose defini-
tion on one period is f(x) = x2/4 where -7 < x < 7.

9. Suppose that f(x) is a periodic function with period 2 P; thatis, f(x +2P) = f(x)
for all x. By making an appropriate substitution, show that Euler’s formulas (5) and
(6) for f are

1 P
a0=F _Pf(x)dx

1 fF '
6= _Pf(x)cos(i?-) dx for j=1,2, ...
by = Pf(x)sin JEXN iy for j=1,2
=5/, 5 i=nL2 ..
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In Exercises 10 through 12, use the results of Exercise 9 to find the Fourier series rep
resentation of the given function. Graph f(x), S4(x), and S¢(x) on the same coordinat

system.
—1 for _3 <x < —1 Table 5.10 Data for Problem 5
10. For) = 0 for -2<x<0 1. fox) = ¢ 1; )
. flx)= | for 0<zx <2 s f)=¢1Ix for —l1<x< Time, p.m. Degrees Time, a.m. Degrees
. I for 1<x<3
1 66 1 58
12. f(x)=—x2+9 for ~3<x <3 2 66 2 58
3 65 3 58
13. Prove Theorem 5.6. 2 64 M P
14. Prove Theorem 5.7. 5 63 5 57
6 63 6 57
7 62 7 57
. 8 61 8 58
Algorithms and Programs . o S 58
10 60 10 64
1. Use Program 5.4 with N = 12 points and follow Example 5.15 to find the trigono 11 59 11 67
metric polynomial of degree M = 5 for the equally spaced points {(x;, f (xk))}iir Midnight 58 Noon 68
where f(x) is the function in (a) Exercise 1, (b) Exercise 2, (¢) Exercise 3, and
(d) Exercise 4. In each case, produce a graph of f(x), Ts(x}, and {(x¢, f (D)2,
on the sarme coordinate system.
2. Use Program 5.4 to find the coefficients of T5(x) in Example 5.15 when first 60 and
then 360 equally spaced points are used.
3. Modify Program 5.4 so that it will find the trigonometric polynomial of period 2P =
b — a when the data points are equally spaced over the interval [a, b].
4, Use Program 5.4 to find Ts(x) for (a) f{(x} in Exercise 10, using 12 equally spaced Table 5.11 Data for Problem 6
data points, and (b) f(x) in Exercise 12, using 60 equally spaced data points. In eacl
case, graph Ts(x) and the data points on the same coordinate system. Calendar date | Average degrees
5. The temperature cycle (Fahrenheit) in a suburb of Los Angeles on November 8 i Jan. 1 -14
given in Table 5.10. There are 24 data points. Jan. 29 -9
(a) Find the trigonometric polynomial F7(x). _ :;:: 222 1;
(b) Graph T7(x) and the 24 data points on the same coordinate system. Apr..23 35
(¢) Repeat parts (a) and (b) using temperatures from your locale. May 21 52
June 18 62
6. The yearly temperature cycle (Fahrenheit) for Fairbanks, Alaska, is given in Ta July 16 63
ble 5.11. There are 13 equally spaced data points, which correspond to a measuremen Aug. 13 58
every 28 days. Sept. 10 50
(a) Find the trigonometric polynomial Ts(x). S:, 35 31*‘2‘
(b} Graph Ts(x) and the 13 data points on the same coordinate system. Dec 3 -5




Numerical Differentiation

Formulas for numerical derivatives are important in developing algerithms for solv-
ing boundary value problems for ordinary differential equations and pfartial fliffereq-
tial equations (see Chapters 9 and 10). Standard examples of numencal differenti-
ation often use known functions so that the numerical approximation can be com-
pared with the exact answer. For illustration, we use the Bessel function Jy(x), whose
tabulated values can be found in standard reference books. Eight equally spa;ed
points over [0, 7] are (0, 0.0000), (1, 0.4400), (2, 0.5767}, (3,0.3391), (4, —0.0660).

¥ y
0.6+ 061
4
4 LY
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02 0.2
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(a) by

Figure 6.1 (a) The tangent to pa(x) at (2, 0.5767) with slope p5(2) = —0.0505.
(b) The tangent to py(x) at (2, 0.5767) with slope pa{2) = —0.0618.
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(5, —0.3276), (6, —0.2767), and (7, —0.004). The underlying principle is differentia-
tion of an interpolation polynomial. Let us focus our attention on finding J{(2). The
interpolation polynomial p;(x) = —0.0710 + 0.6982x — 0.1872x? passes through the
three points (1, 0.4400), (2, 0.5767), and (3, 0.3391) and is used to obtain J{(2) =
P5(2) = —0.0505. This quadratic polynomial p;(x) and its tangent line at (2, /1(2))

~.are shown in Figure 6.1(a). If five interpolation points are used, a better approximation

can be determined. The polynomial ps{x) = 0.4986x40.011x2—0.0813x340.0116x*

“:passes through (0, 0.0000), (1,0.4400), (2,0.5767), (3, 0.3391), and (4, —0.0660)

and is used to obtain J{(2) = p,(2) = —0.0618. The quartic polynomial p4(x) and its
tangent line at (2, J1(2)) are shown in Figure 6.1(b). The true value for the derivative
is J{(2) = —0.0645, and the errors in pz(x) and p4(x) are —0.0140 and —0.0026,
respectively. In this chapter we develop the introductory theory needed to investigate
the accuracy of numerical differentiation.

Approximating The Derivative

The Limit of the Difference Quotient

We now turn our attention to the numerical process for approximating the derivative
of f(x):

vy FEHR) ~ f(x)
n f(x)_’m—h—~.

The method seems straightforward; choose a sequence {#;} so that #; — 0 and com-
pute the limit of the sequence:

flx+ho) = fx)

A Dy = he

for k=1,2,...,n, ....

The reader may notice that we will only compute a finite number of terms D, D5, ...,
Dy in the sequence (2), and it appears that we should use Dy for our answer. The
following questipn is often posed: Why compute Dy, Dj, ..., Dy_1? Equivalently,
we could ask: What value s v should be chosen so that Dy is a good approximation to

the derivative f'(x)? To answer this question, we must look at an example to see why

there is no simple solution.

For example, consider the function f(x) = e* and use the step sizes A = 1,
1/2, and 1/4 to construct the secant lines between the points (0, 1) and (h, f(k)),
respectively. As & gets small, the secant line approaches the tangent line as shown in
Figure 6.2. Although Figure 6.2 gives a good visualization of the process described
in (1), we must make numerical computations with # = 0.00001 to get an acceptable
numerical answer, and for this value of & the graphs of the tangent line and secant line
would be indistinguishable.
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¥ v =flx)

: —L i L— x Figure 6.2 Several secant line for
000 025 050 075 100 = e

Table 6.1 Finding the Difference Quotients Dy = (¢! — )/ iy

hy fe = fCl+hy) fi—e Dy = (fr —e1/ by
k=01 3004166024 0.285384196 2.858841960
hy =0.01 2.745601015 0.027319187 2731918700
By =0.001 2.721001470 0.002719642 2.719642000
hy =0.0001 2.718553670 0.000271842 2.718420000
ks = 0.00001 2.718309011 0.000027183 2.718300000
hg =108 2718284547 0.000002719 2.719000000
hy=10"7 2.718282100 0.000000272 2.720000000
hg=10""% 2.718281856 0.000000028 2.800000000
ho=10"7 2.718281831 0.000000003 3.000000000
hig=10"10 2.718281828 0.000000000 0.000000000

Example 6.1. Let f(x) = ¢* and x = 1. Compute the difference quotients X using the

siep sizes by = 10-* fork = 1,2, ..., 10. Carry out nine decimal places in all calculations.
A table of the values F(1 + ki) and (f(1 + he) — F(1))/ Ay that are used in the
computation of Dy, is shown in Table 6.1. L]

The largest value #; = 0.1 does not produce a good approximation D =~ f'(1),
because the step size k} is too large and the difference quotient is the slope of the secant
line through two points that are not close enough to each other. When formula (2) is
used with a fixed precision of nine decima! places, hg produced the approximation
Dg = 3 and hp produced D)g = 0. If hy is too small, then the computed function
values f(x + ki) and f{(x) are very close together. The difference f(x + hy) — f(x)
can exhibit the problem of loss of significance due to the subtraction of quantities
that are nearly equal. The value #;o0 = 1070 is so small that the stored values of
F{x+hp) and f(x) are the same, and hence the computed difference quotient is zero.
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In Example 6.1 the mathematical value for the limit is f'(1) &~ 2.718281828. Observe
that the value hs = 1077 gives the best approximation, Ds = 2.7183.

Example 6.1 shows that it is not easy to find numerically the limit in equation (2).
The sequence starts to converge to e, and Ds is the closest; then the terms move away
from ¢. In Program 6.1 it is suggested that terms in the sequence {Dy} should be
computed until | Dy41— Dy| = | Dy — Dy—1|. This is an attempt to determine the best
approximation before the terms start to move away from the limit. When this criterion
is applied to Example 6.1, we have 0.0007 = |Dg — Ds| > [Ds — D4| = 0.00012;
hence Ds is the answer we choose. We now proceed to develop formulas that give a
reasonable amount of accuracy for larger values of A.

The Central-difference Formulas

If the function f(x) can be evaluated at values that li¢ to the left and right of x, then
the best two-point formula will involve abscissas that are chosen symmetrically on both
sides of x.

Theorem 6.1 (Centered Formula of Order 0 (k?)). Assumethat f € C*[a, b] and
thatx — A, x,x + h € [a, b]. Then

h) — —h
) fioy~ LEID TR

Furthermore, there exists a number ¢ = ¢(x) € [a, b] such that

h) — —h
) fuwxﬂx+)%f” ) 4 Euune(f, ).

where

B2 3 (c)

_ 2
3 = Oh°).

Eirunc(fa h) = —

The term E( £, k) is called the truncation error.

Proof.  Start with the second-degree Taylor expansions f(x) = P2(x) + E2(x), about
x,for f(x +h)and f(x — h):

FRWR  fO ek
 TEE

(5 fa+h)=f)+ fon+

and

FARCI Ll el G

(6) fle—h = fx)— flxh+ > 3
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After (6) is subtracted from (5}, the result is

a3) (3} 3
M feth = fa- ) =25 on+ LD

Since f(x) is continuous, the intermediate value theorem can be used to find a
value ¢ so that

(3) (3)
(8) e '; S () - f(3)((,‘).

This can be substituted into (7) and the terms rearranged to yield

fa+h) = flx=h) fOr)n?

9 floo =

2h 3!
The first term on the right side of (9) is the central-difference formula (3}, the second
term is the truncation error, and the proof is complete. .

Suppose that the value of the third derivative f©}(c) does not change too rapidly;
then the truncation error in (4) goes to zero in the same manner as B2, which is ex-
pressed by using the notation O (h%). When computer calculations are used, it is not
desirable to choose h too small. For this reason it is useful to have a formula for
approximating f”(x) that has a truncation error term of the order 0.

Theorem 6.2 (Centered Formaula of Order O (#%)). Assume that f € C3[a, b] and
thatx — 2h, x — h, x,x + h, x + 2h € [a, b]. Then

, ~fx+ 2R +8f(x +h) —BF(x —h) + f(x —2h
10 oo LEHWASCAN 8GR S 2

Furthermore, there exists a number ¢ = ¢(x) € [a, b] such that

(15
—fx+2R) +8f(x+h)—8F(x — h) + f{x —2h)

fix) = 7 + Eunc(f. A1

where

ARG
30

Proof. One way to derive formula (10) is as follows. Start with the difference betwcen
the fourth-degree Taylor expansions f(x} = Ps(x) + E4(x), about x, of f(x + k) and
Sl —hy

Equnc(fi h) = = OHY).

213 (x)h3 4 2O e’
3! 5!

(12) Flx+hy— f(x—h)=2f (x)h +
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Then use the step size 24, instead of /4, and write down the following approximation:

16f D) 64O ()’
C T TR
Next multiply the terms in equation (12) by 8 and subtract (13} from it. The terms
involving £ (x) will be eliminated and we get
=fx+2h)+8f(x +h) ~8f(x —h)+ f(x — 2h)
(14) S (o) — 64 £9) 5
= 12y con + 08200 64 O e

If £®(x) has one sign and if its magnitude does not change rapidly, we can find a
vaiue ¢ that lies in {x — 2k, x + 2k] so that
(5) 165 (e1) — 64O cy) = —48 1),
After (15) is substituted into (14) and the result is solved for f'(x), we obtain
— — _ — 5
16) ftr) = S +2n)+8f(x+h)—8f(x —h) + flx —2h) + fe )(c)h“'

(13)  Fxr+2h)— fx —2B) =4f'(Oh +

12k 30
The first term on the right side of (16) is the central-difference formula (10), and
the second term is the truncation error, the theorem is proved. .

Suppose that | f (5)(c)| is bounded for ¢ € [a, b]; then the truncation error in an
goes o zero in the same manner as A*, which is expressed with the notation O (h*).
Now we can make a comparison of the two formulas (3) and (10). Suppose that f(x)
has five continuous derivatives and that | £ (c)| and | £ (¢)] are about the same.
Then the truncation error for the fourth-order formnla (10) is @(h*) and will go to
zero faster than the truncation error O¢42) for the second-order formula (3}. This
permits the use of a larger step size.

Example 6.2. Let f(x) = cos(x)
{a) Use formulas (3) and (10) with step sizes A = 0.1, 0.01, 0.001, and 0.0001, and cal-
culate approximations for f’(0.8). Carry nine decimal places in all the calculations.
(b) Compare with the true value £'(0.8) = — sin(0.8).
ta) Using formula (3) with & = 0.01, we get

FO81) — f(0.79)  0.689498433 — 0.703845316
0.02 0.02
Using formula (10) with & = (1.01, we get

o~ L0 +8 f(O.st)) ;—28f(0-79) + £(0.78)

~ —0.682221207 + 8(0.689498433) — 8(0.703845316) + 0.710913538
0.12

F'(0.8) = a2 —0.717344150.

"z —0.717356108.
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Table 6.2 Numerical Differentiation Using Formulas (3) and (10)
Step Approximation by Error using Approximation by Error using
size’ formula (3) formula (3) formula (10) formula (10)
0.1 —0.716161095 —0.001194996 —0.717353703 —0.000002389.
0.01 —0.717344150 —0.000011941 —0.717356108 0.000000017
0.001 —0.717356000 —0.000000091 -0.717356167 0.00000007 6
0.0001 —0.717360000 —0.000003909 —0.717360833 0.00000474 2

(b) The error in approximation for formulas (3) and (10) turns out to be —0.000011941 znd
0.000000017, respectively. In this example, formula (10) gives a better approximation to
F'(0.8) than formula (3) when h = 0.01. The error analysis will illuminate this exampie
and show why this happened . The other calculations are summarized in Table 6.2. n

Error Analysis and Optimum Step Size

An important topic in the study of numerical differentiation is the effect of the com-
puter’s round-off error. Let us examine the formulas more closely. Assume that a
computer is used to make numerical computations and that

Sflxo—hy=y_1+ey and flxog+h)=y +ei,

where f(xo —h) and f(xg+ k) are approximated by the numerical values y_| and y,
and e_) and ¢ are the associated round-off errors, respectively. The following res uit
indicates the complex nature of error analysis for numerical differentiation.

Corollary 6.1(a). Assume that f satisfies the hypotheses of Theorem 6.1 and use the
computational formula

Txg) A 2L Y1
(a7 flxo) ™ =———.
The error analysis is explained by the following equations:
(18) Fiaoy = 2= LB
2h
where

E(f, h) = Eround(fs h) + Etrunc(f, h)
(19) _ei—ey RO
T2 6

where the total error term E( f, k) has a part due to round-off error plus a part due
truncation error.

1
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Corollary 6.1(b). Assume that f satisfies the hypotheses of Theorem 6.1 and that nu-
merical computations are made. If le—| < €, le/| < €.and M = maxg<;<p{| f ()|},
then

€  Mh?
(20 E ,h < — —
) ECf R = 7 + 6

and the value of A that minimizes the right-hand side of (19) is

1/3
i21) h= (3—6) .
M

When £ is small, the portion of (19) involving (e, — €_1)/2h can be relatively
large. In Example 6.2, when 2 = 0.0001, this difficulty was encountered. The round-
off errors are

£(0.8001) = 0.696634970 + ¢,
F(0.7999) = 0.696778442 + e_;

where ¢; = —0.0000000003
where e_; = 0.0000000005.

The truncation error term is

_K2FO) in(0.
___% ~ —(0.0001)? (ﬂ?) ~ 0.000000001.

The error term E( £, k) in (19) can now be estimated:

—0.0000000003 — 0.0000000005
E(f, h) = 0.0002 — 0.000000001

= —0.000004001.

Indeed, the computed numerical approximation for the derivative using A = (0.0001
is found by the calculation

F1(0.8) ~ L(OB00D) — £(0.7999) _ 0.696634970 — 0.696778442
' 0.0002 = o
= —0.717360000,

and a loss of about four significant digits is evident. The error is —0.000003909 and
this is close to the predicted error, -0.000004001.

When formula (21} is applied to Example 6.2, we can use the bound | f3 (x)| <
|sin(x)| < 1 = M and the value ¢ = 0.5 x 10~ for the magnitude of the round-

off error. The optimal value for k is easily calculated: & = (1.5 x 10-%/1)!/3 =

0.001144714. The step size & = 0.001 was closest to the optimal value 0.001144714
and it gave the best approximation to f'(0.8) among the four choices involvin% for-
mula (3) (see Table 6.2 and Figure 6.3).

An error analysis of formula (10) is similar. Assume that a computer is used to
‘make numerical computations and that f(xg + kh) = y; + €.
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Error bound
4x 1076 F
2x 1078
Figure 6.3 Finding the optimum
step size & = 0.001144714 when

: L k  formula (21) is applied to f(x) =
0.002 0.004 cos(x} in Example 6.2.

Corollary 6.2(a). Assume that f satisfies the hypotheses of Theorem 6.2 and use the
computational formula

—y2+8y1— 8y +yoo
12k '

(22) f'(xg) =

The error analysis is explained by the following equations:

-y2+8y1 —8y_1+y_
12k

(23) f'(xp) = +E(f, h)

where
E(f- h) = Emund(ﬁ h) + Etmnc(f- h)
(24) _ -+t 8e) — 8e_1 +¢e_2 + h4f(5)(c)
- 12h 30

where the total ervor term E(f, h) has a part due to round-off error plus a part due to
truncation error.

Corollary 6.2(b). Assume that f satisfies the hypotheses of Theorem 6.2 and that
numerical computations are made. If |ex| < € and M = max, <z<p{| f(x)|). ther

E(f, byl < 25 4+ ME
{23) 1E(f, )I—ﬁ 30

and the value of 4 that minimizes the right-hand side of (25) is

45¢ 175
26) h=(m) .
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Error bound

4x 1077 |

2x 1077 b

1 1 . h
0.02 0.04 0.06
Figure 6.4 Finding the optimum step size
h = 0.022388475 when formula (26) is applied to
J{x) = cos(x) in Example 6.2.

When formula (25) is applied to Example 6.2, we can use the bound | Oy <
[sin(x)| < | = M and the value ¢ = 0.5 x 10~? for the magnitude of the round-
off error. 'The optimal value for 4 is easily calculated: # = (22.5 x 1070 /4)1/5 =
0.022388475. The step size & = 0.01 was clpsest to the optimal value 0.022388475,
and it gave the best approximation to f7(0.8) among the four choices involving for-
mula (1() (see Table 6.2 and Figure 6.4).

We should not end the discussion of Example 6.2 without mentioning that numer-
ical differentiation formulas can be obtained by an alternative derivation. They can
he derived by differentiation of an interpolation polynomial. For example, the La-
grange form of the quadratic polynomial pp(x) that passes through the three points
(1.7, c0s{0.7)), (0.8, c0s(0.8)), and (0.9, cos(0.9)) is

pa(x) = 38.2421094(x — 0.8)(x ~ 0.9) — 69.6706709(x — 0.7)(x — 0.9
+ 31.0804984(x — 0.7)(x — 0.8).

il polynomial can be expanded to pbtain the usual form:

pa(x) = 1046875165 — 0.159260044x — 0.348063157x2.
/A ~i'nilar computation can be used to obtain the quartic polynomial Pa(x) that passes
threugh the points (0.6, cos(0.6)), (0.7, cos(0.7)), (0.8, c0s(0.8)), (0.9, cos(0.9)), and
tho cos(1.00):

pa(x) = 0.998452927 + 0.009638391x — 0.52329134] x2
+0.026521229x> + 0.028981100x%,
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¥ =p4(x)
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Figure 6.5 (a) The graph of y = cos(x) and the interpolating polynomial p(x} usc!
to estimate f'(0.8) = p{(0.8) = ~0.716161095. (b) The graph of y = cos(x) and the
interpolating polynomial pa(x) used to estimate f'{0.8) =~ p,(0.8) = —0.717353703.

When these polynomials are differentiated, they produce p}(0.8) = —~0.716161095
and p"t(O.S) = —0.717353703, which agree with the values listed under h = 0.1 in
Table 6.2. The graphs of pa(x) and p4(x) and their tangent lines at (0.8, cos(0.8) are
shown in Figure 6.5(a) and (b), respectively.

Richardson’s Extrapelation

In this section we emphasize the relationship between formulas (3) and (10). [
fi = Fflxx) = flxg + kh), and use the notation Do(h) and Dg(24) to denot. il
approximations to f’(xo) that are obtained from (3) with step sizes % and 24, respec
tively:

(27 f(x0) = Do(h) + Ch?
and
(28) F/(x0) = Dp(2h) + 4Ch>.,

If we multiply relation (27) by 4 and subtract relation (28) from this product. the the
terms involving C cancel and the result is

Hh-Ffn_ fo-Sfo

29 3f'(xo) = 4Dg(hy — Do(2h) = > =

Next solve for f'(xg) in (29) and get

4Dgth) - Do(2h)y _ ~fa+8fi —8f 14+ f2
3 - 12k )

The last expression in {30) is the central-difference formula (10}.

(30) f'(xp) =
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Example 6.3. Let f(x) = cos(x). Use (27) and (28) with A = 0.01, and show how the
lincar combination (4Dg{(h) — Dy{2k))/3 in (30Q) can be used to obtain the approximation
to f'(0.8) given in (10). Carry nine decimal places in all the calculations.

Use {27) and (28) with i = 0.01 to get

FO.81) ~ f(0.79) _ 0.689498433 — 0.703845316

0.02 0.02
= —0.717344150

Do(h)y ~

and

f(0.82) — £(0.78) _ 0.682221207 — 0.710913538
0.04 0.04
= —0.717308275.

Dy (2h) ==

Now the linear combination in (30) is computed:

4Do(h) —~ Do(2h) _ 4(—0.717344150) — (—0.717308275)
3 3
= ~(.717356108.

F(0.8)y =

This is exactly the same as the solution in Example 6.2 that used (10) directly to approxi-
moa F(0.8). ]

The method of obtaining a formula for f'(xp} of higher order from a formula of
lower order is called extrapoiation. The proof requires that the error term for (3) can
be expanded in a series containing only even powers of £. We have already seen how
to use step sizes & and 2k to remove the term involving #2. To see how A% is removed,
tet D (k) and D;(2k) denote the approximations to f'(xg) of order O (h?) obtained
with formula (16) using step sizes A and 24, respectively. Then

—f+8H —-8Bf 1+ [ 2 + w4 )

3 4 _ P 4
an fFxp) = 2ah 30 Dith) + Ch
and
_ _ 4 £(5)
6D [y = L8 Z8 et foa MO | f o 4 160Hs,

12h 30

Suppose that £ (x) has one sign and does not change too rapidly; then the assump-
tion that & (c;) =~ f(s)(cz) can be used to eliminate the terms involving A% in (31)
and {32), and the result is

. 16D1(h) — D1(2h)

@» £ (xp) G

“The general pattern for improving calculations is stated in the next result.
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Theorem 6.3 (Richardson's Extrapolation). Suppose that two approximations of

order O (h%*) for f/(xp) are Dy_1(h) and Dy_;(2h) and that they satisfy

(34) F(xoy = Di_i(h) + c1h¥ + coh™ 2 4. .
and
(35) Flxo) = Dro) (2h) + 4¥cih%* + ¥ gpp2k+2 4 .

Then an improved approximation has the form

4 Dy_1(h) — Dyx_1(2h)
4% — 1

(36)  f'(xo) = Dp(h) + O(h% %) = + O(h%+Dy,

The following program implements the centered formula of order O (42}, equi-
tion (3), to approximate the derivative of a function at a given point. A sequence ol
approximations { Di} is generated, where the centered interval for Dy | is one-tenth a-
long as the centered interval for Dy. The output is a matrix L=[H’> D’ E’], where H
is a vector coniaining the step sizes, D is a vector containing the approximations to the
derivative, and E is a vector containing the error bounds. Note. The function £ need-
to be input as a string; that is, *£?.

Program 6.1 (Differentiation Using Limits). To approximate f’(x) numerically
by generating the sequence

Flx +107%m) — fix — 107*R)
2(10*h)

F)y=~Dy = for k=0, ..., n

until | Dy 1 — D) = | Dy — Dy—1] 011D, — Dy, < tolerance, which is an attempt
to find the best approximation f'(x) = D,

function (L,nl=difflim(f,x,toler)
'/Input - f is the function input ag a string ’*f’

% - x is the differentiation point

b - toler is the tolerance for the error
%0utput-L=(H’ D’ E’]:

% H is the vector of step sizes

% D is the vector of approximate derivatives

% E is the vector of error bounds

% - n is the coordinate of the °‘best approximation’’
maxl=15;

h=1;

H(1)=h;

D(1)=(feval (f,x+h)-feval{f,x-h))/(2+h);
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E(1)=0;
R{1)=0;
for n=1:2
h=h/10;
H(n+1)=h;
D{n+1)=(feval(f,x+h)-feval (f,x~h))/(2%h);
E(n+1)=abs(D{(n+1)-D(n));
R(n+1)=24E(n+1)*(abs (D{n+1) }+abs(D(n) Y +eps) ;
end
n=2;
while{((E{(n)>E(n+1))Y&(R(n)>toler) )&mn<maxl
h=h/10;
Hi{n+2)=h;
D{n+2)=(feval {f ,x+h)-feval(f,x-h))/(2%h};
E(n+2)=abs{(D{n+2)-D(n+1));
R{n+2)=2+E{n+2) * (abs{D{n+2) ) +abs(D(n+1) ) +eps) ;
n=n+1;
end
n=length(D)-1;
1L=[H’ D’ E'];
Program 6.2 implements Theorem 6.3 (Richardson’s extrapolation}. Note that, the
expression for the elements in row j is algebraically equivalent to formula (36).

Program 6.2 (Differentiation Using Extrapolation). To approximate f'(x) nu-
merically by generating a table of approximations D(j, k} for k < j, and using
f'(x) = D(n,n) as the final answer. The approximations D(j, k) are stored ina
lower-trianguiar matrix. The first column is

fx+277m) = f(x —277h)
2~i+lp

D(j, )=

and the elements in row j are 4
D(j,k—1)-D(j—-1,k—-1)
4k 1
function [D,err,relerr,n]=diffext(f,x,delta,toler)

%Input -f is the function input as a string 'f’

D(j, k)y=D(j,k—1)+

% - delta is the tolerance for the error

% - toler is the tolerance for the relative error
%Output - D is the matrix of approximate derivatives

% - arr is the error bound
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% ~ relerr is the relative error bound
% ~ n is the coordinate of the ‘‘best approximation’’

err=1; .

relerr=1;

h=1;

J=1;

D(1,1)=(feval(f,x+h)-feval (f,x-h))/(2+h);

while relerr>toler & err>delta &£j<12
h=h/2;
D(j+1,1)=(feval(f,x+h)-feval (f,x-h}}/(2%h};
for k=1:j

D{j+1,k+1)=D(j+1,k)+(D(j+1,k)-D{j,k))/{{4"k)-1);

end
err=abs(D(j+1,j+1)-D(j,j));
relerr=2*err/(abs(D{(j+1,j+1))+abs(D(j, i) +eps);
=i+t

end

{n,nl=size(D);

Exercises for Approximating The Derivative

1. Let f(x) = sin{x), where x is measured in radians.

(a) Calculate approximations to f'(0.8) using formula (3) with A = 0.1, A = 0.01,

and h = 0.001. Carry eight or nine decimal places.
(b) Compare with the value f(0.8) = cos{0.8).
(¢) Compute bounds for the truncation error (4). Use

FONe) < cos(0.7) = 0.764842187

for all cases.

2. Let f(x) =¢".
(a) Calculate approximations to f'(2.3) using formula (3} with & = 0.1, A = (
and A = 0.001. Carry eight or nine decimal places.

{b) Compare with the value f7(2.3) = 3.
(¢) Compute bounds for the truncation error (4). Use

LF¥0)| < e ~ 11.02317638

for all cases.
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3. Let f(x) = sin(x), where x is measured in radians.

(a) Calculate approximations to f'(0.8) using formula (10) withh = 0.1 and & =
0.01, and compare with f'(0.8) = cos(0.8).

{b) Use the extrapolation formula in (29) to compute the approximations to f'(0.8)
in part (a).

(¢) Compute bounds for the truncation error (11). Use

£ )| < cos(0.6) ~ 0.825335615

for both cases.

. Let f(x) =é€*.

(a) Calculate approximations to f'(2.3) using formula (10) with A = 0.1 and 2 =
0.01, and compare with f7(2.3) = €23,

(b) Use the extrapolation formula in (29) to compute the approximations to f(2.3)
in part (a).

(¢) Compute bounds for the truncation error (11). Use

1F®(e)] < e2® ~ 12.18249396
for both cases.

. Compare the numerical differentiation formulas (3) and (10}. Let f{x} = x2 and find

approximations for f'(2).

(a) Use formula (3) with &z = 0.05.

(b} Use formula (10) with # = 0.05.

(c) Compute bounds for the truncation errors (4) and (11).

. (a) Use Taylor’s theorem to show that

1Y f(z)(c)

—3

{b) Use part (a} to show that the difference quotient in equation (2) has error of
order O (k) = —hf P (c)/2.

(¢) Why is formula (3) better to use than formula (2)?

where [¢ — x| < h.

fx+h)=fx)y+hf'(x)+

. Partial differentiation formulas, The partial derivative f;(x, y) of f{(x, y) with re-

spect to x is obtained by holding y fixed and differentiating with respect to x. Simi-
larly, fy{x, y) is found by helding x fixed and differentiating with respect to y. For-
mula (3) can be adapted to partial derivatives

Foleoy) = flx +h,y)2—hf(x —h,y)

(i) _ —
flx,y)y= f(x’y"'h)zhf(x‘y m on.

+ Oh?h),

(@) Let f(x,y) = xy/(x + y). Calculate approximations to f,(2,3) and f,(2,3)
using the formuylas in (i) with & = 0.1, 0.01, and 0.001. Compare with the
values obtained by differentiating f (x, y) partially.
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(b) Letz = f{x.y) = arctan(y/x) where z is in radians. Calculate approxim:ticns
to f(3,4) and £, (3, 4) using the formulas in (i) with & = 0.1, 0.01, and 0.001.
Compare with the values obtained by differentiating f(x, y) partially.

8. Complete the details that show how (33) is obtained from equations (31) and (32,
9. (a) Show that (21) is the value of & that minimizes the right-hand side of (20).
(b) Show that (26) is the value of & that minimizes the right-hand side of (23).

10. The voltage £ = E(¢) in an electrical circuit obeys the equation E(t) = L(dI/di1 +
RI(t), where R is resistance and L is inductance. Use L = 0.05 and R = 7 und
values for /() in the table following.

! ()
1.0 822717
1.1 7.2428
1.2 | 5.9908
1.3 | 4.5260
1.4 29122

(a) Find I'(1.2) by numerical differentiation, and use it to compute E(1.2).
(b) Compare your answer with I (#) = 10e™/19 gin(2s).

11. The distance D = D(1) traveled by an object is given in the table following.

H D(r}

8.0 | 17.453
9.0} 21.460
10.0 | 25.752
11.0 | 30.301
12.0 | 35.084

(a} Find the velocity V (10) by numerical differentiation.
{b) Compare your answer with D{t) = —70 + 7t + 70e="/10,

12. Let f{(x) be given by the table following. The inherent round-off error has the bound
lex] =5 x 10~®. Use the rounded values in your calculations.

x | fix) = cos(x)

1.100 0.45360
1.1%0 0.37166
1.199 0.36329
1.200 0.36236
1.201 0.36143
1.210 0.35302
1.300 0.26750
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(a) Find approximations for f'(1.2) using formula (17) with k = 0.1, h = 0.01,

and & = 0.001.

(b) Compare with f'(1.2) = —sin(1.2) = —0.93204.
(¢) Find the total error bound (19) for the three cases in part (a).

Let f(x) be given by the table following. The inherent round-off error has the bound
Jer] <5 x 1075, Use the rounded values in your calculations.

X Flxy=In(x)
2.900 1.06471
2,990 1.09527
2.999 1.09828
3.000 1.09861
3.001 1.09895
3.010 1.10194
3.100 1.13140

(a) Find approximations for f'(3.0) using formula (17) with & = 0.1, A = 0.01.

and # = 0.001.

(b) Compare with £/(3.0) = § =~ 0.33333.

(¢} Find the total error bound (19) for the three cases in part (a).

Suppose that a table of the function f(x;) is computed where the values are rounded
off to three decimal places and the inherent round-off error is 5 x 1074, Also, assume
that | f®(c)| < 1.5and | fO(c)| = L.5.

(a) Find the best step size h for formula (17).

(b) Find the best step size h for formula (22).

Let f (x) be given by the table following. The inherent round-off error has the bound
lexl < 5 x 1078, Use the rounded values in your calculations.

X

Flx) = cos(x)

1.000
1.100
1.198
1.199
1.200
1.201
1.202
1.300
1.400

0.54030
0.45360
0.36422
0.36329
0.36236
0.36143
0.36049
0.26750
0.16997

(a) Approximate f’(1.2) using (22) with &4 = 0.1 and A = 0.001.
(b} Find the total error bound (24) for the two cases in part (a).
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16. Let f(x) be given by the table folowing. The inherent round-off error has the bound
lex] <5 % 108, Use the rounded values in your calculations.

x | Flx) =In(x)

2.800 1.02062
2.9060 1.06471
2.998 1.09795
2.999 1.09828
3.000 1.09861
3.001 1.09895
3.002 1.09928
3.100 1.13140
3.200 [.16315

(a) Approximate £'(3.0) using (22) with A = 0.1 and # = 0.001.
(b) Find the total error bound (24) for the two cases in part (a).

Algorithms and Programs

1. Use Program 6.1 to approximate the derivatives of each of the following functions
at the given value of x. Approximations should be accurate to 13 decimal places.
Note. It may be necessary to change the values of max1 and the initial value of h in
the program.

@) flx)=60x* —32x3 423325 — 4762 — 77, x = 1/4/3

(b)y f(x)=tan (cos (\—/m)),x = 1+5

14 x2 3
(€) f(x)=sin(cos(i/x)); x = 1/+/2 _ 3
@) fx)=sin(x® —7x* +6x+8)x = ‘2
(€) f(x)=x*;x=00001
2. Modify Program 6.1 to implement the centered formula (10) of order O (h*). Use this

program to approximate the derivatives of the functions given in Problem 1. Again,
approximations should be accurate to 13 decimal places.

3, Use Program 6.2 to approximate the derivatives of the functions given in Problem 1.
Again, approximations should be accurate to 13 decimal places. Note. It may be
necessary to change the initial values of err, relerr, and h.
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Numerical Differentiation Formulas

More Central-difference Formulas

The formulas for f/(xp) in the preceding section required that the function can be
computed at abscissas that lie on both sides of x, and they were referred to as central-
difference formulas. Taylor series can be used to obtain central-difference formulas for
the higher derivatives. The popular choices are those of order (k%) and O (h*) and are
given in Tables 6.3 and 6.4. In these tables we use the convention that f, = f (xo+kk)
fork=-3,-2,-1,0,1,2,3.
For iflustration, we will derive the formula for f”(x) of order O (k) in Table 6.3

Start with the Taylor expansions

2 3,0} 4.£(4)
f(x)+hf (x)+hf (‘x)+.”

(1} fr+h) = fl)+haf(x)+
2 6 24

Table 6.3 Central-difference Formulas of Order O (h2)

o) s T =1
Slrp) = T

— 2+

Fraps A2t

@ 2t = fa
Pup= 13
F Sy > fiz4hi 4 6f;:4_4f‘1 +fa

Table 6.4 Central-difference Formulas of Order O (k%)

—H+8f1—8f 1+ f 2

! e
7o) 12%
we o, —S2H16f; =30fg +16f .y = fp
f"(x0) 32
£ (z0) 2 —f+8H-13A+13/, -8/ 2+ /3
’ 8h3
OTPRYS —f3+12H-39A+56f—39 1 +12f 32— f3

6hd
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and
L A e COBAP i€
5 - -

Adding equations (1) and (2) will eliminate the terms involving the odd derivatives
10, fO), O, ..

@ fax-h=f@)-hf(x)+

2 g0 4 r(4)
2hf2(x)+2h O

(3 fx+hy+ flx—h)=2f(x)+ o

Solving equation (3) for 7" (x) yields

Fx+h)=2fx)+ f(x—h) 202D (x)
2 T4
2h4f(6)(x) 2h21c—2f(2.k)(x)

ffxy=

4)

If the series in (4) is truncated at the fourth derivative, there exists a valuc o (hat
lies in [x — k., x + R} so that

fi=2fo+ fu K0

5) fMtxg) = == -

This gives us the desired formula for approximating £ (x):

—2f _
©® oy o L2200k I

h
Example 6.4. Let f(x) = cos(x).

{(a) Use formula (6) with » = 0.1, 0.01, and 0.001 and find approximations to #"(0.8).
Carry nine decimal places in all calculations.

(b} Compare with the true value f"(0.8) = — cos(0.8).
(a) The calculation for k = 0.01 is

£(0.81) — 2(0.80) + £(0.79)

"(0.8) ~
o8 0.0001
__ 0.689498433 — 2(0.696706709) + 0.703845316
= 0.0001
s —0.696690000.

(b) The error in this approximation is —0.000016709. The other calculations are sumnii-
rized in Table 6.5. The error analysis will illuminate this example and show why h = 0.01
was best. ]
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Table 6.5 Numerical Approximations to f"(x) for

Example 6.4
Step Approximation by Error using
size formula (6) formula (6)
h=0.1 —0.696126300 —0.000530409
h=0.01 —0.696590000 —0.000016709
h =0.001 --0,696000000 —0.000706709
Error Analysis

Let fr = yx + ex, where e; is the error in computing f(xx). including noise in mea-
surement and round-off error. Then formula (6) can be written

»—2y0+ ¥y .
™ fx0) = A== + E(f ).
The error term E (h, ) for the numerical derivative (7) will have a part due to round-
off error and a part due to truncation error:

e1~2e0+e1 R fH)
(8) E(f,h)= 72 - 12 :

If it is assumed that each error ey is of the magnitude ¢, with signs that accumulate
crrors, and that | f@(x)| < M, then we get the following error bound:
4 MH?
9 B S o3+ 5
1f k is small, then the contribution 4/ h? due to round-off error is large. When k
i~ large, the contribution M h%/12 is large. The optimum step size will minimize the
quantity

4e Mh?
) sW=jt

Setting g'(k) = O results in —8¢/h* + Mh/6 = 0, which yields the equation
i = 48¢/M, from which we obtain the optimal value:

48¢\ /4
i) h-——(;;)

W hen formula (11) is applied to Example 6.4, use the bound | F®P < | COS(J:’) i <
| = M and the value € = 0.5 x 10~2. The optimal step size is b = (24 x 107%/1)¥* =
11.(1244666. and we see that i = 0.01 was closest to the optimal value.
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Since the portion of the error due to round off is inversely proportional to the square
of k, this tertn grows when A gets small. This 1s sometimes referred to as the step-size
dilemma. One partial solution to this problem is to use a formula of higher order so
that a larger value of h will produce the desired accuracy. The formula for f”(xq) of
order O (A*) in Table 6.4 is

—f+16f1 - 30fo+ 16/ — f-2
12h2

(12) fixgy = + E(f. h).

The error term for (12) has the form

16 h* O ()
13) E(f h) = —= 4 —t—t
( (fh) =37+ — 5

where ¢ lies in the interval [x — 2k, x + 2k]. A bound for |E(f, k)| is

166 h*M
(14) E(f R € == 4+ ——
{E(f )| < 3+ 50"

where | f(®(x)| < M. The optimal value for 4 is given by the formula

N 176
(15) h=(%ﬂe—, _
M A

Example 6.5. Let f(x) = cos(x).
(a) Use formula (12) with # = 1.0, 0.1, and (.01 and find approximations to f"{0.8).
Carry nine decimal places in all the calculaticns.
(b) Compare with the true value f7(0.8) = — cos(0.8).

(cj Determine the optimal step size.
{a) The calculation for A = Q.1 is

£7(0.8)
L —f(1.0) + 16£(0.9) — 30£(0.8) + 16£(0.7) — £(0.6)
0.12
. —0.540302306 -+ 9.945753488 — 20.90120127 + 12.23747499 — 0.825335615

0.12
= -0.696705958.

(b} The error in this approximation is ~0.000000751. The other calculations are summa-
rized in Table 6.6.

(£) When formula (15) is applied, we can use the bound | f ®(x)| < |cos(x)) < | = M and
the value € = 0.5 x 10~?. These values give the optimal step size h = (120x 107%/1)!/6 =
0.070231219 [ ]
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Table 6.6 Numerical Approximations to f”(x) for

Example 6.5
Step Approximation by Error using
size formula (12) formula {12)
h=10 —-0.689625413 —0.007081296
h=0.1 —0.696705958 —0.000000751
h=001 —0.696690000 —0.000016709

Table 6.7 Forward- and Backward-difference Formulas of
Order O(h%)

’ _3f+dfi—- Lo forward )
fxor= 2h (difference
1 )E3f0—4f—l + f2 (backward )

0 2h difference
2fa-5fi+4f— N3 (forwa.rd

" o~
Feo= h? difference)
£ )%2f0“5f—1 +4f 02— fu3 (backward )
' 0 K2 difference

_ - L 14F —
FO(xg) Sfo+ 18 ~24H + 14334
243
Sfo—IBF_y+24f > —14f_3s+4+3f_.
FOxg) ~ fo— 1B 2};32 f-3+3f4
Afg— 147 +26F, - 243+ 113 -2
F@ gy fo—14A f2h4 fH+11f=2f5
3fo—14f_1 +26f 3 ~24f 3+ 117 4—-2fs

f(4)(x0)z pr

Generally, if numerical differentiation is performed, only about half the accuracy
of which the computer is capable is obtained. This severe loss of significant digits will
almost always occur unless we are fortunate to find a step size that is optimal. Hence
we must always proceed with caution when numerical differentiation is performed.
The difficulties are more pronounced when working with experimental data, where
the function values have been rounded to only a few digits. If a numerical derivative
must be obtained from data, we should cansider curve fitting, by using least-squares
iechniques, and differentiate the formula for the curve.
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Differentiation of the Lagrange Polynomial

If the function must be evaluated at abscissas that lic on one side of Xp, the centra -
difference formulas cannot be used. Formulas for equally spaced abscissas that lie t
the right (or left) of xg are called forward (or backward) difference formulas. Thes.
formulas can be derived by differentiation of the Lagrange interpolation polynomia.
Some of the common forward- and backward-difference formulas are given in Ts-
ble 6.7.

Example 6.6. Derive the formula
2fo-5fA+4h-f
h? )
Start with the Lagrange interpolation polynomial for f(?) based on the four poInts xq.
X1, x2, and x3.

S o) =~

(t = x) )@ ~ x2){t — x3) 1 {t — x0)(t — x2)(r — x3)
(xo — x1){xo — x2)(xp — x3) (x1 —x0)(x1 — x2)(x1 — x3)
. —x0)(t — x1)(t — x3) (t —x0)(t —x)(t — xz)
+ A (x2 — xp)(x2 — X1 H{x2 — X3) + s (x3 ~ x9)(x3 — x1)(x3 — x3)°

fH=f

Differentiate the products in the numerators twice and get

20t —x)) + (¢ —x2) + (t — x3)) + A e — x0) + (1 —x2) + (t — x3))
{xo — x1){(x6 — x2)(xp — x3) {1 — xo)(x1 = x2)(x1 — x3)

+f22((r —x0) +{t —x1} + (£ — x3)) +h 2 —x0)+ (¢ ~x1) + (1~ 120

(x2 — x0}(x3 — x1)(x2 — x3) (x3 — xp}(x3 — x3)(x3 — x2)

= f

Then substitution of # = xg and the fact that x; — x j = (i — j)h produces

2((xo = x1) + {(x0 — x2) + (x0 — x3))
(x0 — x1) (xp — x2){x0 — x3)
+ A 2((xo — xp) + (xg — x2) + (xg — x3))
! (x1 — x0)(x1 — x2){x| - x3)
2{(xp — x0) 4 {xo — x1)} + (x9 — x3))
+ £
(2 — xp)(x2 — x1)(x2 — x3)
2((xg — x0) + (xo — x1) + (x0 — x2))
{x3 — x0)x3 — x1)(x3 — x2)
2((=h) + (—2h) + (—3h)) +f 2(0) + (=2h) + (—3hY)
(—h}(—2h)(--3h) (h){(—h)(-—2h)
f, 2((0) + (—h) + (=3R)) +f 2((0) + (=h) + (-2h))
’ (2h)(h)(—h) (3h)(2h) (k)
—12hk —10h —8h -6h 2fa—5 45 —
=hogat o thopthgs = = flh:' =

and the formula is established. .

fxo) = fo

+h

=fo
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Example 6.7. Derive the formula
—Sfo+18fi-24f 4+ 14f5—-3f4
2h3 ’

fw (x0) ~

Start with the Lagrange interpolation polynomial for f(¢) based on the five points xo.
x1, X2, X3, and xg.
@ —x){ —x)( — a3}t — xq)
fy = fo
(xo — x1)(x0 — x2}(x0 — x3)(xp — x4)
{t —xo)(t — x2)(t — x3)(t — x4)

+ i (x1 — xo)(x1 — x2)(x) — x3){x1 — x4)
+h {(t —x0)(t —x1)(t — x3){t — x4)
(x2 = xo)(x2 — x1)(x2 — x3)(x3 — x4)
+f (t — xp)(t — x3){t — x2)(t — x4)
(x3 — xo)(x3 — x1)(x3 — x2)(x3 — x4)
(t — x0)(t — x))(t — x2)(t — x3)
+ fa

(s - x0)(xa — x1)(xa — x2)(x4 — X3)

Differentiate the numerators three times, then use the substitution x; — x ;= (i — j)hinthe

denominators and get

o o 6((t —x1))+ (t —x2) + (t — x3) + (t — x4))

frO=f (—h)(—2h)(~3R)(—4h)

+A 6((t —x0) + (¢ —x2) + (t — x3) + (t — x4))

(h)(—h)(—2h)(=3h)

+ f26((1‘ —x0) +(t —x)) +{ —x3) + (t — x4))
(Zh)y(h)(—h)(2h)

6((t—x0)+ @ —x1) 4+t —x2) + (¢ — x4))

+h GRYEh) ) (—h)
" f46((t =xp)+{—x1}+{F—x)+ (¢~ 13))l
(4h)(3R)(2R) (h}
Then substitution of ¢ = xg in the form 1 — x; = xo — x; = — jh produces

6((—h) + (=2h) + (—3h) + (—4h)) + 16((0) + (=2h) + (—3h) + (—4k))

w
flw~ fo 24h* 5 —6h*
6((0) + (=h) + (=3h) + (—4h)) |, 6((0) + (—h) + (—2h) + (—4h))
+f2 7o +f3 i
6((0) + (—h) 4+ (=2h) + (—3h))
+ f1 2and ,
—60h . 34h —48h 42h —36h
= Joqapr T g T g Y hgat fagga
=Sf+18f1-24H+14F3-3fy
= 2h3 R
and the formula is established. u
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Differentiation of the Newton Polynomial

In this section we show the relationship between the three formulas of order € {#7) for
approximating f'(xo), and a general algorithm is given for computing the numeri. u;
derivative. In Section 4.3 we saw that the Newton polynomial P(t) of degree N =2,
that approximates f(¢) using the nodes g, 1), and 1, is

(16) Pty =ap+ai(t — ) + a2t — ) (t — 1),
where ag = f(to), a1 = (f(ty) — f(t%0))/(ti — 1), and
f@)—fl)  f0) = f)

ar = h—nh h—1Ig
(22 —10)
The derivative of P(¢) is
(17 Pty =a) +a((t — 1) + (¢t — 1)),

and when it is evaluated at ¢ = 1, the result is
(18) P'to) = ay + azity — t1) ~ f'{tg).

Observe that the nodes {z} do not need to be equally spaced for formulas (16)
through (18) to hold. Choosing the abscissas in different orders will produce difference
formulas for approximating f/(x).

Case (i): If g = x, 1y = x + h, and t = x + 2h, then

fx+h) - fix)
a) = —
_ J)=2fx+h)+ f(x+2h)
az = 73 .
When these values are substituted into (18), we gat
flx+h)—flx)  —fX)+2fx+h)— fx+2D
A + 7h '

Pl(x) =

This is simplified to obtain

=3 -
(19) Plx) = f(x)+4f(x2:h) f(x+2h)%f,(x),

which is the second-order forward-difference forrnula for 7/(x).
Case (i) fto=x, 1 =x+h,and; = x — A&, then

a = Flx+h)— f(x)

]

P
_ fGHR) —2f @) + flx - h)
2= 2
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\When these values are substituted into (18), we get

Plx) = f(x+h; - f(x)+—f(x+h)+221;(x)_f(x_h)-

This is simplified to obtain

fx+h)—Fx—h)

2% =,

1200) Px)=
wiich is the second-order central-difference formula for f7(x).
Case (iii): If ip = x, 1, =x — h,and t; = x — 2h, then

fx)— flx—h)
a) ==,

h
o = fx)=2f(x—h)y+ f(x =2h)
2= 242 '
These values are substituted into (18) and simplified to get

o1y Py = 3f(xy—4f(x ;hhjl + flx —2h) ~ feo).

which is the second-order backward-difference formula for f/(x).

The Newton polynomial P(z) of degree N that approximates f(¢) using the nodes
T flave s IN 1S

) P@t)=ap+ a1t — fp) + az(t — )t — 11)
o +ast—t}t - —1)+ - +ant —tg)--- (¢ — tn-1)-

The derivative of P(¢) is

P(t) = a1 + az({t — 1) + (¢t — t1))
+a(f —)t—n)+ ¢ -0t -1+ @ —n)r—t))
o) 1::3 N-1
+-odan ) H(t—tj).
k=0 j=0
ok
When P’(r) is evaluated at ¢ = fg, several of the terms in the summation are zero.
and P’(tg) has the simpler form

P'(to) =a)+ato— ) +az(tg —1)(to —t2) + -+

24 -
= +an(ig — H)(tp — 1) (g — 13} - - - (0 — tN—1)-
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The kth partial sum on the right side of equation (24) is the derivative of the Newtar.
polynomial of degree k based on the first k nodes. If

lo—nl<lg—n|l<---<|g—tyl, andif {(:j,O)]f,.Vzo

forms a set of N + ! equally spaced points on the real axis, the kth partial sum is an
approximation to f’(zp) of order O (h*~1).

Suppose that N = 5. If the five nodes are y = x + hk fork = 0,1,2,3, and 4.
then (24) is an equivalent way to compute the forward-difference formula for f'(x) o
order @(h*). If the five nodes {#;} arechosentobe gy = x, 5y = x + h, tp = x — k.
t3 = x + 2k, and t4 = x — 2h, then (24) is the central-difference formula for f'(x) o
order O (h*). When the five nodes are t; = x—kh, then (24) is the backward-difference
formula for f(x) of order O (h*).

The following program is an extension of Program 4.2 and can be used to imple-
ment formula (24). Note that the nodes do not need to be equally spaced. Also, it
computes the derivative at only one point ' (xo).

Program 6.3 (Differentiation Based on N + 1 Nodes). To approximate f'(x)
numerically by constructing the Nth-degree Newton polynomial

P(x) =ap + aj(x — xg) + az(x — xg}(x — x1)
+asz(x ~xp)(x —x)x —x)+ - +ayx —xp) o {x —xn_1)

J

and using f'(xp) = P'(xg) as the final answer. The method must be used at xp.

The points can be rearranged {xy, X0, . - ., Xk—1, Xk+1, - - - » Xx} 0 compute f'(xi) =
P'(xy).
function [A,df]l=diffnew(X,Y)
%Input - X is the 1xn abscissa vector
% - ¥ is the 1xn ordinate vector
%Output - A is the 1xn vector containing the coefficients of
% the Nth-degree Newten polynomial
% - df is the approximate derivative
A=Y,
N=length(X);
for j=2:N

for k=N:-1:j

AR =(A(KI-A(k-1)) /(X(k)}-X{k-j+1));

end
end
*x0=X(1};
df=A{2);

prod=1;
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nl=length(4)-1;
for k=2:n1
prod=prod=* (x0-X(k));
df=df+prod=a(k+1);
end

Exercises for Numerical Differentiation Formulas
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1. Letf(x) = In(x) and carry eight or nine decimal places.
(a) Use fermula (6) with 2 = 0.05 0 approximate £7(5).
(b} Use formula (6) with 2 = 0.01 to approximate £”(5).
(e) Use formula (12) with # = 0.1 to approximate f"(5).
(d) Which answer, (a), (b), or (c), is most accurate?

2. Letf(x) = cos(x) and carry eight or nine decimal places.
(a) Use formula (6) with # = (1,05 0 approximate £%(1).
(b} Use formula (6} with & = 0.01 to approximate (1).
(c) Use formula (12) with & = 0.1 to approximate f*(1).
(d) Which answer, (a), (b), or (¢), is most accurate?

3. Consider the table for f(x) = In(x) rounded to four decimal places.

x| f(x) =In(x)
4,90 1.5892
4.95 1.5994
5.00 1.6094
5.05 1.6194
5.10 1.6292

(a) Use formula (6) with & = 0.05 to approximate f”(5).
(b} Use formula (6) with & = 0.01 to approximate f”(5).
(¢) Use formula (12) with = 0.05 to approximate £”(5)
(d) Which answer, (a), (b), or (c), is most accurate?

4. Consider the table for f(x) = cos(x) rounded to four decimal places.

x [ flx) = cos(x)

0.90 0.6216
0.95 0.5817
1.00 0.5403
1.03 0.4976

1.10 0.4536
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10.

11,

12.
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(a) Use formula (6) with # = 0.05 to approximate f"(1).
(b) Use formula (6) with 2 = 0.01 to approximate f”(1).
(¢} Use formula (12) with & = 0.05 to approximate "'(1).
(d) Which answer, (a), (b), or (c), is most accurate?

. Use the numerical differentiation formula (6) and A = 0.01 to approximate f”(1) for

the functions

(@ fa)y=x" ®) fx)y=x*

. Use the numerical differentiation formula (12) and £ = 0.1 to approximate £7(1) for

the functions

(@) f(o)=x° b fix)=xb

. Use the Taylor expansions for f(x + h), f{x — h), f{x + 2k), and f(x — 2h) anii

derive the central-difference formula:

Fx+2) = 2f(x+h)+2f(x —h) — f(x —2h)
243 '

A =

. Use the Taylor expansions for f(x + #), f(x — h), f{x + 2h), and f(x — 2R) and

derive the central-difference formula:
Fix+2B —4f(x+h)+6f(x) —4f(x — )+ f{x — 2h)

ey A
Py = r
. Find the approximations to f’(xs) of arder (}(h%) at each of the four points in the
1ables.
() (b)
x fin x fx
0.0 0.989992 0.0 0.141120
0.1 0.999135 0.1 0.041581
0.2 0.998295 0.2 —-0.058374
0.3 0.987480 0.3 —0.157746
Use the approximations

f-’ (.t‘i‘ﬁ) e i:;;:fg

2 and f’(x—g)::sM

h
and derive the approximation

fi =2+ f

JROE 3

Use formulas (16) through (18) and derive a formula for f/(x) based on the absciss:.
to=x,t1 =x+h,and 2 = x + 3h.

Use formulas (16} through (18) and derive a formula for f'(x) based on the abscissus
to=x,ty =x—h,and , = x + 2h.
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13. The numerical solution of a certair differential equation requires an approximation to

14.

F7(x) + f/(x) of order O (h?).

(a) Find the central-difference formula for f”(x) + f'(x) by adding the formulas
for f'(x) and f"(x) of order O (h?).

(b) Find the forward-difference formula for f”(x) 4 f'(x) by adding the formulas
for f'(x) and f"(x) of order o).

(¢} 'What would happen if a formula for f'(x) of order O(h*) were added to a
formula for f7(x) of order O (h%)?

Critique the following argument. Taylor’s formula can be used to get the representa-
tions
, hz " x) h3 (3) (C)
o+ = fe +hr o+ LE L B

and
hzf”(x) ’ h3f(3) (C)
2 6

flx-m=fx)—hf'O+
Adding these guantities results in
flx+h)+ flx —h) =2f(x) + A2 f"(x),

which can be solved to obtain an exact formula for f”(x):

hy—-2 —h
prog = LEAP 2@+ I

Algorithms and Programs

1. Modify Program 6.3 so that it will calculate P'(xy) for M = 1,2,...

SN+ 1



Numerical Integration

Numerical integration is a primary tool used by engineers and scienFists to obtain ap-
proximate answers for definite integrals that cannot be so]vefi analyt}cally. In t]_'le ane
of statistical thermodynamics, the Debye model for calculating the heat capacity of
solid involves the following function;

x t3
= dr.
Pix) /0 o —1

Since there is no analytic expression for ®(x), numerical integration must be used to
obtain approximate values. For example, the value ©(5) is the area under the curve

y=f1

T

¢t Figure 7.1 Area under the curve
y=f{for0=¢r =35
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Table 7.1  Values of ¢{x)

x D(x)
1.0 0.2248052
2.0 1.1763426
3.0 2.5522185
4.0 3.8770542
5.0 4.8998922
6.0 5.5858554
7.0 6.0031690
8.0 6.2396238
9.0 6.3665739

10.0 6.4319219

y=f®) =13 —1)for0 <t <5 (see Figure 7.1). The numerical approximation
for d(5) is

5 3
&) = f a1 ~ 4.8998922.
o ¢ —1

Each additional value of ®(x) must be determined by another numerical integration
Table 7.1 lists several of these approximations over the interval (1, 10].

The purpose of this chapter is to develop the basic principles of numerical inte-
gration. In Chapter 9, numerical integration formulas are used to derive the predictor-
corrector methods for solving differential equations.

Introduction to Quadrature
Wenow approach the subject of numerical integration. The goal is to approximate the
definite integral of f(x) over the interval [a, £] by evaluating f(x) at a finite number
of sample points.
Definition 7.1, Suppose thata =xp < x| < -+ < xu = b. A formula of the form
M
() U= wiflw) =wo s (o) +wi fx1) -+ + wa Flxp)
k=0
With the property that
b
(2 [ r@ax = ots1+ Eu
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is called a numerical integration or gquadrature formula. The term E[ f] is called the
truncation error for integration. The values {x;} ,’:”= o are called the quadrature nodes

and {wy )1, are called the weights. y

Depending on the application, the nodes {x;} are chosen in various ways. For the
trapezoidal rule, Simpson’s rule, and Boole’s rule, the nodes are chosen 10 be equaliy
spaced. For Gauss-Legendre quadrature, the nodes are chosen to be zeros of certait
Legendre polynomials. When the integration formula is used to develop a predictor
formula for differential equations, all the nodes are chosen less than b. For all applica-
tions, it 1s necessary to know something about the accuracy of the numerical solution.

Definition 7.2. The degree af precision of a quadrature formula is the positive inte-
ger n such that E[ 7] = O for all polynomials P;(x) of degree i < »n, but for which
E[Pp4y] # 0 for some polynomial P,{x) of degree n + 1. A

The form of E[F;] can be anticipated by studying what happens when f(x) is a
polynomiai. Consider the arbitrary polynomial

1

Pi(x) = a,»xj +ai_]xi" + - 4ax+ag

of degree . If i < n, then P,-(”"'”(x) = 0 for all x, and Pn(ﬂ'”(x) = {n + Dla,_ for

all x. Thus it is not surprising that the general form for the truncation error term is
(3) E[f1=Kf"* (o),

where K is a suitably chosen constant and » is the degree of precision. The proof of
this general result can be found in advanced books on numerical integration.

The derivation of quadrature formulas is sometimes based on polynomial interpo-
lation. Recall that there exists a unique polynomial Py (x) of degree < M passing
through the M + 1 equally spaced points {(x;, yk)}f: o When this polynomial is used
to approximate f (x) over fa, ], and then the integral of f(x) is approximated by the
integral of Py (x). the resulting formula is called a Newton-Cotes quadrature formula
(see Figure 7.2). When the sample points x4 = a and x4 = b are used, it is called a
closed Newton-Cotes formula. The next result gives the formulas when approximating
polynomials of degree M = 1, 2, 3, and 4 are used.

Theorem 7.1 {Closed Newton-Cotes Quadrature Formula). Assume that x, =
xg -+ kh are equally spaced nodes and f; = f{x;). The first four closed Newton-Cotes
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T T T o x /\-
0.5 1.0 1.5 2.0
(a}
T . '|4 e 1 - X X
0.0 0.5 L0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
{c} (d}

Flgure 7.2 .(a) 'I'l_]e trapezoidal rule integrates y = Py{x) over [x0, x1] = [0.0,0.5].
.(bt) S"‘:Ps"“ § “‘ﬂe(m)tegrate; ¥y = Pa(x) over [x, x;] = [0.0, 1.0]. (c) Simpson’s 3 rule
Integrates y = P3(x) over [xp, x3] = [0.0, 1.5]. (d) Boole's rule inte. sy = b

over [xp, x4] = [0.0, 2.0). grates y = Fu(x)

quadrature forrnulas are

o h
{4) : Jx)dx =~ E(ﬁ) + f1) (the trapezoidal rule).
0
L h
(5) flxydx = §(f0 +4fi+ f2) (Simpson’s rule),
x
g 3h 3
® fixydx =~ “8—(f0 +3fi+3/+ ) (Simpson’s g rule),
xp
*a 2h
)] ; f(Xde%E(‘7fo+32f1+12f2+32f3 + 7 fa)
0

(Boole’s rule).
Corollary 7.1 (Newtor-Cotes Precision). Assume that Fx)is sufficiently differen-

h:able; then Ef f ]. for Newton-Cotes quadrature involves an appropriate higher deriva-
tive. The trapezoidal rule has degree of precisionn = 1. If f ¢ C?[a, b], then

X 3
®) f flx)dx = E(fo “+ f1) — ’if‘”m.
o 2 12



36 CHAP.7 NUMERICAL INTEGRATION

Simpson’s rule has degree of precisionn = 3. If f € C*{a, b], then

X2 h5
© [ reax =5+ i+ - g0
x0

Simpson’s % rule has degree of precision n = 3. If f € C*[a, b], then

x 5
(10) 3 fxydx = %(ﬁw 3fi+3fat i) — %ﬂ‘”m.

X0

Boale’s rule has degree of precision n = 5. If f € C%a, b], then

4 2h 8h7
(an f Flde = =(Tfo+32fi+ 12+ 32+ 7)) — — FO0).
o 45 945

Proof of Theorem 7.1.  Start with the Lagrange polynomial P (x) based on xp, X4,
..., X that can be used to approximate f{x):

M
(12) Fo = Py(x)= 3 filaua(x),

k=0
where fr = f(x) fork = 0,1, ..., M. An approximation for the integral is ob~

tained by replacing the integrand f (x) with the polynomial Pps(x). This is the peneral
method for obtaining a Newton-Cotes integration formula:

Xaf XM
[ f(x)dx%f Py(xydx
X0 X0
M x

perl M M
(13) :[ (Z kaM'k(.x)) dx = Z (f kaM,k(x)dx)
* k=0 k=0 ‘X0

0
M XM M
=Z(f LM,k(x)dr) fe=Y_ wifi.
=0 o i=0

The details for the general proof of (13) are tedious. We shall give a sample preof:
of Simpson’s rule, which is the case M = 2. This case involves the approximatidn
polynomial

(14)

Paix) = fo x — x1)(x —x2) (x — xo)(x — x2) (x — x0) (x ~ %)

(xg — x1)(xp — x2) ! (x1 — x0)(x1 — x2) 22 — x0)(x2 — x)
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fomce Jo. f1. and £> are constants with respect to integration, the relations in (13) lead

(15)
x2 X
[ flxydx ~ fof P —x)x - x) dx 4+
] Xp

(xo0 — x1){xg — x2)

2= xp)x — x;)
+f2/ —_
x (2 —x0)(x2 — x1) dx.

? X 00l - x)
(X1 —xp)(x; —?2_)

We introduce the change of variable x — i i
r : ‘ = Xg + ht with dx = hdt to assist with
the evatuation of the integrals in (15). The new limits of integration are from ¢ = 0 to
¢t = 2. The equal spacing of the nodes x;, = xg+ kh leads to x; — x i = (k — j)h and
X~ xp = h(t — k), which are used to simplify (15) and get

(1®
R 2hir — Dh(t - 2) 2
Fixydx ~ f Al — Db h(t — O)h(r — 2)
fn. oo TChem MR s
Zhit — Okt — 1)
+ et U
fz_/; TS0 hdr

hof? 2 2
=f°3fa (t2_3"+2)d’"f!"/0 (f2*2t)dt+fzg/ - nyar
0

5 h (;3 312 1=2 3 =2
=l ity ——5+2 —fih=-1
2 3 2 ) =0 (3

h I3 5[2 r=2
+ o= | = =
f3 (3 2)
h /2 , 4r=0
i - h(2
=Jo-l=-]1—- fih| — —-fz
o3 (3) d '\3)+f22(3)

A
=z (o +4fi+ 1),

=0

and th i
ﬁim't.;.mef 1s complete. We postpone a sample proof of Corollary 7.1 until Sec-

xXa L i i = *si
5“:15;237 1 _C(;namder the function f(x) =1+¢ -" sin(4x), the equally spaced quadra-
b Sxg = 0.0, 1 = 0.5, x2 2= 1.0, x3 = 1.5, and x4 = 2.0, and the correspond-
_gfunclmn values f3 = 1.00000, fi = 1.55152, f2 = 072159, 3 = 0.93765. and
Ju = 1.13390. Apply the various quadrature formulzs (4) through (7). ’
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The step size is # = 0.5, and the computations are

0.5 0.5
f(x)dx == —2—(1.00000+ 1.55152) = 0.63788

1.0
f f(x)dx =~ 0—;—(1.00000%-4(1.55152)+0.72159) = 1.32128
0

L5 3(0.5)
Floyde = =0 00000 + 3(1.55152) + 3(0.72159) + 0.93765)

= 1.64193

20 2(0‘5)
fx)ydx= —15—-(7(1.00000) +32(1.55152) + 12{0.72139)
0

+ 32(0.93765) + 7(1.13390)) == 2.29444. =

It is important to realize that the quadrature formulas (4) through (7) applied in the
above illustration give approximations for definite integrals over different intervals.
The graph of the curve y = f{(x) and the areas under the Lagrange polynomials y =
Pi(x), y = Po(x), ¥y = P3(x), and y = P4(x) are shown in Figure 7.2(a) through (d),
respectively.

In Example 7.1 we applied the quadrature rules with 2 == 0.5. If the end points
of the interval [a. b] are held fixed, the step size must be adjusted for each rule. The
stepsizesareh = b ~a, h = (b—a)/2,h = (b —a)/3, and h = (b — a)/4 for the
trapezoidal rule, Simpson’s rule, Simpson’s % rule, and Boole’s rule, respectively. The
next example illustrates this point.

Example 7.2. Consider the integration of the function f(x) = 1 4 ¢ " sin{4x) over the

fixed interval [¢, b] = [0, 1]. Apply the various formulas (4) through (7).
For the wrapezoidal rule, A = 1 and

: 1
| rwaxx30@+ fy
o
= %(1.00000 4 0.72159) = 0.86079.
For Simpson’s rule, & = 1/2, and we get
! 1/2
fo Flxddx ~ —g—(f(O) Fafh)+ F())

(1.00000 + 4(1.55152) 4+ 0.72159) = 1.32128.

(=] R

For Simpson’s % rule, k = 1/3, and we obtain
! 1
fo reyax~ L2 s + 37 +37G + £

= %(1.00000 + 3(1.69642) + 3(1.23447) + 0.72159) = 1.31440.
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y
=) Y y=fx)
1.5 1 1.5
1.0 9 1.0
051 a 0.5
= - . X * T T X
00 0.2 04 1.0 00 02 04 06 08 1.0
(a) &)
y=fx}
00 02 04 06 08 1.0 00 0.2 04 06 0&8 1.0
() @

Figure 7.3 (a) The trapezoidal rule used aver [0, 1] yields the approximation 0.86079.
(b) Simpson’s rule used over [0, 1] yields the approximation 1.32128. (c) Simpson’s %
rule used over [0, 1] yields the approximation 1.31440. (d) Boole’s rule used over [0, 1]
yields the approximation 1.30859.

For Boole’s rule, # = 1/4, and the result is

! 2(1/4
fof(x)dxm—(é-z(?f(())+32f(%)+12f(%)+32f{§)+7f(1})

1
= %{7(1.00000) + 32(1.65534) + 12(1.55152)
+ 32(1.06666) + 7(0.72159)) = 1.30859.

“The true value of the definite integral is

! _ o
f Fdx = 2le — 4 cos(4) — sin(4)
0 17e

= 1.3082506046426 . . .,

and the approxirpation 1.30859 from Boole’s rule is best. The area under each of the La-
grange polynomials Pj(x), Po(x), P3(x), and P4(x) is shown in Figure 7.3(a) through (d),
respectively. [

'To make a fair comparison of quadrature methods, we must use the same number of
function evaluations in each method. Our finai example is concemned with comparing
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integration over a fixed interval [, b] using exactly five function evaluations f; —
fixp), fork =0, 1, ..., 4 for each method. When the trapezoidal rule is applied on
the four subintervals fxg, x11, [x1, x2), [x2, x3], and [x3, x4], it is called a composite
trapezoidal rule:

X4 x X3 X3 X4
f f(x)d.x:f lf(x)dx-}-f f(x)dx+f f(x)dx+] Flyds
X X0 Xy X2 X3

0
h i - h
an ~ g(fo + )+ s+ R+ S+ )+ B+ )

— Aprrfr2B 28+ )

Simpson’s rule can also be used in this manner. When Simpson’s rule is applied on the
two subintervals [xg, x2] and [x2, x4], it is called a composite Simpson’s rule:

f*’d f(x)dx:jrn f{x)dx-i—f 4f(JC)ciJc
Xp Xo x
h h
{18) msUotdfi+ P +3(fa+ah+ )

h .
= U0 +4A+2L+4f3+ f).
The next example compares the values obtained with (17}, (18), and (7).

Example 7.3. Consider the integration of the function f(x) = 1+ 7% sin(4x) over
fa, b] = [0, 1]. Use exactly five function evaluations and compare the results from the
composite trapezoidal rule, composite Simpson rule, and Boole’s rule.

The uniform step size is & = 1/4. The composite trapezoidal rule (17) produces

4
]t feode = L + 270G + 2D + 270G+ 1)
L]

1
= §(1'00000 + 2{1.65534) + 2(1.55152) + 2(1.06666) + 0.7215%.
= 1.28358.

Using the composite Simpson’s rule (18), we get

! . /4 i 1 3
fla)dx = T(f(o) +A4f( +2fG)+Haf(P + f(1)

= Tli(l.OOOOO + 4(1.65534) 4- 2(1.55152) + 4(1.06666) + (

= 1,30938.
We have already seen the result of Boole’s rule in Example 7.2:

1
f fydx = z—(flgi)(?f(oy +32F(h + 12 +32F D + 77D
Q

= 1.30859.

Si2. 7.1 INTRODUCTION TO QUADRATURE 351

¥

y=fx
IR N
10
sk 05k
1 v I3 4
000 025 050 075 100 000 025 050 075 100
(a) (b)

Figure 7.4 (a;) Tl'{e composile trapezoidal rule yields the approximation 1.28358.
1b) The composite Simpson rule yields the approximation 1.30938.

The true value of the integrat is

l .
2le — 4cos(4) —sin(4
fo Flxydx = ”(e) @ _ 1.3082506046426 . ..,

and .Lhe approximation 1,30938 from Simpson’s rule is much better than the value 1.28358
obtained from the trapezoidal rule. Again, the approximation 1.30859 from Boole's rule is
closest. Graphs for the areas under the trapezoids and parabolas are shown in Figure 7.4¢a)

and (b}, respectively. -

Example 7.4, Determine the degree of precision of Simpson’s % rule.
It will suffice to apply Simpson’s % rule over the interval [0, 3] with the five test func-
tions f(x) = 1, x, x2, x3, and x*. For the first four functions, Simpson’s 3 rule is exact.

3
3
foidx=3=§(l+3(li)+3(1)+l}
fsxdx—2—3(0+3l 32
A =3 3% M+32+3)
3 N 3
./O‘x dx=9=§(0+3(1)+3(4)+9)
3
3 81 3
xdx=—=2 [ y
/{; X n 8(0+3{I)+3(8)+2.?).
the function f£(x) = x* is the lowest power of x for which the rule is ot exact.
3
243 99 3
j;x“dx:Tm—=§(0+3(1)+3(16)+81).

2

Therefore, the degree of precision of Simpson’s é ruleisn = 3. =
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Exercises for Introduction to Quadrature

1. Consider integration of f(x) over the fixed interval [a, 5] = [0, 1]. Apply the vi s
quadrature formulas (4) through (7). The step sizesareh = 1, k = % h = 3' 2d
h = ﬁ for the trapezoidal rule, Simpson’s rule, Simpson’s % rule, and Boole’s e
respectively.

(a) fix)=sin{mx)

{b) fi(x)=1+e *cos(4x)

(©) flx)=sin(y/x)

Remark. The true values of the definite integrals are (a) 2/ = 0.636619772367. ..,
(b} (18¢ — cos(4) + 4sin(4))/(17e) = 1.007459631397..., and {(c) 2(sin(!) —
cos(1)) = 0.602337357879. ... Graphs of the functions are shown in Figures 7.5(a)
through (c), respectively.

2. Consider integration of f(x) over the fixed interval {a, #] = [0, 1]. Apply the various

quadrature formulas: the composite trapezoidal rule (17), the composite Simpson®,

ruke (18), and Boole’s rule (7). Use five function evaluations at equally spaced nodasg.
The uniform step size is & = }.
(&) f(x)=sin(mwx)
(b f(x)=1+e *cos(dx)
(©)  f(x) =sin(/x)

3. Consider a general interval {a, b]. Show that Simpson’s rule produces exact resulks
for the functions f(x} = xZ and Flx) = x3; that is,

3 3 4 4
) _ br a b3 b a
(@ fx dx—?—? (b) faxdx—z—z
4. I[ntegrate the Lagrange interpolation pelynomial
x—X X — Xy
Pi(x) = fo——— + fi
Xp — X1 X| — Xp
over the interval [xg, x| and establish the trapezoidal rule.
K ¥ ¥
1.0 2.0 1.0
05 1.0 0.5
1 x il \4 x 1
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1
(a) (&) ©)

Figure 7.5 {(a) y =sin(7x), (b) y = 1 + ¢ ¥ cos(4dx), (c) y = sin(/x).
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Determine the degree of precision of the trapezoidal rule. It will suffice to apply the
trapezoidal rule over [0, 1] with the three test functions f(x) = 1, x, and x?

o

o. Determine the degree of precision of Simpson’s rule. It will suffice to apply Simp-
son’s rule over [0, 2] with the five test functions f(x) = 1, x, xZ, x3, and x*. Contrast
your result with the degree of precision of Simpson’s % rule.

7. Determine the degree of precision of Boole's rule. It will suffice to apply Boole’s rule

over [0, 4] with the seven test functions f(x) = 1, x, x%, x3, x?%, x°, and x®.

8. The intervals in Exercises 5, 6, and 7 and Example 7.4 were selected to simplify the
calculation of the quadrature nodes. But, on any closed interval [g, b] over which
the function f is integrable, each of the four quadrature rules (4) through (7) has the
degree of precision determined in Exercises 5, 6, and 7 and Example 7.4, respectively.
A quadrature formula on the interval [a, b] can be obtained from a quadrature formula

on the intervzl [, d] by making a change of variables with the linear function

£

ad — be
d—c

b—a
x=g(f)=aTzl'+

b—a
wheredx-_-d

dt.
—-C

(a) Verify that x = g(¢) is the line passing through the points {c, @) and (d. b).

(b) Verify that the trapezoidal rule has the same degree of precision on the interval
[a. ] as on the interval [0, 1].

(¢) Verify that Simpson’s rule has the same degree of precision on the interval [a, &)
as on the interval [0, 2.

(d) Verify that Boole’s rulz has the same degree of precision on the interval [a, b]
as on the interval [0, 4].

. Derive Simpson’s % rule using Lagrange polynomial interpolation. Hint. After chang-
ing the variable, integrals similar to those in (16) are obtained:

X3 hor3 h o3
f f)dx = —fo—f(r— DG -2)¢t —3dt+ fiz [(r—O)(r——:Z)(r-?:)a’r
xp 6 Q0 2-0

h 3 h 3
—fz—f(r -0t =1t -3de + f5—- [(!—0)(:—])(1‘—2)(1‘:
2 Jo 6 Jo
4 2 1=3 4 3
=fo£ (—5—+2r3—%+61) +f1h (I——SL-MF)

=0 214 3
=3
hf—* 4 32\[ R
+ faz ('—+—"‘-—"‘— +f3:§ Z—Ts'i-l'z
=0

1. Derive the closed Newion-Cotes quadrature formula, based on a Lagrange approxi-
mating polynomial of degree 5, using the 6 equally spaced nodes xy = xg-kh, where
k=0,1,...,5

te=3

1=0
=3

=0
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11. In the proof of Theorem 7.1, Simpson’s rule was derived by integrating the second-
degree Lagrange polynomial based on the three equally spaced nodes xg, x1, and x;.
Derive Simpson’s rule by integrating the second-degree Newton polynomial based or.
the three equally spaced nodes xg. x1, and x;.

Composite Trapezoidal and Simpson’s Rule

An intuitive method of finding the area under the curve ¥y = f(x) over [a, b] is
by approximating that area with a series of trapezoids that lie above the intervals
{bre, xie13}-

Theorem 7.2 (Composite Trapezoidal Rule). Suppose that the interval [a, £] is
subdivided into M subintervals [xi, xp+1} of width & = (b—a)/M by using the equally
spaced nodes xx = a +kh, fork = 0,1, ..., M. The compesite trapezoidal rule for
M subinfervals can be expressed in any of three equivalent ways:

A M
(13) TUfm) =5 3 i) + £ )

k=1

or

h
(1b) T{f.h)= 5(f0+2f! +2H 4234+ 22+ 2 -1+ fur)

or

M—1

Slxe)

h
{1e) T(f,h)=5(f(a)+f(b))+h
k=1

This is an approximation to the integral of f(x) over [a, b], and we write

]
(2) f f(xydx = T{f, h).

Progf.  Apply the trapezoidal rule over each subinterval {xx—, x;] (see Figure 7.6),
Use the additive property of the integral for subintervals:

b M
3) f flodx=3"
a k=1%%

Since h/2 is a constant, the distributive law of addition can be applied to obtain (1a).
Formula (1b) is the expanded version of (1a). Formula (1¢) shows how to group all the
intermediate terms in (1b) that are multiplied by 2. .

X,

* L
f@dx 3 S(F(0e-n) + fOm).
k=1

k-1
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M

21 y = f(x)

Figure 7.6 Approximating the area
% under the curve y = 2 + sin(2y/X)
5 6 with the composite trapezoidal rule.

Approximating f(x} = 2+ sin(24/x) with piecewise linear po]yno@ﬂs resuits in
places where the approximation is close and places where it is not. To achieve accuracy
the composite trapezoidal rule must be applied with many subinten-alﬁ.. In the next
example we have chosen to numerically integrate this functicn over the interval [1, 6].
Investigation of the integral over [0, 1] is left as an exercise.

Example 7.5. Consider f{x) =2+ sin(2./x). Use the composite trapezoidal rule with
11 sample points to compute an approximation to the integral of J(x) taken over [1, 6].'

To generate 11 sample points, we use M = 10and 2 = (6 ~ 1)/10 = 1/2. Using
formula (1c), the computation is

T, %) = %tmw F6)

£ 1D+ FO+FD +FO+ D+ F@ + S+ )+ S
1
4 .
+ -12-(2.63815764-&-2.308071744- 1.97931647 4+ 1.68305284 + 1.43330410

+1.24319750 4 1.10831775 + 1.02872220 + 1.00024140)

(2.90929743 + 1.01735756)

1
= %(3.92665499) + 5{14,42438165)
= 0.98166375 + 7.21219083 = 8.19385457. -
Theorem 7.3 (Composite Simpson Rule). Suppose that ja, b) is subdivided into

2M subintervals [xx, xz4+1] of equal width & = (b—a)/(2M) by using x; = a +kh for
k=0,1,...,2M. The composite Simpson rule for 2M subintervals can be expressed
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in any of three equivalent ways:

| o

(4a) SU k) =3 2 (f Grak2) + 4 G-} + fxe))
k=1

or

h
S(fm= g(fo +4fi+2f2+4f
+- -+ 2fam-2 F 4 fam—1 + Faur)

(4b)
or

h 2p M= 4h M
(de)  S(fm)=F(f@+ FEN+ ; fead+ 5 ;f(xyﬂ).
This is an approximation to the integral of f(x) over [a, b), and we write

b
(5) f fx)dx = S(f, h).

Proof. Apply Simpson’s rule over each subinterval [x3,_2, x3] (see Figure 7,7} Use
the additive property of the integrai for subintervals:

A2k

] M
f Flx)dx = Z f(x)dx
a k=1

=1 ¥ X242

{6)
M
h
~ Y 3 F2e-2) + 4 G- + S x2i)-
k=i

Since 4/3 is a constant, the distributive law of addition can be applied to ob-
tain (4a). Formula (4b) is the expanded version of {4a). Formula (4c) groups all
the intermediate terms in (4b) that are multiplied by 2 and those that are multiplied
by 4, ®

Approximating f(x) = 2 + sin(2./x) with piecewise quadratic polynomials pro-
duces places where the approximation is close and places where it is not. To achieve
accuracy the composite Simpson rule must be applied with several subintervals. In
the next example we have chosen to numerically integrate this function over [1, 6} and
leave investigation of the integral over [0, 1] as an exercise.

SEC. 7.2 COMPOSITE TRAPEZOIDAL AND SIMPSON’S RULE 357
Y
v =f{x)
: Figure 7.7 Approximating the area
1 T T . x  under the curve y = 2 + sin(2/X)
0 ! 2 3 4 3 6 with the composite Simpson rule.

Example 7.6, Consider f{x) =2+ sin(2./x). Use the composite Simpson rule with 11

‘sample points to compute an approximation to the integral of f(x) taken over [1, 6].

To generate 11 sample points, we must use M =5 and h = (6 — 1}/10 = 1/2. Using

-formula (4c), the computation is

S(f.3) = LD+ FO) + 3@+ FO)+ )+ [6)
P+ @+ F D+ FH+FEY
= 2(2.90929743 + 1.01735756)
+ —:1;(2.30807174 + 1.68305284 -+ 1.24319750 + 1.02872220)
+ %(2.63815764+ 1.97931647 + 1.43530410 4+ 1.10831775 4+ 1.00024140)

1 2
= 2(3.92665499) + 5(6.26304429) + 3 (8.16133735)
= .65444250 4 2.08768143 + 5.44089157 = 8.18301550. a

Error Analysis

The significance of the next two results is to understand that the error terms Er(f, h)
and Es(f, h) for the composite trapezoidal rule and composite Simpson rule are of
the order O(A2) and O, respectively. This shows that the error for Simpson’s
rule converges to zero faster than the error for the trapezoidal rule as the step size &
decreases (o zero. In cases where the derivatives of f(x) are known, the formulas

(b = a) [P ()2 - fent
. 5 and Es(f h) = 150

Er(fih) =
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can be used to estimate the number of subintervals required to achieve a specified
accuracy.

Coro.tlarj 7.2 (Trapezoidal Rule: Error Analysis). Suppose that [a, b] is subdi-
vided into M subintervals [x;, x¢41] of width 4 = (b — a)/M. The composite trape-
zoidal rule

M-1
M T(fh) = —;(f(a) + SN+ Y fx)
k=1

is an approximation to the integral
b
(®) [ reoax=1¢m+Erirm.
a
Furthermore, if f € C?[a, b], there exists a value ¢ with g < ¢ < b so that the ciror

term £1{ f, k) has the form

(b —a)fP(c)h?

= 0.
12 Oh=)

) Er(f . h)=

Proof. 'We first determine the error term when the rule is applied over [xg, x1]. Inte-
grating the Lagrange polynomial P;{x) and its retnainder yields

x x Xl (v — 2)
(10) flf(x)dx=f]P1(Jc)dx+f (x = xo)(x ;”f € 4.
X0 xQ X .

Q0

The term (x — x¢)(x — x1) does not change sign on [xg, x;], and f(z)(c(x)) is contin-
uous. Hence the second Mean Value Thecrem for integrals implies that there exists a
value ¢} so that

M (x — xp)(x — x1) d

(11) /x'f(x)dx=g(fo+f1)+f(2’(c1)[ —
X0

W Xy

Use the change of variable x = xp -+ k¢ in the integral on the right side of (11):

x| 2) |
[ flx)dx = g(fo+f|)+ -{-;—Cl)fo h(t — Okt — Dhdt
X0

O’ )

a2) “rhrmrd (“L—](zz—r)dr
2 2 0
CYIRE
=2+ - L0

2 12
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Now we are ready to add up the error terms for all of the intervals [xg, Xrp+1]):

b M X
f f@dx=3"[  f&dx
a k=1 Y Tk-1

v o B
=I§E(f(xk—l)+f(xk))—EZf (cp).

k=1

The first sum is the composite trapezoidal rule T ( £, k). In the second term, one factor
of h is replaced with its equivalent A = (b — a)}/M, and the result is

a)h‘ ( Zf(z)(ck))

The term in parentheses can be recognized as an average of values for the second
derivative and hence is replaced by f(c). Therefore, we have established that

f fx)dx =T(f h) -

b (b - a)fP(c)h?
| rwar=r(m - ERLEO
a 12
and the proof of Corollary 7.2 is complete. .
Corollary 7.3 (Simpson’s Rule: Error Analysis). Suppose that [a, b] is subdivided

into 2 subintervals [xr, xit1] of equal width i = (b — a)/(2M). The composite
Simpson rule

h 2p M=l ah .
A9 SURy = 3@+ 6N+ 3 flaw) + 5 3 flun)
k=] k=I
is an approximation to the integral

b
(15) f Sx)dx =5(f, h)+ Es(f, h).

Furthermore, if f & C*[a, b], there exists a value ¢ with g < ¢ << b so that the error
term Es(f, 1) has the form

—(b—a)f P ()h?
180

(16 Es(f h) = = OUi*).

Example 7.7. Consider f(x) = 2 4 sin(2.,/x). Investigate the error when the compos-
ite trapezoidal rule is used over [1, 6] and the number of subintervals is 10, 20, 40, 80,
and 160.



360 CHAP. 7 NUMERICAL INTEGRATION

Table 7.2  The Composite Trapezoidal Rule for

f(x) =2 +sin{2./x) over [1, 6]

M A T k) Ex(f h)= OHD
10 | 05 8.19385457 —0.01037540
20 | 025 8.18604926 —(.00257006
40 | 0.125 8.18412019 —0.00064098
80 | 0.0625 8.18363935 —0.00016015
160 | 0.03125 | 8.18351924 —0.00004003
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Table7.3 The Composite Trapezoidal Rule for

f(x) = 2 +5in(2/X) over [1, 6]

M k S(F,R) Es(f. k) = O
51| 05 $.18301549 0.00046371

10 | 025 8.18344750 0.00003171

20 | 0125 8.18347717 0.00000204

40 | 0.0625 $.18347908 0.00000013

80 | 003125 | 8.18347920 0.00000001

Tabie 7.2 shows the approximations 7' ( £, /). The antiderivative of f(x) is

sin(2\ﬁf_)

Flx) = 2x — /xcos(2/3) + 5

and the true value of the definite integral is

5
=6
fl Flodx = F(x)r’_l = 8.1834792077.

This value was used to compute the values Er(f, i) = 8.1834792077 — T(f. i) in Ta
ble 7.2. It is important to observe that when h is reduced by a factor of % the successive
errors E7(f, ) are diminished by approximately %. This confirms that the order is O (#2)

]

E;:ample 7.8. Consider f(x) = 2 + sin{2./x). Investigate the error when the compusite

Simpson rule is used over [1, 6] and the number of subintervals is 10, 20, 40, &0, and 160
Table 7.3 shows the approximations S(f, #). The true value of the integral i‘s
8.1834792077, which was used to compute the values Es(f, h) = 8.1834792077 - 5(f, h)
in Table 7.3. Itis important to observe that when h is reduced by a factor of % the succéss!ive
errors Es( f. k) are diminished by approximately %. This confirms that the order is @ (h*).
(]

Example 7.9. Find the number M and the step size 4 so that the error E7(f, A} for the
composite trapezoidal rule is less than 5 x 10~ for the approximation f; dx /x. = T(f h).

(Z)The imcgr;md is f(x? = 1/x and its first two derivatives are f'(x) = —1/x? and
F2(x) = 2/x3. The maximum value of | '?(x)| taken over [2, 7] occurs at the end point
x = 2, and thus we have the bound | f@(c)] < [fP Q) = %, for2 < ¢ = 7. This is used
with formula (9) to obtain T

~ G- fPEkY _ 0=k _ sk

a7 \Er(f.h)| =] AL Gt L L

The step size k and number M satisfy the relation 2 = 5/M, and this is used in (17) to get
the relation

”
P

'5—2 <5x 1677

p E
(18) |ET(f, 1) = BM

Now rewrite (18) so that it is easier to solve for M:

(19) %’g' % 107 < M?,

Solving (19), we find that 22821.77 < M. Since M must be an integer, we choose M =
22,822, and the comesponding step size is b = 5/22,822 == 0.000219086846. When the
composite trapezoidal rule is implemented with this many function evaluations, there is a
possibility that the rounded-off function evaluations will produce a significant amount of
error. When the computation was performed, the result was

5
Tl = 1.252762969,
(f 22,822) ! 9
which compares favorably with the true value f; dx/x = l'n(x)ljj = 1.252762968. The
error is smalier than predicted because the bound % for|f ()| was used. Experimentation
shows that it takes about 10,001 function evaluations to achieve the desired accuracy of

S » 10~°, and when the calculation is performed with M = 10,000, the result is

5
T f, —— | = 1.252762973
I ( 0, OOO) 527629

The composite trapezoidal rule usually requires a large number of function eval-
uations to achieve an accurate answer. This is contrasted int the next example with

Simpson’s rule, which will require significantly fewer evaiuations.
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Example 7.10. Find the number M and the step size A so that the error Es(f, A) for the
composite Simpson rule is less than 5 x 107 for the approximation f; dx/x = S(f h).

The integrand is f(x) = 1/x, and £ (x) = 24/x>. The maximurh value of | f“*}{c))
taken over [2, 7} occurs at the end point x == 2, and thus we have the bound | f)(c)| <
If® @) = 2 for 2 < c < 7. This is used with formula (16) to obtain

|- b-af SR T-23¢ K
180 T180 48

(20) |Es(f. b} =

The step size k and number M satis{ly the relation & = 5/(2M), and this is used in (20) to
get the relation

625 5
Qn 1Es(f. B} = TeaME =5x%x10

Now rewrite (21) so that it is easier to solve for M:

125 0 4
(22) %E x 107 < M".

Solving (22), we find that 112.95 < M. Since M must be an integer, we chose M = 113
and the corresponding step size is 2 = 5/226 = 0.02212389381. When the composite
Simpson rule was performed, the result was

5
S[f — ) =1.252762969,
(f 226) i

which agrees with jg dx/x = ]n(x)lizg = 1.252762968. Experimentation shows that it
takes about 129 function evaluations to achieve the desired accuracy of 5 x 1077, and when
the calculation is performed with M = 64, the resuit is

5
,— | = 1.252762973.
S(f 123) 1.252762973 .

So we see that the composite Simpsorn: rule using 229 evaluations of f(x) and
the composite trapezoidal rule using 22,823 evaluations of f(x) achieve the same ac-
curacy. In Example 7.10, Simpson’s rule required about Wl)ﬁ the number of function
evaluations,
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(Program 7.1 (Composite Trapezoidal Rule). To approximate the integral

f rwdx~ @+ fen+h Y ram

k=1

by sampling f(x) at the M + 1 equally spaced points x; = a + kh, fork =0, 1, 2,
., M. Notice that xg = a and xpy = b.

function s=traprl(f,a,b,M)

#Input - f is the integrand input as a string ’f’
% - a and b are upper and lower limits of integration
% ~ M is the number of subintervals
%Output - s is the trapezoidal rule sum
h=({b-a)/M;
s=0;
for k=1:(M-1)
x=a+h*k;
s=s+feval(f,x);
end

s=h* (feval (f,a)+feval (f,b))/2+h*s;

Program 7.2 (Composite Simpson Rule). To approximate the integral

f fx)dx ~—(f(a)+f(b))+-— Z flw) + 2 Zf(xu 1

by sampling f{x) at the 2M + 1 equally spaced points x;; = a + kh, fork =0, 1,

T2,...,2M. Notice that xg = a and xy4y = b.

function s=simprl(f,a,b,M)

“Input - f is the integrand input as a string 'f’
% - 2 and b are upper and lower limits of integration
% - M is the number of subintervals

% Output - s is the simpson rule sum
h=(b-a}/{2*M) ;
81=0;
82=0;
for k=1:M
' x=a+h (2wk~1) ;
si=sl+feval (f,x);
end ‘
for k=1:(M-1}
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=a+h*2*k ;
s2=g2+feval (f,x);
end .

s=h*(feval (f ,a)+feval (f,b) +4*81+24s2) /3;

Exercises for Composite Trapezoidal and Simpson’s Rule

1. (i) Approximate each integral using the composite trapezoidal rule with M = 10.
(ii) Approximate each integral using the composite Simpson rule with M = 5.

@ [0+ ) ffersin@yENdr © [ di/VE
d) [y x2e v dx (® f72xcos(x)dx ® [T sinx)e " dx

2, 'Length of a curve. The arc length of the curve y = f(x)overthe intervala < x < |
is -

b
length = / V1+ (w2 dsx.

(i) Approximate the arc length of each function using the composite trapezoidal
rule with M = 10.

(ii) Approximate the arc length of each function using the composite Simpson rule

with M = 5.
(@ f(x)=x’ for O0=xxl
(b} f(x) =sin{x) for 0<x=<wmn/4
© flxy=e* for 0=x<1

3. Surface area. The solid of revolution obtained by ratating the region under the
y = f(x), where a < x < b, about the x-axis has surface area given by

b .
area == 2::/ FEWW T+ (Fxn*dx.
a

(i) Approximate the surface area using the composite trapezoidal rule with 47 —

10.
(i) Approximate the surface area using the composite Simpson rule with M = 5.
(a} flx)=x> for O0=<x<|

(b)) f(x) = sin{x) for O<x<w/4
(€) flx)=e~ for O0=<x=x<|
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(a) Verify that the trapezoidal rule (M = 1, A = 1) is exact for polynomials of
degree < [ of the form f(x) = e1x + cp over [0, 1].

(b) Use the integrand f(x) = cax? and verify that the error term for the trapezoidal
rule (M = 1, h = 1) over the interval [0, 1] is

~(b—a)fP(c)h?

Er(f.h) = -

. (a) Verify that Simpson’s rule (M == 1, h = 1) is exact for polynomials of degree

< 3 of the form f(x) = e3x® + cax? + c1x + co over [0, 2].
(b} Use the integrand f(x) = csx* and verify that the error term for Simpson’s rule
(M = 1, h = 1) over the interval [0, 2] is

—(b ~a) f D ()h*

Es(f.h) = 180

. Derive the trapezoidal rule (M = 1, # = 1) by using the method of undetermined

coefficients.

(a) Find the constants wg and w) so that _[01 g(t)dt = wogl(0)+ w;g(1})is exact for
the two functions g(t) = land g(*) = 1.

(b} Use the relation f(xg + At) = g(¢) and the change of variable x = xp + Ar and
dx = hdr to translate the trapezoidal rule over [0, 1] to the interval {xo. x1].

Hint for part (a). You will get a linear system involving the two unknowns wg and w;.

. Derive Simpson’s rule (M = 1, A = 1) by using the method of undetermined coeffi-

cients.
(a) Find the constants wg, w;, and wy so that fez gt)ydt = wog(0) + wng(l) +

w2 g(2) is exact for the three functions g(r) = 1, g(t} = ¢, and g(#) = 2
(b) Use the relation f(xp + Af) = g(r) and the change of variable x = xo + Ar and

dx = hdt to translate the trapezoidal rule over [0, 2] to the interval [xg, x2].
Hint for part (a). You will get a linear system involving the three unknowns wy, w1,
and wy.
Determine the number M and the interval width k so that the composite trapezoidal
rule for M subintervals can be used to compute the given integral with an accuracy of
5% 107°.

/6 3 1 2 ]
(1) cos{x) dx (b f dx {c) f xe Y dx
2 5—x 0

—-n/6
Hint for part c). f@(x) = (x — e *.
Determine the number M and the interval width A so that the composite Simpson rule
for 2M subintervals can be used to compute the given integral with an accuracy of
5% 107°.
x/6 3 1 2
(a) cos(x) dx (b) [ dx (c) / xe™* dx
z S—x 0

- /6

Hint for part (c). F®x) = (x —de™.
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10. Consider the definite integral ff&l cos(x)dx = 2sin{0.1) = 0.1996668333, The
following table gives approximations using the composite trapezoidal rule. Calcwkate
ET(f, h) = 0.199668 — T( f, h) and confirm that the order is O (k).

M h S(f.h) ET(f h) = O(h)
1 0.2 0.1990003
2 0.1 0.1995004
4 0.05 0.1996252
8 0.025 0.19%6564
16 0.0125 0.1996642

11. Consider the definite integral f 0.75 €08(x) dx = 2sin(0.75) = 1.363277520. The
following table gives approximations using the composite Simpson rule. Calcwukate
Es(f, /) = 13632775 — S5(f, k) and confirm that the order is O (h*).

M h S(f, b Es(f, h) = O(hY
1 0.75 1.3658444
2 1 0375 1.3634298
4 | 0.1875 1.3632869
g8 | 0.09375 1.3632781

12. Midpoint rule. The midpoint rule on [xg, x1] is

— X0

X1 h h3 X
dx = — — (D el Bl
-[Xn fydx hf(xo+2)+24f (c1),  Wwhere A 5

{a) Expand F(x), the antiderivative of f(x), in a Taylor series about xy + 4/2 and
establish the midpoint rule on [xg, x1].

(b} Use part (a) and show that the compesite midpoint rule for approximating the
integral of f(x) over [a, b] is

N
M(ﬁh):hg;f(a+(k~%)h), whcreh:b;{a.

This is an approximation to the integral of £ (x) over [a, b], and we write

b
[ Flxydx = M(f, h).

(c} Show that the error term Ep{( f. k) for part (b) is

(b —a) fP(c)n?

_ 2
N = O(h*).

B
Em(fihy =573 fPlen) =
k=1

13. Use the midpoint rule with M = 10 to approximate the integrals in Exercise 1.
14, Prove Corollary 7.3

S
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Algorithms and Programs

1. (a) For each integral in Exercise 1, compute M and the interval width & so that the

ta

composite wrapezoidal rale can be used to compute the given integral with an
accuracy of nine decimal places. Use Program 7.1 to approximate each integral.
(b) For each integral in Exercise 1, compute M and the interval width & so that the
composite Simpson’s tule can be used to compute the given integral with an
accuracy of nine decimal places. Use Program 7.2 to approximate each integral.

. Use Program 7.2 to approximate the definite integrals in Exercise 2 with an accuracy

of 11 decimal places.

. The composite trapezoidal rule can be adapted to integrate a function known only at

a set of points. Adapt Program 7.1 to approximate the integral of 2 function over
an interval [a, b] that passes through M given points. (Note. The nodes need not
be equally spaced.) Use this program to approximate the integral of a function that

13
passes through the points [(vkz +1, k1/3) Ik .

. The composite Simpson’s rule can be adapted to integrate a function known only at

a set of points. Adapt Program 7.2 to approximate the integral of a function over
an interval [a, b] that passes through M given points. (Note. The nodes need not
be equally spaced.) Use this program o approximate the integral of a function that

passes through the points l(vkl k1/3)! e

. Modify Program 7.1 so that it uses the composite midpoint rule (Exercise 12} to

approximate the integral of f(x) over [a, £]. Use this program to approximate the
definite integrals in Exercise 1 with an accuracy of 11 decimal places.

. Obtain approximations to each of the fellowing definite integrals with an accuracy of

ten decimal places. Use any of the programs from this section.

\fAm 35 —1073
(a) f sin(1/x)dx (h) f

177 +10-5 sm(l/x)

. The following example shows how Simpson’s rule can be used to approximate the

solution of an integral equation. The equation vix) = x240.1 fol (24w di isto
be solved using Simpson’s rule with h = 1/2. Letg =0, ¢ = 1/2, and t; = 1; then

]
f (X +u(rde = %((xﬁ + Gvg + 4()6,% + %)vl + (x,? + D).
4]
Let
o v(xn) = x2 +o.1(é((x,% + 0)vp + 4(x2 + %)ul + (x2 + D2}

Substituting xg = 0, x; = 1/2, and x = 1 into equation (1) yields the system of
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linear equations:
1
v =0+ —((D)Uo + 2vy + v2)
1
7 60(4UO+3U1 + - vz)
n=1+ a(vo+6v1 + 2u3)

e v =

Substituting the solution of system (2) (vg = 0.0273, v; = 0.2866, v2» = 1.0646) into
equation (1) and simplifying yields the approximation

(3) v{x) = 1.037305x% + 0.027297.

(a} As a check, substitute the solution into the right-hand side of the integral equza-
tion, integrate and simplify the right-hand side, and compare the result with the
approximation in (3).

(b) Use the composite Simpson rule with 2 = 0.5 to approximate the solution of
the integral equation

1
v(x) =x7 +0.1 f (2 + DHu(r) de.
0

Use the procedure outlined in part (a) to check your solution.

Recursive Rules and Romberg Integration

In this section we show how to compute Simpson approximations with a special linear
combination of trapezoidal rules. The approximation will have greater accuracy if one
uses a larger number of subintervals. How many should we choose? The sequential
process helps answer this question by trying two subintervals, four subintervals, and
so on, until the desired accuracy is obtained. First, a sequence {T'(J)} of trapezoidal
rule approximations must be generated. As the number of subintervals is doubled, the
number of function values is roughly doubled, because the function must be evaluated
at all the previous points and at the midpoints of the previous subintervals (see Fig~
ure 7.8). Thearem 7.4 explains how to eliminate redundant function evaluations and
additions.

Theorem 7.4 (Successive Trapezoidal Rules). Suppose that J > | and the point3
{xx = a + kk} subdivide [a, b] into 27 = 2M subintervals of equal width h =
(b—a) /2*’ . The trapezoidal rules T (f, k) and T( f, 2h) obey the relationship

T(f 2h)

(1 T(f.h) = +hZf(X2k D.
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y=f(x)

{a) (b)

y=fx}

() ()
Figure 7.8 (a) T(0) is the area under 2% =1 trapezoid. (b) T(1) is the area under

2! = 2 trapezoids. (c) 7'(2) is the area under 2 =4 trapezoids. (d} T(3) is the area
under 2% = 8 trapezoids.

Definition 7.3 (Sequence of Trapezoidal Rules). Define T(0) = (h/2)(f(2) +
f(b)), which is the trapezoidal rule with step size h == b —a. Then foreach J > 1
define T(J) = T(f, h), where T(f, ) is the trapezoidal rule with step size o =
(b~ a)/2’. A

Corollary 7.4 (Recursive Trapezoidal Rule). Start with T(0) = (h/2)(f(a} +
(F(8)). Then a sequence of trapezoidal rules {T(J)} is generated by the recursive
formula

@) T(J) = ZLJ___ +hZf(x2k D for J=1,2
where h = (b — a)/27 and {x; = a + kh).

Proof For the even nodes xg < x3 < - -
rule with step size 2k:

< XaM—2 < Xapm, we use the trapezoidal

2h
(3) T(J-1)= T(fln 42 +4+2fa+ -+ 2fm-a+2 -2+ frm).

For all of the nodes xg < x1 < x2 < -+ < X2p—} < X2, We use the trapezoidal rule
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with step size h:

h p

@) ST = E(fo +2h+2f+ - +2fam-2+2fou-1 + fom).
Coilecting the even and odd subscripts in (4) yields

h M
(5) T =5(fo+2fa++2fm2+ fr) +h Y fu-r.

k=1

Substituting (3) into (5) results in T(J) = T(J — 1}/2+h 3}, fou-1, and the proof
of the theorem is complete. »
Example 7.11. Use the sequential trapezoidal rule to compute the approximations 7' (()

T(1), T(2). and T (3} for the integrat f15 dx/x = In€5) — In(1) = 1.609437912.
Table 7.4 shows the nine values required to compute 7'(3) and the midpoints required
to compute T(1), T(2), and T (3). Details for obtaining the results are as follows:

4
Whenh=4: T{0)= 5(1 000000 + 0.200000) = 2.400000.
T(0)

Whenh =2: T(l)= - + 2(0.333333)
= 1.200000 + 0.666666 = 1.366666.
Whenih=1: TQ)= L:(ZQ + 1(0.500000 + 0.250000)
=0.933333 4+ 0.750000 = 1.683333.
When h = %: T3y = ? + %(0‘.666667 + 0.400000
+0.285714 + 0.222222)
= 0.841667 + 0.787302 = 1.628968. u

Our next result shows an important relationship between the trapezoidal rule and
Simpson’s rule. When the trapezoidal rule is computed using step sizes 2k and A,
the result is T(f, 2k} and T(f, h), respectively. These values are combined to obtain

Simpson's rule:

AT(f ) —T(f. 2k
© S(f. k) = (/. )% (f. 2k}

Theorem 7.5 (Recursive Simpson Rules). Suppose that {T(J)} is the sequence of
trapezoidal rules generated by Corollary 7.4. If J > 1 and $(J) is Simpson’s rule For
24 subintervals of [a, b, then $(J) and the trapezoidal rules T(J — 1) and T(J) obey
the relationship

4T()-T(J - 1)

for J =1, 2, ....
3 r

(7 S(hH =
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Table 7.4 The Ning Points Used to Compute T(3) and the Midpoints Required to C.
T(1), T(2), ad 7(3) o T o Compue

1 End pgints for Midpo.ints for Midpoints for Midpoints for

x ([ f(xy= T computing T'(9) | computing T(1) | computing T (2) computing T'(3)
1.0 | 1.000000 1.000000
1.5 [ 0.666667 66661

0.
2.0 | 3.500000 0.500000 &
2.5 | 0.400000

0.4000(
3.0 [ 0.333333 0.333333 .
3.5 [0.285714

0.
4.0 | 0.250000 0.250000 mone
4.5 {0.222222 2
5.0 | 0.200000 0.200000 M

Proof. The trapezoidal rule T(J) with step size A yields the approximation

h

b
® fa F@dx = Z(fo+2fi +2f2+ -+ 2fam—2 + 2 a1 + fom)

2
=T{J).

The trapezoidal rule T'(J — 1) with step size 24 produces

b
©) f FEYx % h(fo+2f2 4+ 2fays+ for) = T(J — 1),

Multiplying relation (8) by 4 yields

b
G0 4 TR AA A A st A+ 2500

= 4T(J).

Mew subtract (9) from (10) and the result is

b
() 3/; FWde=h(fo+4ft +2fi+- - +2fam_a+4fop_ + fam)

=4T () =T - 1).
“This can be rearranged to obtain

(2)

_ AT =T - 1)

3

4 h
fa fdx = ;(fo +4N+2h+ -+ 2fam2 + 4 famo1 + Fom)

e middle term in (12) is Simpson’s rule S(J) = S(f, ) and hence the theorem is

proved.
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Example 7.12. Use the sequential Simpson rule to compute the approximations §(1),
5(2), and S(3) for the integral of Example 7.11.
Using the results of Example 7.11 and formula (7) with J = 1, 2, and 3, we compute

4T(1) ~ T(0) _ 4(1.866666) — 2.400000

S = 3 3 = 1.688888,
§(2) = 4T(2)?:- Ty _ 4(1.683333;— 1.866666 1622222,
S03) = 4T(3)3— T(2) - 4(1.628968;— 1.683333 — 1.610846. -

In Section 7.1 the formula for Boole’s rule was given in Theorem 7.1. It was
obtained by integrating the Lagrange polynomial of degree 4 based on the nodes xy,
x|, x2, x3, and x4. An alternative method for establishing Boole’s rule is mentioned
in the exercises. When it is applied M times over 4M equally spaced subintervals of
[a, b] of step size # = (b — a)/(4M}, we call it the composite Boole rule:

2h &
(13) B(fik) =3z Zl(7f4k—4 + 32 fag—3 + 12 fap—2 + 32 far—1 + 7 far).
=1

The next result gives the relationship between the sequential Boole and Simpson rules.

Theorem 7.6 (Recursive Boole Rules). Suppose that {5(J)} is the sequence of
Simpson’s rules generated by Theorem 7.5. If J > 2 and B(J) is Boole’s rule for
2/ subintervals of [a, b], then B(J) and Simpson’s rules S(J — 1) and 5(J) obey the

relationship
16S(Jy—S(J - 1)
15

Proof. The proof is left as an exercise for the reader. .

(14) B{J)= for J =23, ....

Example 7.13. Use the sequential Boole rule to compute the approximations B(2) and

B(3) for the integral of Exampie 7.11.
Using the results of Example 7.12 and formula (14) with J = 2 and 3, we compute

165(2) — 5(1) _ 16(1.622222) — 1.688888

B(2) = 5 5 = 1.617778,
B(3) = 165(3)15—- S(2) - 16(1.6]084(1:)5— 1.622222 — 1.610088. .

The reader may wonder what we are leading up to. We will now show that for
mulas {7) and (i4) are special cases of the process of Romberg integration. Let ug
announce that the next level of approximation for the integral of Example 7.11 is

64B(3) — B(2) 64(1.610088) — 1.617778
63 - 63
and this answer gives an accuracy of five decimal places.

= 1.609490,
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Romberg Integration

In Section 7.2 we saw that the error terms Er(f, #) and Es(f, h) for the composite
trapezoidal rule and composite Simpson rule are of order O (h?) and O{#*), respec-
tively. It is not difficult to show that the error term Eg( f, k) for the composite Boole
rule is of the order O (h®). Thus we have the pattern

b

(15) flxydx =T(f h) + Oh?),
b

(16) fx)dx = S(f, hy+ O ("),
]

an f f(x)dx = B(f, h}+ O(r%).

The pattern for the remainders in (15} through (17) is extended in the following
sense. Suppose that an approximation rule is vsed with step sizes 4 and 24; then an al-
gebraic manipulation of the two answers is used to produce an improved answer. Each
successive level of improvement increases the order of the error term from Q(A*Y)
to O(h2V+?). This process, called Romberg integration, has its strengths and weak-
nesses.

The Newton-Cotes rules are seldom used past Boole’s rule. This is because the
nine-point Newton-Cotes quadrature rule involves negative weights, and all the rules
past the ten-point rule involve negative weights. This could introduce loss of signif-
itance error due to round off. The Romberg method has the advantages that all the
weights are positive and the equally spaced abscissas are easy to compute.

A computational weakness of Romberg integration is that twice as many function
evaluations are needed to decrease the error from O (h2V) to O(R2N+2), The use of the
sequential rules will help keep the number of computations down. The development
of Romberg integration relies on the theoretical assumption that, if f € CV[a, &]
for all N, then the error term for the trapezoidal rule can be represented in a series
involving only even powers of h; that is,

b
8 ] FO)dx = T(f, by + Er(f. h),
a
where
(19 Er{fih)=ath® +ah* +ash® +--- .

A derivation of formula (19) can be found in Reference [153].

Since only even powers of & can occur in {19), the Richardson improvement pro-
cess is used successively first to eliminate a;y, next to eliminate a, then to eliminate a3,
aad so on. This process generates quadrature formulas whose erTor terms have even
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orders O (h%), O(k%), O(h%), and so on. We shall show that the first improvement is
Simpson’s rule for 2M intervals. Start with T(f, 2k) and T(, ) and the equations

rb
(20) j flx)dx = T(f, 2h) + adh* + a2 168 + a364hS + . ..
and
b 4 6
(21) f fxydx =T(f by +ath® + ah* +ash® + -
a

Multiply equation (21) by 4 and obtain
22) 4 [b Fx)dx =4T(f. ) + a14h% + axdh® + a;4n® + .
Ja
Eliminate a; by subtracting (20) from (22). The result is
(23) 3/bf(x)dx =4T(f. by — T(f, 2h) — a212h* — a560h% — ... .
a

Now divide equation (23) by 3 and rename the coefficients in the series:

b 1 — , 2h
24) ff(x)dxz‘”(f""f(f Dy bkt bk -

As noted in (6), the first quantity on the right side of {24) is Simpson’s rule S({f, /).
This shows that E5( £, k) involves only even powers of h:

b
(25) f Fx)dx = S(f h) + b1h* + bah® + b3h® + - .

To show that the second improvement is Boole’s rule, start with (25) and write
down the formula involving S(f, 2h):

]
(26) f f(xydx = S(f, 2k) + by 16h* + 26415 + b3256R5 + - - .
a

When b is eliminated from (25) and (26), the result involves Boole’s rule:

b 168(f, h) — S(f.2h)  by48K®  b3240h%
ffmdx: 15 T T 15
by48RS  By240h8

15 15

27 a

= B(f. h)—
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The general pattern for Romberg integration relies on Lemma 7.1.

Lemma 7.1 (Richardson’s Improvement for Romberg Integration). Given two
approximations R(2k, K — 1) and R(h, K — 1) for the quantity Q that satisfy

2%) Q=R K—1)+c1h®® 4 ep?6+2

aind

1) O = R2h, K — 1)+ 451K 4 cyaKtip2k+2 o
an improved approximation has the form

_ 4 R, K- 1)—R(2h, K - 1)
- 4K 4

130) 0 + OR*E+2)

The proof is straightforward and is left for the reader.

Definition 7.4. Define the sequence {R(J, K} :J > K 172 of quadrature formulus
for f(x) over [a, b] as follows

R(J,0)=T(J) forJ > 0,isthe sequential trapezoidal rule.
31 R(I.1)=S8(J) forJ>1,isthe sequential Simpson rule.
R(J,2)=B(JY forJ =2, isthe sequential Boole’s rule. A
The starting rules, {R(J, 0)), are used to generate the first improvement, {R(J, 1)},
which in turn is used to generate the second improvement, {R(J/, 2)}. We have already

seen the patterns

4'R(J,0) — R(J — 1,0)

R(J. 1) = for J > 1
- 41
G2 BRI, D —RUJ -1,1

R, 2 = 2 L;_;‘ Ll Y

which are the rules in (24) and (27) stated using the notation in (31). The general ruic
for constructing improvements is

ERJLK-1—RJI~1,K - 1)

ek ] for J > K.

(33) R(J.K)=
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Table 7.5 Romberg Integration Tableau

R(J,0) R(J, 1) R(J,2) R(J,3) R(J,4)
Trapezoidal Simpson’s Boole’s Third Fourth
J rule rule rule improvement improvement
0 R{(0,0).

| R(1,0)—— R(1. 1)
2 R0\ R(2. 1) R(2, 2)

3 R(3.0) RO R(3. 2} R(3,3)
4 R{4,0) R(4. 1) R4, 2) — R(4, 3\\\-._ R(4.4)

Table 7.6 Romberg Integration Tableau for Example 7.14
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“Table 7.7 Romberg Error Tableau for Example 7.14

377

J| A B0y =0%d) | EU. ) =00Y | EUJ,2) =005 | E(1,3) =005
0| b—a | —1.252799263670

i > 9 | ~0.311384770309 | 0.002420060811

2|2 ;“ —0.077663260503 | 0.000243900432 | 0.000(098832673

31t ; 2 | —0.019403478989 | 0.000016448182 | 0.000001284099 | —0.000000264291
4 bl;ﬁ“ —0.004850085262 | 0.000001045980 | 0.000000019167 | —0.000000000912
5|2 3‘2“ —0.001212472077 |  0.000000065651 | 0.000000000296 | —0.000000000003

R(J,0) R(J,1) R(J.2) R(J.3)

Trapezoidal Simpson’s Boole's Third
S rule rule rute iraprovement
0 0.785398163397
1 1,726812656758 2.040617487878
2 1.960534166564 2.038441336499 2.038296259740
3 2.018793948078 2.038213875249 2.038198711166 2.038197162776
4 2.033347341805 2.038198473047 2.038197446234 2.038197426156
5 2.036984954990 2.038197492719 2.038197427363 2.038197427064

For computational purposes, the values R(J, X) are arranged in the Romberg integra:
tion tableau given in Table 7.5,

Example 7.14. Use Romberg integration to find approximations for the definite integral

2 n 7t
fo (x“+x+1costx)dx = -2+ 7 + 7= 2.038197427067 ....

The computations are given in Table 7.6. In each column the numbers are converging
to the value 2.038197427067 . . .. The values in the Simpson’s rule column converge faste!
than the values in the trapezoidal rule column. For this example, convergence in column:
to the right is faster than the adjacent column to the left.

Convergence of the Romberg values in Table 7.6 is easier to see if we look at the erro)
terms E(J, K) = —=247/2+n?/4— R(J, K). Suppose that the interval widthis A = b—¢
and that the higher derivatives of f(x) are of the same magnitude. The error in column K
of the Romberg table diminishes by about a factor of 1/22K+2 = 1/4%+1 a5 one progresse:
down its rows. The errors E(J, ) diminish by a factor of 1/4, the errors E{.J, 1) diminist
by a factor of 1/16, and so on. This can be observed by inspecting the entries {E(J, K)} in
Table 7.7. E

Theorem 7.7 (Precision of Romberg Integration). Assume that f € C*X+2[q b].
Then the truncation error term for the Romberg approximation is given in the formula

b "
34 f fx)ydx = R(J, K) + bgh*¥ T2 fEKD (o) 1)

= R(J, K) + O(n*K+%),

where h = (b — a)/2“', by is a constant that depends on K, and ¢y ¢ € [a, b]; see
Reference [153], page 126.
Example 7.15. Apply Theorem 7.7 and show that

2
/ 10x% dx = 1024 = R4, 4).
JO

The integrand is f(x) = 10x°, and fU%(x) = 0. Thus the value K = 4 will make the
error term identically zero. A numerical computation will produce R(4, 4) = 1024. [

Program 7.3 (Recursive Trapezoidal Rule). To approximate

b PR
fa fwdr = gj(f(xk_o + F)

by using the trapezoidal rule and successively increasing the number of subixztervals
of [a, b]. The Jth iteration samples f{x) at 27 + 1 equally spaced points.

function T=rctrap(f,a,b,n)
%Input - f is the integrand input as a string i



378 CHAP.7 NUMERICAL INTEGRATION SEC.7.3 RECURSIVE RULES AND ROMBERG INTEGRATION 379

% - a and b are upper and lower limits of integration % - b is the smallest step size used
% - n is the number of times for recursiomn M=1:

#O0utput - T is the recursive trapezoidal rule list h=b-a;

M=1; err=1;

h:b—a; J=0;

T=zeros(1,n+1);
T(1)=h*(feval(f,a)+feval (£,b))/2;

R=zeros(4,4);
R(1,1)=h*(feval(f,a)+feval (f,b)) /2;
while((err>tol)&(J<n)) | (J<4)

for j=1l:n
M=2%M; J=J+1;
h=h/2; h=h/2;
s=0; 8=0;
for k=1:M/2 for p=1:M

x=a+h*(2xk-1);
s=s+feval (f,x);

X=a+h* (Z*P—i) :
s=s+feval (f,x);

end end
T(j+1)=T(j)/2+h*s; RO, D=R0, 1) /2¢nss;
end M2
for K=1:J
Program 7.4 (Romberg Integration). To approximate the integral dR (J+1,K+1) =R(J+1,K)+(R(J+1,K)-R(J KDY/ (47K-1);
en
b
N err=abs(R{J,J)-R{J+1,K+1));
L fxydx = R(J, ) end

by generaiing a table of approximations R(J, K) for J > K and usirg
R(J + 1,J + 1) as the final answer. The approximations R(J, K) are stored in
a special lower-triangular matrix. The elements R(J, 0) of column 0 are computed
using the sequential trapezoidal rule based on 2/ subintervals of [a, b]; then R(J, K)
is computed using Romberg’s rule.

The elements of row J are

RULK-D-RUJ-1,KE-1)
4K 7]

R(ULKyY=R(J,K-1D+

+

for 1 = K =< J. The program is terminated in the (J + 1)st row when
IR(J,J}y— R(J+ 1.7+ 1)] < tol.

function [R,quad,err. hl=romber(f,a,b,n,tol)

quad=R(J+1, K J+1);

Exercises for Recursive Rules and Romberg Integration

1. For each of the following definite integrals, construct (by h
, and) 2 Romb
(Table 7.5) with three rows. Y ) ermberg able

3 sin(2x)
a =
(a) ./0 T+52 dx =0.6717578646 . ..

3
(b) f sin(dx)e™ > dx = 0.1997146621 .
0

LS|

{c) f —dx =16
ot /x
2

%Input - f is the integrand input as a string ’f’ 1
Y, - a and b are upper and lower limits of integration @ b 24 L dx = 44713993943,

% - n is the maximum number of rows in the table 2 ’ 10

“ - tol is the tolerance © sin (1) dx = 1.1140744942 ..
#Output - R is the Romberg table lé(Zar) x

% - quad is the quadrature value e}

A - :rr is the egror estimate ® ,/0. V4 - xldx =7 =3.1415026535 ..
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2. Assume that the sequential trapezoidal rule convergesto L (ie., lim; oo T(J) = L).
{(a). Show that the sequential Simpson rule convergesto L (i.e., imyse S(J) = L).
(b} Show that the sequential Boole rule converges to L (i.e., lim; o B(J) = L).

3, (a) Verify that Boole's rule (M = 1, & = 1) is exact for polynomials of degree < 3

of the form f(x) = csx® + cax* + - + c1x + co over [0, 4].
(b) Use the integrand f(x) = cex® and verify that the error term for Boole’s rule
(M = 1, h = 1) over the interval {0, 4] is

—2b — a) FO(c)A®
945 :

Eﬂ(fah) =

4, Derive Boole’s rule (M = 1, & = 1) by using the method of undetermined cocti-
cients: Find the constants wy, w1, w2, w3, and wy so that

4
fo g(r) dr = wog(0) + wig(1) + wag(2) + wag(3) +wagd)

is exact for the five functions g(1) = 1, ¢, 12, +°, and r*. Hint. You will get the | ear
system:

wpt+wy+ wr4 wit+  wa=4
wi+ 2wr+ 3wi+ 4wy =8

w) + 4wz + Yws+ 16w4=—3—

w] + 8wz 4+ 2Tws + 64wy = 64

1024
wy + 16wz + 8lws + 256wy = -0?»

5. Establish the relation B{J) = (168(J} — S(J — 1))/16 for the case J = 2 Use the
following information:

2h
S(hy = ?(fo +4f2+ fo)
and

h
S(2) = g(fo +4f+2f2+46 1 fa).

6. Simpson’s % rule. Consider the trapezoidal rules over the closed interval {xo. Ka
T(f,3h) = Bk/2)(fo + fi) with step size 32, and T(f, A) = (h/2)}(fo + 2fi +
2 fo + f3) with step 51ze k. Show that the linear combination (9T ( f, k) — T (£, 3r))/8

produces Simpson’ s—— rule.
7. Use equations (25) and (26) to establish equation (27).
8. Use equations (28) and (29) to establish equation (30).
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9, Determine the smallest integer X for which
(@ [fZ8x7dx =256= R(K,K).
) f211x%dx = 2048 = R(K, K).
10. Romberg intcgration was used to approximate the integrals (i) j'ul +/x dx and (i)
fnl 2¢2 dt, and the results are given in the following table:

Approximations for (i) | Approximations for (ii}

R(D,0) =0.5000000 | R(0,0) = 1.0000000
R(1,1)=06380712 | R(1, 1) =0.6666667
R(2,2)=0.6577566 | R(2,2) =0.6666667
R(3,3)=0.6636076 | R(3, 3) =0.6666667
R(4,4) =0.6655929 | R(4,4) =0.6666667

(a) Use the change of variable x = 1 and dx = 2rdr and show that the two
integrals have the same numerical value.
(b) Discuss why convergence of the Romberg sequence is slower for integral (i) and
faster for integral {ii).
1. Romberg integration based on the midpoint rule. The composite midpoint rule is
competitive with the composite trapezoidal rule with respect to efﬁc:ency and the

speed of convergence. Use the following facts about the midpoint rule: f fxydx =
M(f, ) + Ep(f, k). Therule M(f, k) and the error term Ey ( f, k) are given by

M(f h)=hif(a+(k—l)h) where h = 2%
, k=1 2 ‘ N ’

and

Em(fl) =ah® +ash® +ash® + ...

b—a at+b
2 2 )

Develop the sequential midpoint rule for computing

2
M{J) = M(f.h)) =hJZf(a+ (k - %) h;).

k=1

(a) Start with

MO =

b—a
where hy = 7

(b) Show how the sequential midpoint rule can be used in place of the sequential
trapezoidal rule in Romberg integration.
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Algorithms and Programs

1. Use Program 7.4 to approximate the definite integrals in Exercise 1 with an accuracy
of 11 decimal places.

2. Use Program 7.4 to approximate the fellowing two definite integrals with an accuracy
of 10 decimal places. The exact value of each definite integral is 7. Explain any
apparent differences in the rates of convergence of the two Romberg sequences.

2 1
- 4
(a) f Vax —xtdx M) dx
0 o 1+x2

3. The normal probability density function is f(t) = (1 /\/2Jr)e*’2f 2 and the cumu a-
tive distribution is a function defined by the integral ¢ (x} = % + ‘/% he! 2 4,
Compute values for ©(0.5), ¢(1.0), ${1.5), ©(2.0), ®(2.5), (3.0}, $(3.5), and
<$(4.0) that have eight digits of accuracy.

4, Modify Program 7.3 so that it will stop when consecutive values T(K — 1) and T (k)
for the sequential trapezoidal rule differ by less than 5 x 105,

5. Modify Program 7.3 so that it will also compute values for the sequential Simpsun
and Boole rules.

6. Modify Program 7.4 so that it uses the sequential midpoint rule to perform Romberg
integration (use the results of Exercise 11). Use your program to approximate t:e
following integrals with an accuracy of 10 decimal places.

1o 1
(a) fo SO (b) [ V1= x%dx
-1

X
7. In Program 7.4 the approximations 1o a given definite integral are stored on the main
diagonal of a lower-triangular matrix. Modify Program 7.4 so that the rows of the
Romberg integration tableau are sequentially computed and stored in a n x 1 matrix R
hence it saves space. Test your program on the integrals in Exercise 1.

Adaptive Quadrature

The composite quadrature rules necessitate the use of equally spaced points. Typically,
a small step size & was used uniformly across the entire interval of integration to ensure
the overall accuracy. This does not take into account that some portions of the curve
may have large functional variations that require more attention than other portions of
the curve. It is useful to introduce a method that adjusts the step size to be smaller
over portions of the curve where a larger functional variation occurs. This technique is
called adaptive quadrature. The method is based on Simpson’s rule.
Simpson’s rule uses two subintervals over {ag, b]:

h
(0 Slag, by) = E{f(ﬂk)+4f(ck)+f(bk))!
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where ¢ = %(ak + by) is the center of [ay, by] and b = (by — a;) /2. Furthermore. if
f € C*[ay, by, then there exists a value dy € {ag, by} so that

" )
® feydx = Stay, by ~ 15 LD,
““ 90
Refinement

A composite Simpson rule using four subintervals of [a, b¢] can be performed by
bisecting this interval into two equal subintervals [ayy, bx1] and [ay2, br2] and applying
formuia (1) recursively over each piece. Only two additional evaluations of f{x) are
needed, and the result is

h
Stagy, bir) + Saga, biz) = E(f(akl) +4flcr} + fibry)
(3)
h
+ g(f(akz) +4f(cx2) + fba2)),

where ap| = ay, k) = axy = ¢4, bya = by, ¢y is the midpoint of [ayy, b1, and cy2 is
the midpoint of {aa, be2]. In formula (3) the step size is h/2, which accounts for the
factors A /6 on the right side of the equation. Furthermore, if f € C*{a, b], there exists
avalue d> € [a;, bi] so that

b VERATE
(4) Fydx = SCaer, biy) + S(aa, bi2) — _f ( 2).
ak 16 90

Assume that @ (d}) = §@(dy); then the right sides of equations (2) and (4) are
used to obtain the relation

5 N _hs——_wﬁ‘a s bey) + Slaa, ———
{5) S(a, by) 30 (ak1, biy) (@2, bra) 16 90

which can be written as
g, 16
_psf ) 9(‘)2) ~ = (S @k, bu) + Staxz, bia) — Staw, b))

Then (6) is substituted in (4) to obtain the error estimate:

©

b
Fx)dx — S(ag, b)) — S{axa, bi2)

@

n
1
x I 1S€ak1, bin) + S{arz, brg) — S{ar, by)| .

Because of the assumption f®(d1) = f®(a2), the fraction % is replaced with {5 on
the right side of {7) when implementing the method. This justifies the following test.
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Accuracy Test

Assume that the tolerance €, = 0 is specified for the interval [ay, b ]. If

1
{8) T0 I18€aky, brr) + S(ags, bia) — Siag, bi)| < e,

we infer that

by

(9) Fx)dx — Slagy, b)) — Sz, be2)| < .

ai
Thus the composite Simpson rule (3) is used to approximate the integrai

br.
(10) Fxydx = Slagr, be1) + S(agz. b2,

a

and the error bound for this approximation over [ag, b is .

Adaprive quadrature is implemented by applying Simpson’s rules (1) and (3). Start
with [[ao. bo), €0}, where ¢g is the tolerance for numerical quadrature over [ag, bg].
The interval is refined into subintervals labeled [ag;, bp1] end [aga, boz]. If the accu-
racy test (8) is passed, quadrature formula (3) is applied to [0, bg] and we are done. If
the test in (8) fails, the two subintervals are relabeled {a;, 5] and [aj, b7], over which
we use the tolerances €] = %e;’o and €7 = %—eo, respectively. Thus we have two in-
tervals with their associated tolerances to consider for further refinement and testing:
{lar. b1]. €1} and {las, 2], €2}, where €] + 3 = €q. If adaptive quadrature must be
continued, the smaller intervals must be refined and tested, each with its own associated
tolerance.

In the second step we first consider {[a;, 5], ¢;} and refine the interval [ai1, b;] into
[ai1. br1] and {ay2, by2]. If they pass the accuracy test (8) with the tolerance ¢|, quadra-
ture formula (3) is applied to [4;, ] and accuracy has been achieved over this interval.
If they fail the test in (8) with the tolerance ¢, ach subinterval [a11. &11] and [ay2, b13)
must be refined and tested in the third step with the reduced tolerance %e 1. Moreover,
the second step involves looking at {[a3, ba], €2} and refining [az, b2] into [ag1, b2(]
and [a3z, b23]. If they pass the accuracy test (8) with tolerance ¢, quadrature formula
(3) is applied to [a2, 7] and accuracy is achieved over this interval. If they fail the test
in (8) with the tolerance e2, each subinterval [ay, b2;] and {az;. b22] must be refined
and tested in the third step with the reduced tolerance %ez. Therefore, the second step
produces either three or four intervals, which we relabei consecutively. The three inter-
vals would be relabeled to produce {{[a;, b;], €; holaa, b2], €2}, a3, b3], €3}), where
€] + €2 + €3 = €. In the case of four intervals, we would obtain [{[a, b, €1},
Haz, b2), €2}, {[a3. b3], €3}, {[aa. bal, €3}), where €] + €3 + €3 + €4 = €.

If adaptive quadrature must be continued, the smaller intervals must be tested,
each with its own associated tolerance. The erTor term in (4} shows that each time a
refinement is made over a smaller subinterval there is a reduction of error by about
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Table 7.8 Adaptive Quadrature Computations for f(x) = 13(x — x2)e~3+/2

Error bound on Tolerance €
ag by S(agy. be 1) + Slaga, bi2) the left side of (8) for [ay . by ]
0.0 0.0625 0.02287184840 0.00000001522 0.00000015625
00625 | 0.125 0.059438686456 0.00000001316 0.00000015625
0.125 0.1875 0.08434213630 0.00000001137 0.0:0000015625
0.1875 | 025 0.09969871532 0.00000000981 0.00000015625
0.25 0.375 0.21672136781 0.00000025055 0.0000003125
0.375 0.5 0.20646391592 0.00000018402 0.0000003125
0.5 0.625 0.17150617231 0.00000013381 0.0000003125
0.625 0.75 0.12433363793 0.0000000961 1 0.0000003125
Q.75 0.875 0.07324515141 0.00000006799 0.0000003125
0.875 1.0 0.02352883215 0.00000004718 0.0000003125
1.0 1.125 —0.02166038952 0.00000003192 0.0000003125
1.125 1.25 —0.06065079384 0.00000002084 0.0000003123

1.25 1.5 —0.21080823822 0.00000031714 0.000000625
1.5 2.0 —0.60550965007 0.00000003195 0.00000125
2.0 2.25 ~0,31985720175 0.00000008106 0.000000625
2,25 2.5 —0.30061749228 0.00000008301 0.000000625
2.5 275 —0.27009962412 0.00000007071 0.000000625
2.5 3.0 —0.23474721177 0.00000005447 0.000000625
3.0 3.5 —0.36389799695 0.00000103699 0.00000125
35 4.0 —0.24313827772 0.00000041708 0.00000125

Totals | —1.54878823413 0.00000296809 0.00001

a factor of 1—15. Thus the process will terminate after a finite number of steps. The
bookkeeping for implementing the method includes a sentinel variable which indicates
if a particular subinterval has passed its accuracy test. To avoid unnecessary additional
evaluations of f (x), the function values can be included in a data list corresponding to
each subinterval. The details are shown in Program 7.6.

Example 7.16. Use adaptive quadrature to numerically approximate the value of the
definite integral f; 13(x — x2)e~3*/2 dx with the starting tolerance ¢p = 0.00001.

Implementation of the method revealed that 20 subintervals are needed. Table 7.8 lists
each interval [ag. b1, composite Simpson rule S{ay;, by )+S8(ax2, bi2), the error bound for
this approximation, and the associated tolerance ¢;. The approximate value of the integral
is obtained by summing the Simpson rule approximations to get

4
(D [ 13(x — x2)e ¥ gy ~ — ] 54878823413.
0
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¥
20}

1.5
1.0
0.5
0.0
—0.5
-1.0
-1.5*

Figure 7.9 The subintervals of [0, 4] used in adaptive
guadrature.

The true value of the integral is

4 4108276 —
f 13(x —xHe 32 dx = 4108 ° - 32
o 27

= —1.5487883725279481333.

(12)

Therefore, the error for adaptive quadrature is
(13} | — 1.54878837253 — (—1.54878823413)| = 0.00000013840,

which is smaller than the specified tolerance g = 0.00001. The adaptive method involves
20 subintervals of [0, 4], and 81 function evaluations were used. Figure 7.9 shows the grach
of y = f({x) and these 20 subintervals. The intervals are smalfler where a larger functional
variation occurs near the origin.

In the refinement and testing process in the adaptive method, the first four intervals
were bisected into eight subintetvals of width 0.03125, If this uniform spacing is contin-
ued throughout the interval [0, 4], M = 128 subintervals are required for the composite
Simpson rule, which yields the approximation —1.54878844029, which is in error by the
amount 0.00000006776. Although the composite Simpson method contains half the errov
of the adaptive quadrature method, 176 more function evaluations are required. This gain
of accuracy is negligibie; hence there is a considerable saving of computing effort with the
adaptive method. ™

Program 7.5, srule, is a modification of Simpson’s rule from Section 7.1. The
output is a vector Z that contains the results of Simpson’s rule on the interval [0, bll.
Program 7.6 calls srule as a subroutine to carry out Simpson’s rule on each of the
subintervals generated by the adaptive quadrature process.
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' Program 7.5 (Simpson’s Rule). To approximate the integral

50
f £ dix = 27 @) +4£(c0) + 60D
a0

by using Simpson's rule, where ¢0 = (a0 + b0) /2.

function Z=srule(f,a0,b0,tol0)

4Input - f is the integrand input as a string ’f’
% ~ a0 and b0 are upper and lower limits of integration
% - tol0 is the tolerance

% Output - Z is a 1x6 vector [a0 B0 8 S2 err toli]
h=(b0-a0)/2;

C=zeros(1,3);

C=feval(f, [a0 (a0+b0}/2 b0]};
$=h*(C(1)+4*C(2)+C(3))/3;

§2=5;

tol1=tol0;

err=tol0;

Z=[a0 b0 8 S$2 err tolill;

Program 7.6 produces a matrix SRmat, quad (adaplive quadrature approximation
to definite integral) and err (the error bound for the approximation). The rows of
SRmat consist of the end points, the Simpson's rule approximation, and the error bound
on each subinterval generated by the adaptive quadrature process.

Program 7.6 (Adaptive Quadrature Using Simpson’s Rule). To approximate
the integral

b M
f FOdx %Y (f (xapa) + 4 (xar—3) + 2 (xax-2)
a k=1

+ 4 f (xap—1) + fxa)).

: The composite Simpson tule is applied to the 4M subintervals [x4;—4, x4 ], where
ta, b) = [x0, xapm] and xag_q4; = X354 + jhy, foreachk =1, ..., Mand j =1,
N3
function [SRmat,quad,err]l=adapt{(f,a,b,tol)
%mput - £ is the integrand input as a string ’f’

% - a and b are upper and lower limits of integration
Y% - tol is the tolerance

°/u0u'tput - SRmat is the table of values

% - quad is the quadrature value

Y% - err is the error estimate
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ZInitialize values
SRmat = zeros(30,6);
iterating=0;
done=1i;
SRvec=zeros(1,6);
SRvec=srule(f,a,b,tol);
SRmat(1,1:6)=3Rvec;
m=1;
state=iterating;
while{state==iterating)
n=m;
for j=n:-1:1
p=i:
SROvec=SRmat(p,:);
err=SR0vec(5);
t01=SROvec(6);
if (tol<=err)

%Bisect interval,apply Simpson’s rule
%recursively, and determine error

state=done;
SR1vec=SROvec;
SR2vec=SROvec;
a=SROvec(1);
b=SR0vec(2);
c=(a+b)/2;
err=SR0vec(5);
tol=SR0vec(8);
tol2=tol/2;

SRivec=srule(f,a,c,tol2);
SR2vec=srule(f,c,b,tol2);
err=abs (SROvec(3)-SR1lvec(3)-SR2vec(3))/1

%hccuracy test
if (err<tol)
SRmat (p, : )=SROvec;

SRmat (p,4)=SR1lvec(3)+5R2vec(3);

SRmat (p,5)=err;
else

SRmat (p+1:m+1, : )=8SRmat (p:m, :

m=m+1;
SRmat {p, : )=SR1lvec;
SRmat (p+1, : )=SR2vec;
state=iterating;

end
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end
end
and

quad=sum (SRmat (:,4));
err=sum(abs (SRmat (:,5)));
SRmat=SRmat(l:m,1:6);

Algorithms and Programs

1. Use Program 7.6 to approximate the value of the definite integral. Use the starting
tolerance ¢ = 0.00001.
1

3
(a) f ’1“12;5) (b) fo sin(d)e ¥ dx  (¢) Dm—lfdx

2
(d) f -—1 dx (e) f sm( ) dx (D f \/4x —x2dx
0 245 1/(27)

2. For each of the definite integrals in Problem 1 construct a graph analogous to Fig-
ure 7.9. Him. The first column of SRmat contains the end points (except for b)
of the subintervals from the adaptive quadrature process. If T=SRmat(:,1) and
Z=zeros (length(T))’, then plot(T,Z,’.?) will produce the subintervals (ex-
cept for the right end point b).

3. Modify Program 7.6 so that Boole’s rule is used in each subinterval [ay, bi].

4. Use the modified program in Probiem 3 to compute approximations and construct
graphs analogous to Figure 7.9 for the definite integrals in Problem 1.

1.5 Gauss-Legendre Integration (Optional)

We wish to find the area under the curve
y=f{x), —-l=<xs=l

What method gives the best answer if only two function evaluations are (o be made?
We have already seen that the trapezoidal rule is a method for finding the area under
the curve and that it uses two function evaluations at the end points (—1. f(—1)), and
(1, f(1)). But if the graph of y = f(x) is concave down, the error in approximation
is the entire region that lies between the curve and the line segment joining the, pomts
{see Figure 7.10(a)).

If we can use nodes x| and x; that lie inside the interval [—1, 1], the line through
the two points (x1, f(x1)) and (x2, f(x2)) crosses the curve, and the area under the line
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¥ =flx)

-1 0 Poel g 0 M 1
(a) (&)

Figure 7.1¢ (a) Trapezoidal approxirmation using the abscissas —1 and 1. (b) Trapezoidal
approximation using the abscissas x| and x3.

more closely appreximates the area under the curve (see Figure 7.10(b}). The equation
of the line is

(x —x){flx) — flx1))

X2 — X1

(1) y=flx)+

and the area of the trapezoid under the line is

2 2
2 foa) - el Jix2).
— X1 X2 — X)

(2) Atrap = -
)

Notice that the trapezoidal rule is a special case of (2). When we choose x4 = —1,
x> =1,and h = 2, then
2 -2
T(f.h)= Ef(xl) - -5-f(xz) = flx)+ f(x2).

We shall use the method of undetermined coefficients to find the abscis~u~ xq, x2
and weights wy, w2 so that the formula

1
3 -[l JFOerdx = wy f) + wa fxg)

is exact for cubic polynomials (i.e., f{x) = a1x® + asx? + ajx + ag). Since four
coefficients wy, wa, x|, and x; need o be determined in equation (3), we can select
four conditions to be satisfied. Using the fact that integration is additive, it will suffice
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to require that (3) be exact for the four functions f(x) = 1, x, x2, x>. The four inte gral
conditions are

1
fxy=1: f ldx=2=w;+unp
-1

1
f(x)xx: f xdx=0=w1x1+w212
-1

) | 5
fx)=x%: / x*dx ==§=w1x12+wzx§
—t

1
f(x)=x3: f 3 dx ==O=w1xf'+w2xg.
-1

Now solve the system of nonlinear equations

(5) w+uwr=2

(6) WiX] = ~wWrX>
2

7 wixf + waxd = 3

(8) wix; = —wax3

We can divide (8) by (6) and the result is

) xlz = x% or  x; = —x3.

Use (9) and divide (6) by x1 on the left and —x; on the right to get
aoe w] = ws.

Substituting (10) into (5) results in w, + w; = 2. Hence

(11) w=wy = 1.

Now using (11) and (9) in (7), we write

2 1
(12) wlxl2 + wzx% = xzz +x% =3 or .I% =73

Finally, from (12) and (9) we see that the nodes are
—x1 = x2 = 1/3"2 % 0.5773502692.

We have found the nodes and weights that make up the two-point Gauss-Legendre
rule. Since the formula is exact for cubic equations, the error term will involve the
fourth derivative. A discussion of the error term can be found in Reference [41].
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Theorem 7.8 (Gauss-Legendre Two-Point Rule). If f is continuous on [—1, 1].
then

(13) f:l f(x)dx%Gz(f)=f(%)+f(—\}§)-

The Gauss-Legendre rule G2(f) has degree of precisionn = 3. If f € C4—1.11.
then

! =1 1
Lrwa=1(Z)+1(5)
_]f(x) x=f 7 +f 7 + E2(f),
where
Pl (3]
15 =
{15 Eax(f) &35

Example 7.17. Use the two-point Gauss-Legendre rule to approximatc

fl A 3y~ (1) & 1.0
71x+2_n()kn[)~].9861

and compare the result with the trapezoidal rule T(f, ) with # = 2 and Simpson's rule
S(f, Ry withh = 1.
Let G2( f) denote the two-point Gauss-Legendre rule; then

Gz(f) = f(—0.57735) + f(0.57735)
= 0.70291 + 0.38800 = 1.09091,

T{f. 2) = f(—-1.00000) + F(1.00000)

1.00000 + 0.33333 = 1.33333,

I

I

FED+H4FO) + f(1)  1+243
3 T3

The errors are 0.06770, —0.23472, and —0.01250, respectively. so the Gauss-Legendre
rule is seen to be best. Notice that the Gauss-Legendre rule required only two function
evaluations and Simpsen’s rule required three. In this example the size of the error for
G2(f) is about 61% of the size of the error for S(f, 1). "

S(f.h= = 1.1111.

The general N-point Gauss-Legendre rule is exact for polynomial functions of
degree < 2N — 1, and the numerical integration formula is

(16) Cuif)=wy 1 flan 1) +wnaflanz) + - +wy v flxwn)
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Table 7.9 Gauss-Legendre Abscissas and Weights

1 N
[ r@as= Y wnasann+ Enen
- k=1
Truncation error,

Abscissas, xy & Weights, wy & En(f)
—0.5773502692 1.0000000000 £

0.5773502692 10000000000 135
107745966692 0.5555555556 [(6)(,:!

0.0000000000 (.8888888888 15,750
+0.8611363116 (.3478548451 )
+0.3399810436 0.6521451549 3.472,875
+0.9061798459 0.2369268851 a0
+0.5384693101 0.4786286705 1,237,732.650

0.0000000000 0.5688888888
40.9324695142 0.1713244924 FUD (21360
+0.6612093863 0.3607615730 (}2!)313!
+0.2386191861 0.4679139346
+0.9491072123 0.1294849662 f”‘”(c}Z”(’{!!‘
+0.741531 1856 0.2797053915 ”4!)3]5!
+0.4058451514 0.3818300505

0,0000600000 0.4179591837
2+0.9602898565 0.1012285363 fu6) (,_.22:1@!!4
+0.7966664774 0.2223810345 RIS
+0.5255324009 0.3137066439
+0.1834346425 0.3626837834

393

. The abscissas xy & and weights wu ¢ 10 be used have been tabulated and are easily
available; Table 7.9 gives the values up to eight points. Also included in the table is
the form of the error term Ex(f) that corresponds to G x(f), and it can be used to
determine the accuracy of the Gauss-Legendre integration formula.

The values in Table 7.9 in general have no easy representation. This fact makes the
method less attractive for humans to use when hand calculations are required. But once
the values are stored in a computer it is easy to call them up when needed. The nodes
are actually roots of the Legendre polynomials, and the corresponding weights must
be obtained by solving a system of equations. For the three-point Gauss-Legendre rule
the nodes are —(0.6)!/2, 0, and (0.6)'/2, and the corresponding weights are 5/9, 8/9,
and 5/9
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Theorem 7.9 (Gauss-Legendre Three-point Rule). If £ is continuous on [ -1, | .

then

S£(=~3/5) +8f(0) +5F(~/375)
5 :

1
an [ i~ =

The Gauss-Legendre rule G3(f) has degtee of precisionn = 5. If f € CO[—1, ||.
then

1 —
(18) [lf(x)dx=5f( "3;5”85(0”5““3/3)+E3(f),
where
f(ﬁ)(c)
19 =
(19) B =12

Example 7.18. Show that the three-point Gauss-Legendre rule is exact for

1
f 5x4dx=2=G3(f).
-1

Since the integrand is f(x) = 5x* and f®(x) = 0, we can use (19) to sec the
E3(f} = 0. But it is instructive to use (17) and do the calculations in this case.

5(5)(0.6)* + 0+ 5(5)(0.6)2 1
Gi(f) = (3)(0.6) {5X )=_8=2‘ .
9 9
The next result shows how to change the variable of integration so that the Gauss-
Legendre rules can be used on the interval [a, ).

Theorem 7.10 (The Gauss-Legendre Translation). Suppose that the abscissas
[xn. k}k , and weights {wy, f‘}k , are given for the N-point Gauss-Legendre rule over
{(—1. 1]. To apply the rule over the interval {a, b, use the change of variable

at+b b-— —
+27% nd a=2=8

20 =
0 2 2 2

dx.

I

Then the relationship

b b—ag b—a
@1 f d —f ("+
} frde > dx

is used to obtain the quadrature formula

b N
b—a a+b b-a
22 _~———.§ .
(22) fa f)dr 7 2 wN,kf( 2 + xN,k)-

2
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Example 7.19. Use the three-point Gauss-Legendre rule to approximate
5dt
e = In(5) — In(1) = 1.609438
1

and compare the result with Boole’s rule B(2) with h = 1,
Here ¢ = 1 and b = 5, so the rule in (22) yields
5£(3—2(0.6)")+8f(3+0)+5f(3 +2(0.6)'/%)
Gi(f) =(2) Al ¢ ! g !
3.446359 + 2.666667 + 1.099096
9

In Example 7.13 we saw that Boole’s rule gave B(2) = 1.617778. The errors are
0.006744 and —0.008340, respectively, so that the Gauss-Legendre rule is slightly better

in this case. Notice that the Gauss-Legendre rule requires three function evaluations and
Boole’s rule requires five. In this example the size of the two errors is about the same. =

= 1.602694.

=(2)

Gauss-Legendre integration formulas are extremely accurate, and they should be
considered seriously when many integrals of a similar nature are to be evaluated. In
this case, proceed as follows. Pick a few representative integrals, including some with
the worst behavior that is likely to occur. Determine the number of sample points
N that is needed to obtain the required accuracy. Then fix the value &, and use the
Gauss-Legendre rule with N sample points for all the integrals.

For a given value of N, Program 7.7 requires that the abscissas and weights from
Table 7.9 be saved in 1 x N matrices A and W, respectively. This can be done in
the MATLAB command window or the matrices can be saved as M-files. It would
be expedient to save Table 7.9 in a 35 x 2 matrix . The first column of G would
contain the abscissas and the second column the corresponding weights. Then, for a
given value of N, the matrices A and W would be submatrices of G. For example, if
N = 3, then A=G{3:5,1)? and W=G(3:5,2) .

Program 7.7 (Gauss-Legendre Quadrature). To approximate the integral
b h—a &
[ rwar =220 Y uwan
a 2 k=1

by sampling f(x) at the N unequally spaced points {‘N'E]LV:P The changes of vari-
able
a+b b-a b—a

t:2+2x and dr=

dx

are used. The abscissas {xN»k}f: ; and the corresponding weights {wN,k],’:;l must
be obtained from a table of known values.

function quad=gauss(f,a,b,A,W)
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= b H

%#Input
y -

is the integrand input as a string 'f’

and b are upper and lower limits of imtegration
A - A is the 1 x K vector of abscisasas from Table 7.9
% ~ W is the 1 x N vector of weights from Table 7.9
#0utput - quad is the quadrature value

N=length(A);

T=zeros(1,N);

T=((a+b)/2)+((b-a) /2)*4;

quad={{b-a) /2)*sum(W.*feval (f,T));

Exercises for Gauss-Legendre Integration (Qptional)

In Exercises 1 through 4, show that the two integrals are equivalent and calculate Ga( 7).

2 I 2 i
1. f 6% de = f 6(x + 1 dx 2. f sin(r) dt = f sin(x + Ddx
h] -1 ¢ -1

! 5] [ 1 ! —:x{—f)l/
sin() sin{{x + 1)/2) 1 2 1 et &
3, f LS :f 2T A g 4. ..__:f 2 gy SR 1
o ! ~ x+1 @ Vir ko ¢ V2r o 2

1 /7 ! b3
5 - G si | = (3. Gl -1y =
p fo cos(D.6sin(z)) dt 05L1 cos (0 6sin ((x +1) > )) dx

6. Use Ex(f) in Table 7.9 and the change of variable given in Theorem 7.10 to find the

smallest integer N so that Ey (f) == 0 for

(@ JfZ8x7dx =256=Gn(f).

B [F11x0dx = 2048 = G ().

Find the roots of the foliowing Legendre polynomials and compare them with the

abscissa in Table 7.9.

@ P =022 -1)/2

(b) P3(x) = (5x* - 3x)/2

(€} Py(x) = (35x* - 30x2 4+ 3)/8

8. The truncation error term for the two-point Gauss-Legendre rule on the closed in-
terval [—1, 1] is f™(¢|)/135. The truncation error for Simpson’s rule on [z, 5] is
—h? §®{¢2)/90. Compare the truncation error terms when [a, b] = (—1, 1]. Which
method do you think is best? Why?

9. The three-point Gauss-Legendre rule is

>

SF(—(0.6)/Y) +8F(0) + 5£((0.6)/%)
5 .

|
j flxydx =
-1

Show that the formula is exact for f(x) = 1, x, x%, x3, x*, x5, Hint. If f is an odd
function (i.e., f(—x) = f(x}), the integral of f over [—1, 1] is zero.
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10. The truncation error term for the three-point Gauss-Legendre rule on the interval
[—1. 1] is f®(c1}/15,750. The truncation error term for Boole's rule on [a, b] is
—8h? £ (¢2}/945. Compare the error terms when [a, 5] = [~ 1, 1]. Which method
is better? Why?

Derive the three-point Gauss-Legendre rule using the following steps. Use the faci
that the abscissas are the roots of the Legendre polynomial of degree 3.

1n

x1=—067 =0 x1=06"Y
Find the weights wi, w2, w3 so that the relation
1
f Fx)dx = wi f(—0.6)'/D) + wz £ (0) + wa £((0.6)1%)
—1
is exact for the functions f(x) = 1, x, and x2. Hint, First obtain, and then solve the

linear system of equations

wit+wrtwy=2
—(0.6)1'12?1)1 e (0.6)1/211)3 =0
‘ 2
0.6w; +0.6ws = 3
12. In practice, if many integrals of a similar type are evaluated, a preliminary analys%s is
made to determine the number of function evaluations required to obtain the desired

accuracy. Suppose that 17 function evaluations are 1o be made. Compare the Romberg
answer R{4, 4) with the Gauss- Legendre answer G17(f).

Algorithms and Programs

1. For each of the integrals in Exercises ! through 5, use Program 7.7 to find Ge(f).
G1(f), and Gg(f).
2.(a) Modify Program 7.7 so that it will compute G1(f), G2(f), ..., Gs(f) and stop
when the relative error in the approximations G y—{f) and G (f) is less than
the preassigned value tol, that is

AN (D =G _ 0
1Gh-1(D) + Gh (I

Hint. As discussed at the end of the section, save Table 7.9 in an M-file G as a
35 x 2 matrix G. .

(b) Use your program from part (a) to approximate the integrals in Exercises 1
through 5 with an accuracy of five decimal places.
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3. (a) Use the six-point Gauss-Legendre rule to approximate the solution of the inte
gral equation

3
u(x) =x? +0.1f (x -+ D) dr.
0
Substitute your approximate solution into the right-hand side of the integral

equation and simplify.
(b) Repeat part (a) using an eight-point Gauss-Legendre rule.



Numerical
Optimization

The two-dimensional wave equation is used in mechanical engineering to model vi-
brations in rectangular plates. If the plates have ail four edges clamped, the sinusoidal
vibrations are described with a double Fourier series. Suppose that at a certain instant

(@) ()]

Figure 8.1 (a) The displacement z = f{x, ¥} of a vibrating plate. (b) The contour plot +
fx, ¥y} = C for a vibrating plate.

399
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of time the height z = f(x, y) over the point (x, y) is given by the function

2= f{x, ¥) = 0.02sin{x) sin(y) — 0.03 sin{2x) sin(y)
4+ 0.04 sin(x) sin(2y) 4+ Q.08 sin(2x) sin{2y).

Where are the points of maximum deflection located? Looking at the three-dimei
sional graph and the companion contour plot in Figure 8.1(a) and (b), respectively, w
see that there are two local minima and two local maxima over the square0 < x <1z
0 < y < 7. Numerical methods can be used to determine their approximate location

f(0.8278,2.3322) = —~0.1200 and  f(2.5351,0.6298) = —~0.0264
are the local minima, and
F(0.9241,0.7640) = 0.0998 and  f(2.3979, 2.2287) = 0.0853

are the local maxima.
In this chapter we give a brief introduction to same of the basic methods for locat
ing extrema of functions of one or several variables.

Minimization of a Function

Definition 8.1 (Local Extremum). The function f is said to have a local minimum
value at x = p, if there exists an open interval / containing p so that f(p) = f{x) for
all x € I. Similarly, f is said to have a local maximum value at x = pif f(x) < f(p)
for all x € I. ¥ f has either a local minimum or maximum value at x = p, it is said
to have a local extremum at x = p. A

Definition 8.2 (Increasing and Decreasing). Assume that f(x) is defined on the
interval .
(i) If x1 < x; implies that f(x) < fixz) forall xy, x3 € 1, then f is said to be
increasing on [.

(ii) If x; < x; implies that f(x)} > f(xz) forall x|, x2 € /, then £ is said to be
decreasing on I. 4

Theorem 8.1. Suppose that f(x) is continuous on [ = [a, b] and is differentiable on
(a.b).

(i) If f'(x) > Oforall x € (a, b), then f (x) is increasing on J.
(i) If £/(x) < O forall x € {a, &), then f(x} is decreasing on {.

Theorem 8.2. Assume that f(x) is defined on [ = (a, #] and has a local extremum
at an interior point p € (a, b). If f(x) is differentiable at x = p, then f'(p) = 0.
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Theorem 8.3 (First Derivative Test). Assume that f(x) is continuouson / = [a, b}.
Furthermore, suppose that f/(x) is defined for all x € (a, ), except possibly at x = p.

() If f'{x) < Oon{a, p)and f'(x) = Don{p, b),then f(p) is a local minimum.
() ¥ f'(x) = Oon (a, p) and f'(x) < 0on (p. b), then f(p) is a local maximum.

Theorem 8.4 (Second Derivative Test). Assume that f is continuous on {a, b} and
f' and f” are defined on {a, b}. Also, suppose that p < {(a, b) is a critical point where
fip=0.
(O ¥ f"(p) > 0, then f{p) is alocal minimum of f.
i) If f"(p) < 0, then f(p) is a local maximum of f.
(iity If £”(p) = O, then this test is inconclusive.

Example 8.1. Use the second derivative test to classify the local extrema of f(x) =
x3 4+ x2 — x + 1 on the interval {~2, 2].

The first derivative is f/(x) = 3x2 +2x — 1 = (3x — [){(x + 1), and the second
derivative is f”(x) = 6x + 2. There are two points where f'(x) = O (e, x = 1/3, -1}

Case (i) Atx = 1/3 we find that f'(1/3) = Qand f”(1/3) =4 > 0, so that f(x) has
a local minimum at x = 1/3.

Case (it): Atx = —1 we find that f'(~1) = G and f"(—1) = —4 < 0, so that f(x)
has a local maximum at x = —1. »

Search Method

Another method for finding the minimum of f{x) is to evaluate the function many
times and search for a local minimum, To reduce the number of function evaluations.
it is important to have a good strategy for determining where f(x) is evaluated. One
of the most efficient methods is called the galden ratio search, which is named for the
ratio’s involvement in selecting the points.

'The Golden Ratio

Let the initial interval be [0, 11. If 0.5 < r < 1, then0 < 1 —r < 0.5 and the interval
is divided into three subintervals [0, 1 ~ r], [1 — r, 71, and [r. 1]. A decision process
is used to either squeeze from the right and get the new interval [0, 7] or squeeze from
the left and get {1 — r, 1]. Then this new subinterval is divided into three subintervals
in the same ratio as was [0, 1].

We want 1o choose 7 so that one of the old points will be in the correct position
with respect 10 the new interval as shown in Figure 8.2. This implies that the ratio
{1~ r): r be the same as r : 1. Hence r satisfies the equation 1 —r = r?, which
can be expressed as a quadratic equation 72 +r — 1 = 0. The solution » satisfying

05<r<lisfoundtober = (\/—5—-1)/2.

To use the golden search for finding the minimum of f{x), a special condition
aust be/met to ensure that there is a proper minimum in the interval.
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0 1—-r r 1 0 1-r r 1
E ‘ ; 3 E : : 3
rt 1-r2
 e— } } ! E t t =
0 l1-r r 1-r r 1

Squeeze from the left and

Squeeze from the right and - ;
the new interval is [1 — r, 1].

the new interval is [0, r].

Figure 8.2 The intervals invelved in the golden ratio search.

p
¥ =100 y =) /

If f{d) < f(c) then squeeze

If f{c) = f(d) then squeeze
4 from the left and use [c, &}

from the right and use [a. 4]

Figure 8.3 The decision process for the golden ratio search.

Definition 8.3 (Unimodal Function). The function f(x) is unimodal on I = [a. 6],
if there exists a unique number p € I such that

(1) f{x)is decreasing on [a, p]
(2) f{x)is increasing on {p, &1. 4

If £(x) is known to be unimodal on [a, £], it is possible to replace the interval v'tib'h
a subinterval on which f(x) takes on its minimum value. The golden search requires
that two interior points ¢ = a + (1 — r){d —a) andd = a + r(b — a) be used, wr\gre
r is the golden ration mentioned above. This results ina < ¢ < d < b. The condition
‘that f(x) is unimodal guarantees that the function values f(c) and f(d) are less than
max{ f (a}, f(b)}. We have two cases to consider {see Figure 8.3).

If f(c) < f(d),the minimum must occur in the subinterval [a, d] and we rgp!a(e ‘b
with d and continue the search in the new subinterval. if f(d) < f(c), the minimum
must occur in {c, b] and we replace a with ¢ and continue the search. The next exam pIE
compares the root-finding method with the golden search method.
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Table 8.1 Secant Method for
Solving f'(x} = 2x —cos(x) =0

Pi 2pyp — cos(py)

0.0000000 | —1.00000000
1.0000000 1.45969769
0.4065540 —0.10538092
0.4465123 | —0.0089339%
0.4502137 0.00007329
0.4501836 | —0.00000005

VbW ~S|

Table 8.2 Goiden Search for the Minimum of Fx)=x2— sin{x)

Qe ck dy by flep Sfldy)

0.0000000 | 0.3819660 | 0.6180340 1 —0.22684748 | —0.19746793
0.0000000 | 0.2360680 | 0.3819660 | 0.6180340 | —0.17815339 | —0.27684748
0.2360680 | 0.3819660 | 0.4721360 | 0.6180340 | —0.22684748 | —0.23187724
0.3819660 | 04721360 | 0.5278640 | 0.6130340 | —0.23187724 —0.22504882
03819660 | 0.4376941 | 0.4721360 | 0.5278640 | —0.23227594 | _0.23187724
0.3819660 | 04164079 | 0.4376941 04721360 | —0.23108238 | —0.23227594
0.4164079 | 04376941 | 0.4508497 | 0.4721360 [ —0.23227594 | —0.23246503

Ch A da Lo b e D A

2 | 04501574 | 04501730 | 0.4501827 | 04501983 | —023246558 | —0.23946558
22 | 04501730 | 0.4501827 | 04501886 | 0.4501983 | —0.23246558 | —0.23246555
23 | 04501827 | Q4501886 | 0.4501923 | 0.4501983 | —0.23246558 | —0.23246558

Example 8.2. Find the minimum of the unimodal function F(x) =x%—sin(x) on [0, 11,

Solution by solving f’(x) = 0. A root-finding method can be used to determine where
the derivative f(x) = 2x — cos(x) is zero. Since F'(0) = —1 and Ji{1) = 1.4596977,
arootof f'(x) lies in the interval [0, 1]. Starting with po = 0and p; = 1, Table 8.1 shows
the iterations.

The conclusion from applying the secant method is that f (0.4501836) = 0. The
second derivative is £ (x) = 2+ sin(x) and we compute f”(0.4501836) = 2.435131 > 0.
Hence the minimum value is f(0.4501836) = —0.2324656.

Sclution using the golden search. At each step, the function values f(c) and f(d)
are compared and a decision is made as to whether to continue the search in [a,d]or{c, b].
Some of the computations are shown in Table 8.2.

At the twenty-third iteration the interval has been narrowed down to [axz, b23] =
(o 4501827, 0.4501983). This interval has width 0.0000156. However, the computed func-
tion values at the end points agree to eight decimal places (i.e., f(a23) = —0.232456558 ~
F (623)); hence the algorithm is terminated. A problem in using search methods is that the
function may be flat near the minimum, and this limits the accuracy that can be obtained.
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The secant method was able to find the more accurate answer ps = 0.4501836.
Although the golden search is slower in this example, it has the desirable feature ihat
it can be applied in cases where f(x) is not differentiable. L]

Finding Extreme Values of f(x, y)

Definition 8.1 is easily extended to functions of several variables. Suppose that f(x. \)
is defined in the region

(3) R={(x,y): (x = pY* + (v~ )? < r?}.

The function f(x, y) has a local minimum at (p, g) provided that

(4 f(p.q) < f(x,y) foreach point {x, y) € R.

The function f(x, y) has a local maximum at (p, q) provided that

(5) S, ) = f(p. g} for each point (x, y) € R,

The second derivative test for an extreme value is an extension of Theorem 8.4,

Theorem 8.5 (Second Derivative Test). Assume that f(x, y) and its first- and
second-order partial derivatives are continuous on a region R. Suppose that (p. ) € R
1s a critical point where both f.(p, g) = 0 and f,(p, g) = 0. The higher-order partial
derivatives are used to determine the nature of the critical point.

W U foxlp. @) frulp. @) — ffy(p,q) > Dand fir(p,q) > 0, then f(p,g)is a
local minirnum of f.

(W) If fex(p, g) fay(psq) — f,?y(p, q) > Oand fix(p.q) < 0, then f(p,q)isa
local maximum of f.

(iii) I fex(p. @) fyy(p. g) — ,ffy(p. q) < @, then f(x, ¥) does not not have a locul
extremum at (p, g).

(V) If fou(p.g)fry(p. q) — f_fy (p, gy = 0, this test is inconclusive.

Example 8.3. Find the minimum of f(x, y) = x2 — 4x + y2— ¥y~ xy.
The first-order partial derivatives are

(6) Hx,y)=2x—4—-y and fix,y)=2y—~1-rx.
Setting these partial derivatives equal to zero yields the linear system

2x -~y =4

)
—x+2y=1.
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The solution to (7) is {x, y} = (3, 2). The second-order partial derivatives of f(x, y) are
Jexx, ¥y =2, fule,yy=2, and  fylx,y) =1
It is easy to see that we have case (i) of Theorem 8.5, that is
fsB.Dfy3. 2~ f5,3.2=3>0 and fu(3,2=2>0

Hence f(x, y) has a local minimum f(3, 2) = 7 at the point (3, 2). =

The Nelder-Mead Method

A simplex method for finding a local minimum of a function of several variables has
bean devised by Nelder and Mead. For two variables, a simplex is a triangie, and
the method is a pattern search that compares function values at the three vertices of a
triangle. The worst vertex, where f(x, y) is largest, is rejected and replaced with a new
vertex. A new triangle is formed and the search is continued. The process generates
a sequence of triangles (which might have different shapes), for which the function
values at the vertices get smaller and smaller. The size of the triangles is reduced and
the coordinates of the minimum point are found.

The algorithm is stated using the term simplex (a generalized triangle in N di-
mensions) and will find the minimum of a function of N variables. It is effective and
computationally compact.

The Initial Triangle BGW

Let f(x, v) be the function that is to be minimized. To start, we are given three vertices
of a triangle: Vi = (x¢, y&), k = }, 2, 3. The function f(x, y) is then evaluated at each
of the three points zx = f(xx, yx) fork = 1, 2, 3. The subscripts are then reordered so
that z; < z» < z3. We use the notation

(8) B=(x,y), G=(x2,3), and W =(x3,y3)
io help remember that B is the best vertex, {7 is good (next to best), and W is the worst

Vertex.

Midpoint of the Good Side

“The construction process uses the midpoint of the line segment joining B and G . It is
found by averaging the coordinates:

%) M=B+G:(x1+xz y1+y2)’

2 272
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Figure 8.4 The triangle ~ABCW

R for the Nelder-Mead method.

.
=

Figure 8.5 The triangle ABG W and point R and extended point E.

Reflection Using the Point R

The function decreases as we move along the side of the triangle from W to B, and it
decreases as we move along the side from W to G. Hence it is feasible that f(x, v)
takes on smaller values at points that lie away from W on the opposite side of the line
between B and G. We choose a test point R that is obtained by “reflecting” the triangle
through the side BG. To determine R, we first find the midpoint M of the side BG.
Then draw the line segment from W to M and call its length d. This last segment is
extended a distance 4 through M to locate the point R (see Figure 8.4). The vector
formuia for R is

10y R=M+M-W)=2M-W

Expansion Using the Point E

If the function value at R is smaller than the fonction value at W, then we have moved
in the correct direction toward the minimum. Perhaps the minimum is just a bit fapther
than the point R. So we extend the line segment through M and R to the point E

This forms an expanded triangle BG E. The point E is found by moving an additior: |

distance d along the line joining M and R (see Figure 8.5). If the function value at £

and midpoint M and reflected point;
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Figure 8.6 The contraction point
C) or C; for Nelder-Mead method.

. Figure B.7 Shrinking the triangle
G toward B.

is less than the function value at R, thern we have found a better vertex than R. The
vector formula for E is

(1n E=R+(R—-M)=2R-M.

Contraction Using the Point C

If the function values at R and W are the same, another point must be tested. Perhaps
the function is smaller at M, but we cannot replace W with M because we must have
a triangle. Consider the two midpoints €, and C of the line segments WM and MR,
respectively (see Figure 8.6). The point with the smaller function value is called C,
and the new triangle is BGC. Note: the choice between €| and C3 might seem
inappropriate for the two-dimensional case, but it is important in higher dimensions.

Shrirk toward B

If the function value at C is not less than the value at W, the points G and W must be
shrunk toward B (see Figure 8.7). The point G is replaced with M, and W is replaced
with 5, which is the midpoint of the line segment Jjoining B with W.



408 CHaP. 8 NUMERICAL OPTIMIZATION

Table 8.3 Logical Decisions for the Nelder-Mead Algorithm

IF f(R) < f(G), THEN Perform Case (i) {either reflect or extend}
ELSE Perform Case (ii) {either contract or shrink;

BEGIN {Case (ii).}
IF f(B) < f(R) THEN IF f(R) < f(W) THEN

replace W with R L replace W with &
ELSE Compute C = (W + M)/2
orC ={(M+ R)/2and f(C)
IF f(C) < f(W) THEN

replace W with C

BEGIN {Case (i).}

Compute E and f (E}
IF f(E) = f(B) THEN

replace W with E ELSE
ELSE Compute § and f(5)
replace W with R replace W with §
ENDIF replace G with M
ENDIF ENDIF
END {Case (i).} END {Case (ii).}

Logical Decisions for Each Step

A computationally efficient algorithm should perform function evaluations only i
needed. In each step, a new vertex is found, which replaces W. As soon as it i
found, further investigation is not needed, and the iteration step is completed. Th:
logical details for two-dimensional cases are explained in Tabie 8.3.

Example 8.4. Use the Nelder-Mead algorithm to find the minimum of f(x,y) = Xt -
4x + y? — v — xy. Start with the three vertices
V=0, V2=(.200, V3=0.008).
The function f(x, ¥} takes on the values
F(0.0y=0.0, f(1.2,00)=-336, f(0.0,08) =-0.16.
The function values must be compared to determine 8, G, and W;
B=1(1200, G=(00,08, W=(0.0.
The vertex W = (0. 0) will be replaced. The points M and R are

B
= ;G —(0.6,04) and R=2M-W=(12,08).

The function vatue f(R) = f(1.2,0.8) = —4.48 is less than f(G), so the situation {s
case (i). Since f(R) = f(B), we have moved in the right direction, and the vertex E must

be constructed:

E=2R-M=2(1.2,08)—(06,04) = (1.8, 1.2).
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Figure 8.8 The sequence of triangles (T} converging to the point (3,2) for the
Nelder-Mead method.

The function value f(E) = f(1.8,1.2) = —5.88 is less than f(B), and the new triangle
has vertices

Vi =(138,1.2)}, V2=1(1200), V3 =(0.0.0.8).

The process continues and generates a sequence of triangles that converges down on the
solution point (3, 2) (see Figure 8.8). Table 8.4 gives the function values at vertices of the
triangle for several steps in the iteration. A computer implementation of the algorithm con-
tinued until the thirty-third step, where the best vertex was B = (2.99996456, 1,99983839)
and f(B) = —6.99999998. These values are approximations to f(3,2) = —7 found in
Example 8.3. The reason that the iteration quit before (3, 2) was obtained is that the func-
tion is flat near the minimum. The function values f{RB), f(G), and f (W) were checked
and found to be the same (this is an example of round-off error), and the algorithm was
terminated. =

Minimization Using Derivatives

Suppose that f(x) is unimodal over [a, #] and has a unique minimum at x = p. Also,
agsume that f’(x) is defined at all points in (a, 4). Let the starting value pp lie in
{a, b). If f/(py) < 0, the minimum point p lies to the right of pp. If /'(pg) > 0, p
lies to the left of pg (see Figure 8.9).
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Table 8.4 Function Values at Various Triangles for Example 8.4

k Best point. Good point Worst point
1| £(1.2,00)=—-3.36 F(0.0,0.8)= —0.16 F(00,000= 000
2| f(1.8,12)=-588 fF(1.2,00)= —3.36 JF©0.0,08)= ~0.16
3| £(1.812)=-588 £(3.0,04)= — 444 F(1.2,00)= - 3.36
4| fi36,16)=—624 f(I8,1.2)= —5.88 F3.0,04)= —444
5| f(3.6,1.6)=-6.24 f24,24)= —6.24 JF(18,12)= —588
6| f(24,1.6)=-672 f(3.6,1.6)= —6.24 F24,24)= —-624
7| F(3.0,1.8)=—696 F(2.4,1.6)= —6.72 f(24,24)= - 624
8| f(3.0,1.8)=-696 f(2.55,2.05) = —6.7725 f24,16)= — 672 ]
9| f(3.0,1.8)=-56.96 £13.15,2.25)= — 6.9525 f(2.55,2.05)= — 6.772.;
10| F(3.0,1.8)=—696 | f(2.8125,2.0375)= —6.95640625 | f(3.15,2.25)= — 6.952"
y=fix) y=flx)
\// //
£ i —+ 3 £ 1 f 3
a Py r b a p P b
Iff'(py) < O then IEf'(py) > O then
p lies in [pg, &]. p lies in [a, pyl.
Figure 8.9 Using f'(x) to find the minimum value of the unimodal func-
tion f(x)on the interval [a. b].
Bracketing the Minimum

QOur first task is to obtain three test values,

(12) Po. pPi=po+h, and pr=po+2h
50 that
(13) flpo) = f(p1y and  f(p1) < f(p2).

Suppose that f'(pp) < 0; then py < p and the step size & should be chosen position
It is an easy task to find a value for A so that the three points in (12) satisfy (13). Start
with h = 1 in formula (12) (provided thata + 1 < b).

Case (i): If (13)is satisfied, we are done.

Case (ii): If f(po) > f(p1) and f(p1) > f(p2), then po < p. We necd
to check points that lie farther to the right. Double the step size and

repeat the process.
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Case (iii): If f(po} < f(p1), we have jumped over p and / is too large. We need
to check values closer to pg. Reduce the step size by a factor of % and
repeat the process.

When f'(pg} > 0, the step size 4 should be chosen negative and then cases similar
to (i) 1o (iii) can be used.

Quadratic Approximation to Find P

Finally, we have three points (12) that satisfy (13). We will use quadratic interpolation

to ind pmin, which is an approximation to p. The Lagrange polynomial based on the
nodes in (12) is

- Y - PO —p)  nilx—po)x — p2)  ya(x — podix — P
(i4) Q@x) = W 2 + 57 .

The derivative of Q(x) is

2x—pr—p2) nQx—po—pa)  ya(2x — py— p1)
15 ttey = Y0 PL—p2) 2( Po — pi
15 Q'K 2 2 + :

Solving 0'(x) = 0 in the form Q’(pg + Apy) = 0 yields

0 = Y02Po +Amin) = pr— p2)  y1(4(Po + Amin) — 2pp ~ 2p3)
(16) ) 2h? 2h2
4 22C(Po + Anin) — po — p1)
2h2 )

Multiply each term in (16) by 2h? and collect terms involving A yq:

—hmin(2y0 ~ 4y1 + 2y2) = yo(2po — p1 — p2)
= n{4po —2po — 2p2) + y2(2po — py — p1)
= yo(~3h) — yi(~-4h} + ya(—h).

This last quantity is easily solved for Ay,

an R = h(4y; — 3y - sz.
4y1 —2y0— 2y,

The value pmin = po + A is a better approximation to p than pg. Hence we
can'replace py with pmin and repeat the two processes outlined above to determine a
new A and a new Apy;,. Continue the iteration until the desired accuracy is achieved.
The details are outlined in Program 8.3.
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Steepest Descent or Gradient Method
Now let us turn to the minimization of a function f{X) of N variables, where X =

(18) grad f(X) =(f1. f2, ..., fnl.

where the partial derivatives fx = f/dx are evaluated at X.

Recall that the gradient vectar (18) points locally in the direction of the greatest rate
of increase of f(X). Hence — grad (X)) points locally in the direction of the greatest
decrease. Start at the point Py and search along the line through P in the direction
Sp = —G/ |G|, where G = grad f(Pg). You will arrive at a point P). where a locgt
minimum occurs when the point X is constrained to lie on the line X = Po +7S¢.

Nexl, we can compute G = grad f{ P} and move in the search direction 5; =
—G/ | G||. You wilt come to P3, where a local minimum occurs when X is constrained
to lie on the line X = P, + 1. lteration will produce a sequence { P} of points with
the property f (Po) > f(P1) > -+ > f(Py) > ---. Iflimgoo Py = P, then (P
will be a local minimum for f(X).

Qutline of the Gradient Method
Suppose that P has been obtained.

Step i. Evaluate the gradient vector & = grad f{Ps).

Step 2. Compute the search direction 8§ = —G/ 1Gl.

Step 3. Perform a single parameter minimization of (1) = f(Py + ¢8) on the
interval {0. b], where b is large. This will produce a value ¢ == hmin where
alacal minimum for @ (¢) occurs. The relation D (Amin) = f(Pi+ AninS)
shows that this is a minimum for f (X} along the search line X = Py~
hmdn S.

Step 4. Construct the next point Py.; = Py + Anin§.

Step 5. Perform the termination test for minimization; that 1s, are the function val-
ues £ (Py) and f(Py.) sufficienty close and the distance {| P41 — 2
small enough?

Repeat the process.
—_—1
Program 8.1 (Golden Search for a Minimum). To numerically approximate the
minimum of f(x) on the interval [a, b] by using a golden search. Proceed with the
method only if f{x)} is a unimodat function on the intterval [a, bl.

function[8,E,G]l=golden(f,a,b,delta,epsilon)

%Ioput - f is the object function input as a string ’'f’
A - a and b are the end points of the interval
% - delta is the tolerance for the abscissas
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A - epsilon is the tolerance for the ordinates
Wutput - S=(p,yp) contains the abscissa p and

% the ordinate yp of the minimum

% - E=(dp,dy) contains the error bounds for p and yp
% - G is an 1 x 4 matrix: the kth row comtains

" {ak ck dik bk]; the values of a, ¢, d, and b at the
% kth iteration

til=(s8qrt(5)-1)/2;

r2=r1-2;

h=b-a;

ya=feval(f,a);

yb=feval (£f,b);

¢=a+r2xh;

d=a+rish;

ye=feval(f,c);

yd=feval (f,d);

h=1;
AQk)=a;B(k)=b;C(k)=c;D{k)=d;

while(abs(yb-ya)>epsilon) | (h>delta)
k=k+1;
if (ye<yd)
b=d;
yb=yd;
d=c;
yd=yc;
h=b-a;
c=a+r2%h;
yc=faval(f,c);
else
a=sc;
ya=yc,
c=d;
ye=yd;
h=b-a;
d=p+xish;
yd=feval (f,d);
end
A(k)=2;B{k)=b;C(k)=c;D(k)=d;

end

dp=abs (b-a};

dy=abs (yb-ya) ;

f-a;
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ypEya;
if (yb<ya)

p=b;

yp=yb;
end
G=[A? C* D' B’];
s=[p ypl;

E=[dp dyl;

Programs 8.2 and 8.4 require that the abject function £ be saved as an M-file. Tt.:
argument of £ needs to be a 1 x » array. To illustrate consider saving the function in
Example 8.3 as an M-file:
function z=£(V)
z=0; x=V(1); y=V(2);

ZEX. "2-4X+Y. "2-y-X. *y;

Program 8.2 (Nelder-Mead’s Minimization Method). To approximate 2 local

minimum of f(xy,xa,...,xy), where f is a continuous function of NV real vari-
ables, and given the N + 1 initial starting points V¢ = (vg,1, ..., v,n) fork = 0,
1,...,N.

functionlV0,y0,dv,dyl=nelder(F,V,ninl,max!,epsilon, show)
4lnput - F is the object function input as a string ’'F’

% - Vis a 3 x n matrix containing starting simplex
% - minl & maxl are minimum and maximum number
% of iterations
% - epsilon is the tolerance
% - show == 1 displays iterations (P and Q)
%0utput - VO is the vertex for the minimum
% - y0 is the function value F(VQ)
% - dV is the size of the final simplex
% - dy is the error bound for the minimum
% - P is a matrix containing the vertex iterations
% -  is an array containing the iterations for F(;
if nargin==5,
show=0;
end

[mm n)l=size(V);

% Order the vertices

for j=1i:n+1
Z=V(j,1:m);
Y{j)=feval(F,Z);
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end

[(mm lo]=min(Y);
[mm hil=max(Y);
li=hi;
ho=lo;
for j=1:n+1
1f (j~=lokj~=hi&kY(j) <=Y(1i))
li=j;
end
if (j~=hi&j~=1o&Y(j)>=Y(ho))
ho=j;
end
and

cnt=0;
% Start of Nelder-Mead algorithm

while(Y(hi)>Y(lo)+epsilonkent<maxl) |cnt<mini

S=zeros(l,i:n);
for j=1:n+1
§=5+V(j,1:n};
end
M=(8-V(hi,1:n)}/n;
R=2*M-V(hi,1:n);
yR=feval(F,R};
if (yR<Y (ho))
if (Y(1i)<yR)
V(hi,1:n)=R;
Y(hi)=yR;
else
E=2*R-M;
yE=feval(F,E);
TE(YE<Y (1i))
V(hi,1:n)=E;
Y(hi)=yE;
else
V(hi,1:n)=R;
Y(hi)=yR;
end
end
else
if (yR<Y(hi))
V{(hi,1:n)=R;
Y(hi)=yR;

415
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end
C=(V(hi,1:n)+M)/2;
yC=feval (F,C);
C2=(M+R)/2;
yC2=feval (F,C2);
if (yC2<yC)
C=C2;
¥yC=yC2;
end
if (yC<Y(hi))
V(hi,1:n)=C;
Y(hi)=yC;
elase
for j=1:n+l
if(j~=lo}
V(i,1:mn)=(V(j,1:0)+V(1o,1:0))/2;
2=V(j,1:n);
Y(j)=feval(F,Z);
end
end
end
end
[mm lo}=min(Y);
[mm hi)=max(Y):
li=hi;
ho=1lo0;
for j=1:n+1
1E(j~=1okj~=hikY (§)<=¥(11))
li=j;
end
1f (j~=hi&j~=10&Y(j)>=Y (ko))
ho=3j;
end
end
cnt=cnttl;
P(cnt,:)=V(1lo,:):
R{cnt)=Y(lo);
end
% End of Nelder-Mead algorithm

#Determine size of simplex

snorm=0;

for j=1:n+1
s=norm(V{j}-V(1lo));
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if (g>=snorm)
snorm=s;
end
end
g=q’;
V0=V(lo,1:n);
y0=Y(1lo};
dV=snorm;
dy=abs (Y(hi)~Y(lo));
if (show==1)
disp(P);
disp(0};
end
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Program 8.3 (Local Minimum Search Using Quadratic Interpolation). To find
a local minimum of the function f(x) over the interval {a, b}, by starting with one
initial approximation pp and then searching the intervals [a, po] and [pp, #].

function[p,yp.dp.dy,Pl=quadmin(f,a,b,delta,epsilon)

%Input - £ is the cbject function input as a string £’
% - a and b are the end points of the interval
% - delta is the tolerance for the abscissas

% - epsilon is the tolerance for the ordinates
%Output -~ p is the abscissa of the minimum

% ~ yp is the ordinate of the minimum

% - dp is the error bound for p

% - dy is the error bound for yp

% - P is the vector of iterations

pO=a;

maxj=20;

maxk=30;

big=1e6;

err=i;

k=1,

P{k)=p0;

cond=0;

h=1;

if (abs(p0)>1ed),h=abs(p0)/ie4;end
while(k<maxk&err>epegilonkcond~=5)
fi1=(feval(f,p0+0.00001)-feval (f,p0-0.00001})/0.00002;
if (f1»0) ,h=-abs(h) ;end
pl=pO+h;
p2=p0+2+h;
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pmin=pl;

yO=feval(f,p0);

yil=feval(f,pl);

y2=feval (f,p2};

yain=y0;

cond=0;

i=0;

7Determine h so that yl<yOkyti<y2

vhile(j<maxj&abs(h)>deltakcond==
if (yO<=y1),

p2=pi;
ye=y1;
h=h/2;
pl=pO+h;
yi=feval(f,pl);
else
if (y2<yl),
pl=p2;
yi=y2;
h=2w%h;
p2=p0+2%h;
ye=feval (f,p2)};
else
cond=-1;
end
and
J=j*1;
if (abs(h)>biglabs(p0)>big) , cond=5;end
end
if(cond==5),
pmin=pl;
ynin=feval (f,p1);
else

%Quadratic interpoiation to find y)

d=dxy1-2%y0-2%y2;
if(a<0),

hmin=h* (4*y1-3%y0-y2} /d;
else

hmin=h/3;

cond=4;
end
pain=pQ+hmin;
ymin=feval(f,pmin);
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h=abs(h) ;

hO=abs (hmin) ;
hi=abg(hmin-h);
h2=abs (hmin-2+h) ;

%Determine magn:tude ot next h

if (k0<h) ,h=h0;end

if(ki1<h) ,h=ht;end

if(h2<h) ,h=h2;end

if (h==0) ,h=hmin;end
if(h<delta),cond=1;end

if (abs(h)>biglabs(pmin)>big),cond=s;enc

%Termination test for minimization
eO=abs (yO-ymin) ;
el=abas(yl-ymin);
e2=abs (y2-ymin) ;
if (e0~=0 & e0<err),err=e0;end
if{el~=0Q & el<err),err=el;end
if(e2~=0 & 2<err),err=e2;end
if(e0~=0 & el==0 & e2==0),error=0;end
if(err<epsilon],cond=2;end
pO=pmin;
k=k+1;
P{k)=p0;
end
if (cond==2fh<delta),cond=3;end
end
F=p0;
dp=h;
yp=feval(f,p);
dy=err;

Program 8.4 requires that the object function f be saved as an M-file. Additionally,
the search direction — grad f/ |igrad f|| needs to be saved as an M-file. To illustrate,
consider the function f from Example 8.3, where the gradient of f is (2x —4—y. 2y —
1 — x). An appropriate M-file for this particular function f is

Function z=G(V)
z=zeros(1,2);
x=V{1);y=V(D);
g=[2x-4-y 2xy-1-x];
z=—{1/norm{g) ) ng;
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Program 8.4 (Steepest Descent or Gradient Method). To numerically approxi- h=h/2;
mate a local minimum of f{X), where f is a continuous functi-n of N real variables P1=PO+h*8;
and X = (x1,xz2, ..., xn), by starting with one point Py and using the gradient yl=feval(F,P1);
method. elze
function[PO,yO,err]=grads(F,G,P0,max1,delta,epsilon,show) if (y2<y1)
yInput - F is the object function imput as a string 'F? P1=P2;
% - G =-(1/norm(grad F))*grad F; the search direction yi=y2;
% input as a string ’G’ h=2%h;
% - PO is the initial starting point P2=P0+2%h*5;
% - maxl is the maximum pumber of iterations y2=feval(F,P2);
% - delta is the tolerance for hmin in the single else
% parameter minimization in the search direction cond=-1;
% - epsilon is the tolerance for the erxor in y0 end
% - show; if show==1 the iterations are displayed end
%Output - PO is the point for the minimum J=i+L;
% - y0 is the function value F(PO) if (h<delta) ,cond=1;end
% - orr is the error bound for yO if (abs{h)>bigl|len>big) ,cond=5;end
% - P is a vector containing the iterations énd
if nargin==5,show=0;end if(cond==5)
[mm nl=]size(PO); Pnin=P1;
maxj=10; big=1e8; h=1; ymin=y1;
P=zeros{maxj,n+l); else
len-norm{P0) ; d=4+y1-24y0-2%y2;
yO=feval(F,P0)}; if (d<0)
if (len>ed4),h=len/le4;end hmin=h* (4#y1-3*y0-y2)/d;
err=1;cnt=0;cond=0; else
P(ecnt+1,:)=[P0 y0l; cond=4;
while(cnt<maxi&cond~=5&(h>delta|err>epsilon)) hmin=h/3;
Y%Compute search direction end
S=feval(G,P0); %Construct the next point
YStart single parameter quadratic minimization Poin=PO+hmin*S;
P1=P0+h#*S; ‘ymin=feval(F, Pmin);

P2=PO+2%h*§;
yi=feval(F,P1};
y2=feval (F,P2);

YDetermine magnitude of next h
hO=abs (hmin) ;
hi=aba(hmin-h) ;

cond=0; j=0; _ h2=abs (hmin-2+h) ;

while(j<maxjkcond==0) if (hO<h) ,h=h0;end
}en=norm(P0); if(hi<h) ,h=hl;end
if (y0<yl) if (h2<h),h=h2;end
P2=P1; if (h==0) ,h=hmin;encd

y2=y1; if (h<delta).cond=1;end
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%Termination test for minimization
e0=abs (y0~ymin) ;
el=abs(yl-ymin);
e2=abs(y2-ymin) ;
if (e0~=0&e0<err),err=e0;end
if (el~=0&ei<err) ,err=el;end
if (e2~=0&e2<err) ,err=e2;end
if (e0==0&el==0&e2==0) ,err=0;end
if (err<epsilon),cond=2;end
if (cond==2&h<delta),cond=3;end
end
cnt=cnt+1;
P(cnt+1, :)=[Pmin ymin];
PO=Pmin;
yO=ymin;
end
if (show==1)
disp(P);
end

Exercises for Minimization of a Function

1. Use Theorem 8.1 to determine where each of the following functions is increasing
and where it is decreasing.
(@ Ff)=23-9x2412x-5
b fE=x/x+1)
© f=x+1)/x

d fix)y=x*
2. Use Definition 8.3 to show that the following functions are unimodal on the given
intervals.

(a) fx)=x2—2x4+1;[0,4]
(b) f(x) = cos(x); [0, 3]
(e} fix)=x%11,10]
@ fo)=-x(3-1x)3%][03)
3. Use Theorems 8.3 and 8.4, if possible, to find all local minima and maxima of each
of the following functions on the given interval.
(a) f(x)=4x* —8x%T — 11x +5; [0, 2]
() flx)=x+3/x%[05,3]
(© fx)=(x+2.5/4-x);[~19,1.9]
@) f(x)=e*/x%[0.5,3]
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(&)  fix)=—sin{x) —sin(3x)/3; [0, 2]
M f(x)=—2sin(x) +sin(2x) — 2sin(3x)/3; [1, 3]

. Find the point on the parabola y = x2 that is closest to the point (3, 1).

5. Find the point on the curve y = sin{x)} that is closest to the point (2, 1).

. Find the point(s) on the circle 2+ ¥2 = 25 that is farthest from the chord AB if

A=(3,4and B = (~1, /29).

. Use Theorem 8.5 to find the local minimum of each of the following functions.

@ Fx»=x>+y"—3x—3y+5

b f,=x*+y+x—-2y—xy+1
©  flx,y)=x%y+xy? = 3xy

@ [ =&-y/r+y"42)

(& f(x.y)=100(y — xH2 + (1 —x)?
(Rosenbrock’s parabolic valley, circa 1960}

. Let B =1(2,-3),G = (1.1), and W = (5,2). Find the points M, R, and E and

sketch the triangles that are involved.

. Let B = (—1,2), G = (-2, -5),and W == (3, 1). Find the points M, R, and E and

sketch the triangles that are involved.

). Give a vector proof that M = (B + G)/2 is the midpoint of the line segment joining
the points B and G.
11, Give a vector proof of equation (10).
12, Give a vector proof of equation (11).
13, Give a vectar proof that the medians of any triangle intersect at a point that is two-
thirds of the distance from each vertex to the midpoint of the opposite side.
14, Let B=(0,0,0),G=(1,1,00, P =(0,0,1),and W = (1, 0, 0).
(a) Sketch the tetrahedron BGPW.
(b) FindM =(B+ G+ P)/3.
(¢) Find R = 2M — W and sketch the tetrahedron BGPR.
(d) Find E = 2R — M and sketch the tetrahedron BGPE.
15. Let B = (0,0,0), G = (0,2,0), P = (0,1,1), and W = (2,1,0). Follow the
instructions in Exercise 14,
Algorithms and Programs
1. Use Program 8.1 to find the local minimum of each of the functions in Exercise 3
with an accuracy of eight decimal places.
2. Use Program 8.3 to find the local minimum of each of the functions in Exercise 3 with

an accuracy of eight decimal places. Start with the midpoint of the given interval.
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3. Use Program 8.2 te find the minimum of each of the functions in Exercise 7 with .1

5

8

accuracy of eight decimal places. Use the following starting vertices:

(a) (1,2),(2,0),and (2, 2)

(b) (0.05,(2,0).and (2, 1)

{c) (0,0),(2,0),and (2, 1}

(dy (0,0), (0, 1),and (1, 1)

(e) (0,0),(1,0),and 0,2)

Use Program 8.4 to find the minimum of each of the functions in Exercise 7 with un
accuracy of eight decimal places. Use the starting vertex:

(a) (1,2 (b) (0,0.3) {(© (0.1,0.1)

d) (05,011 () (0,0

In Program 8.4 the x and y coordinates of the iterations are stored in the first two
columns of the matrix P, respectively. Modify Program 8.4 so that it will plot the x
and y coordinates of Ethe iterations on the same coordinate system. Hint. Incorporate
the command plot (P(:,1),P(:,2),".?) into your program. Use this program on
the functions in Exercise 7.

. Use Program 8.2 to find the local minimum of each of the following functions; with

an accuracy of eight decimal places.

@ fly=2+22+22 -2y +yz—Ty—4z
Start with (1, [, 1), (0, 1, 0), (1,0, I}, and (0, 0, 1).

®) fry.zw =202+ +2+ut)—x(y+z—u)+yz~3x—8y—5z—9u
Start the search near (1,1, 1, 1).

1 1

[

Yy 2z u

Start the search near (0.7, 0.7, 0.7, 0.7).

© [,y zou) =xyzu+%+

. Use Program 8.4 to find the local minimum of each of the functions in Problem 6.

Use a starting value near one of the given vertices.
Use Program 8.1 and/or 8.3 to find all local maxima and minima of the followiig
function in the interval {0, 2].
X+ x2—12x-12
fl)=5- 5 3 7
228 —3x° —dxt + 922 4+ 120 — 18

. Find the point on the surface z = x2 + y? that is closest to the point (2, 3, 1).
10.

A company has five factories A, B, C, D, and E, located at the points (10, 10,
(30, 50), (16.667, 29}, (0.555, 29.888), and (22.2221, 49.988), respectively, in the
xy-plane. Assume that the distance between two points represents the driving dis

tance, in miles, between the factories. The company plans to build a warehoj() a

some point in the plane. It is anticipated that during an average week there will be

18, 20, 14, and 25 deliveries made to factories A, B, C, D, and E, respectively. Ideaiiy,
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to minimize the weekly mileage of delivery vehicles, where should the warefiouse be
located?

11. In Problem 10, where should the warehouse be located if, due to zoning restrictions.

it must be located at a point on the curve y = x27
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Solution of Differential Equations

Differential equations are commonly used for mathematical modelihg in science and
engineering. Often there is no known analytic solution and numerical approximations
are required. As an illustration, we consider population dynamics and a nonline:r
system that is a modification of the Lotka-Volterra equations:

1, 1
x—f(txy)--x—xy—l—dx and ¥ =g(tx, y)=xy— "_5'6”’
with the initial condition x(0) = 2 and y(0) = I for 0 < ¢ < 30. Although the
numerical solution is a list of numbers, it is helpful to plot the polygonal path joininy
the approximation points {(xx, y¢)} and plot the trajectory shown in Figure 9.1, In this

¥
1.5¢
[.O
s
Figure 9.1 The trajectory tur 4
nonlinear system of differeniiul
0.0 L . . “— X equations x' = f(t,x,y) and

0.5 . :
1.0 1.3 2.0 ¥y =gt x.y.
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N~
=4

N
) _)&//

Figure 9.2 The solution curves (1) =t + ¢ ' + C.

e

-

W

chapter we present the standard methods for solving ordinary differential equations.
systems of differential equations, and boundary value problems.

Introduction to Differential Equations

Consider the equation

dy
1 — =1-e
10)) 7 e
It is a differential equation because it involves the derivative dy/dt of the “unknown
function” y = y(t). Only the independent variable ¢ appears on the right side of
equation (1); hence a solution is an antiderivative of 1 — ¢™*. The rules of integration

can be used to find y(£):
2) yB)=t+e ' +C,

where C is_the constant of integration. All the functions in (2) are solutions of (1)
because they satisfv the requirement that y'(#) = 1 — e~'. They form the family of
curves in Figure 9.2.

Integration was the technique used to find the explicit formula for the functions
in (2), and Figure 9.2 emphasizes that there is one degree of freedom involved in the
solution, that is, the constant of integration C. By varying the value of C, we “move the
solution curve” up or down, and a particular curve can be found that will pass through
any desired point. The secrets of the world are seldom observed as explicit formulas.
Instead, we usually measures how a change in one variable affects another variable.
When this is translated into a mathematical model, the result is an equation involving
the rate of change of the unknown function and the independent and/or dependent
variable.
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7a

Figure 9.3 The solution curves
L . L i I y= A+ (yo— Ade~¥ for Newton's
law of cooling (and warming).

Consider the temperature y(t) of a cooling object. It might be conjectured that the
rate of change of the temperature of the body is related to the temperature difference
between its temperature and that of the surrounding mediurm. Experimental evidence
verifies this conjecture. Newton’s law of cooling asserts that the rate of change is
directly proportional to the difference in these temperatures. If A is the temperature of
the surrcunding medium and y(¢) is the temperature of the body at time ¢, then

dy
3) ar = k(y — A),
where £ is a positive constant. The negative sign is required because dy/dr will be neg-
ative when the ternperature of the body is greater than the temperature of the medium.

If the temperature of the object is known at time ¢+ = 0, we call this an initial
condition and include this information in the statement of the problem. Usually, we
are asked to solve

d
(4 d—’t’ =—k(y~A) with (0 = yo.
The technique of separation of variables cin be used to find the solution
(5) y=A4+ (o0~ Ae N

For each choice of v, the solution curve will be different, and there is no simple
way to move one curve around to get another one. The initial value is a point where the-
desired sclution is “nailed down.” Several solution carves are shown in Figure 9.3, and
it can be observed that as ¢ gets large the temperature of the object approaches room
temperature. If yp < A, the body is warming instead of cooling.

Initial Value Problem
Definition 9.1. A solution to the initial value problem (L.V.P)

(6) Y= f.y) with  y() =y
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Figure 9.4 The slope field for the
0 L L L L »— ¢t differential equation y' = f(x,y) =
t—-w/2

—
B
W
~
Lh

on an interval [fp, b] is a differentiable function y = y{t) such that
)] vy =vo and Y ()= f(t, () for all ¢ € [, b]. a

Notice that the solution curve ¥ = y(r) must pass through the initial point (f9. yo).

Geometric Interpretation

At each point (2, ¥) in the rectangular region R = {(z,y) :a <1 s b,c 2 y = d},
the slope of a solution curve y = y(t) can be found using the implicit formulam =
f(t, y(2)). Hence the values m; ; = f(#;, y;) can be computed throughout the rectan-
gle, and each value m; ; represents the slope of the line tangent to a solution curve that
passes through the point {#;, y;).

A slope field or direction field is a graph that indicates the slopes {m;, ;} over the
region. It can be used to visualize how a solution curve “fits” the slope constraint. To
move along a solution curve, one must start at the initial point and check the slope
field to determine in which direction to move. Then take a small step from 7o to o +4
horizontally and move the appropriate vertical distance h (29, yo) so that the resulting
displacement has the required slope. The next point on the solution curve is (11, y1).
Repeat the process to continue your journey along the curve. Since a finite number of
steps will be used, the method will produce an approximation to the solution.

Example 9.1. The slope field for y’ = (r — y)/2 overtherectangle R = {{t, y): 0 < <
5,0 < y < 4} is shown in Figure 9.4. The solution curves with the following initial values
are shown:

1. For y(0) = 1, the solution is y(r) = 3¢™*/2 —2 + 1.

2. For y(0) = 4, the solution is y(r) = 6e~*/2 —2 4+ 1. n
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Definition 9.2, Given the rectangle R = {(, y) :a <t < b, ¢ < y < d}, assume
that f(r, v) is continuous on R. The function f is said to satisfy a Lipschitz condition
in the variable y on R provided that a constant I > 0 exists with the property that

(8 VG )y~ Fle vyl < Liyi — 2l

whenever (¢, ¥1). (f, ¥2) € R. The constant L is called a Lipschitz constant for . &

Theorem 9.1, Suppose that f(z, y) is defined on the region R. If there exists a
constant [ > 0 so that

% Ifyte.y)l =L forall (r.y)eR,

then f satisfies a Lipschitz condition in the variable y with Lipschitz constant . over
the rectangle K.

Proof  Fix t and use the mean value theorem to get ¢; with y; < ¢} < y2 so that

LA ) — FU vy = 1 A0 e — y2)
={fpt c)lly1 — y2l = Liy1 = y2l.

Theorem 9.2 (Existence and Uniqueness), Assume that £{1, y) is continuous in a
region R = {(t,y): #p <t < b, c <y =d} If f satisfies a Lipschitz condition cn R
in the variable y and (fy, yo) € R, then the initial value problem (6), ¥y’ = f(z, y) with
y(tp) = yo, has a unique solution y = y(?) on some subinterval &g < £ < fg + §.

Proof. See a text on differential equations such as Reference [38]. .

Let us apply Theorems 9.1 and 9.2 to the function f(z, yv) = (r — ¥)/2. The partial
derivative is fy (¢, y) = —1/2. Hence | fy(r, ¥)| < % and, according to Theorem 9.1,
the Lipschitz constant is L = % Therefore, by Theorem 5.2 the 1.V.P. has a unique
solution.

Sketches of the slope field and solution curves can be constructed by using the
meshgrid and quiver commands in MATLAB. The following M-file will generate a
graph analogous to Figure 9.4. In general, care must be taken to avoid points (¢, y) at
which y’ is undefined.
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[t,y]-meshgrid(1:5,4:-1:1);
dt=cnes(6,4);

dy=(t-y)/2;
quiver(t,y,dt,dy);

hold on

x=0:.01:5;
2z1=3%exp(-x/2)-2+x;
z2=6*exp(~—x/2)-2+x;
plot(x,z1,x%,22)

hold off

Exercises for Introduction to Differential Equations

in Exercises 1 through 5:
{a) Show that y(f) is the solution to the differential equation by substituting y(1) and
v(t) into the differential equation y'(f) = f(z, y(£)).
th) Use Thearem 9.1 to find a Lipschitz constant L for the rectangle R = {(f,y) : 0 =
r<3,0=<y=<35.
1.y =1‘2*y, ¥y = Cet 412 —2r 42
2Ly =3y+3y)=Ce¥ —t—3
3y = —ty, y(t) = Ce™'/?
4y =e M -2y, y(1) = Ce ¥ 4 te™%
5.y = 2095, y(0) = 1/(C — 1%
In Exercises 6 through 9, construct a graph of the slope field my,; = f(t, ¥;) over the
rectangle R = (¢, ¥} : 0 <t < 4,0 < y < 4} and the indicated solition curves on the
same coordinate system.
6. v =—t/y,y) =(C -7  forC=12,49
7.V =t/y,y) = (€ +1H)V?  forC=-4,-1,1,4
8. v = 1y, y(t) = (C+20)}/?  forC =-4,-2,0,2
9. v =y vty =1/(C—1) forC=1,2,3.4
10. Here is an example of an initial value problem that has “two solutions™: y" =
with y{(0) = 0.
(@) Venfy that (1) = 0 for¢ = 0 is a solution,
(b) Verify that y(¢) = t3/2 for t = 0 is a solution.
(¢) Does this violate Theorem 9.27 Why?

[}
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11. Consider the initial value problem
y =y

(a) Verify that y(r) = sin(¢} is a solution on [0, 7 /4].
(b) Determine the largest interval over which the solution exists.

¥y =0

12. Show that the definite integral j;]b F(t) dt can be computed by solving the initial vali.
problem

y=f(@) fora<t<h with ya)=0

In Exercises 13 through 15, find the solution to the LV.P.
13. v =3t +sin(r), y(0) =2
o 1 _
15. y' = 87:2/2‘ ¥(0) = 0. Hint. This answer must be expressed as a certain integral,

16. Consider the first-order differential equation
Y0 + p)y() = q().

Show that the general solution y(¢) can be found by using two special integrals. First
define F(¢t) as follows:

F(1) = el P01,

Second, define y(1) as follows:

(r)—-—l—( F dt+C
¥ = F0 f (q(t)ydt + )

Hint. Differentiate the product F(r)y(z).

17. Consider the decay of a radicactive substance. If y(r) is the amount of substance
present at time ¢, then y(¢) decreases and experiments have verified that the rate of
change of y{r) is proportional to the amount of undecayed material. Hence the I.V.P.
for the decay of a radioactive substance is

¢

y'=-—ky with y(0}= yo.

(a) Show that the solution is y(r) = yge™*'.

(b) The half-life of a radioactive substance is the time required for half of an initial
amount to decay. The half-life of 1*C is 5730 years. Find the formula y(z) that
gives the amount of **C present at time ¢. Hint. Find & sc that y(5730) = 0.5

{c) A piece of wood is analyzed and the amount of '*C present is 0.712 of the
amount that was present when the tree was alive. How old is the sample of
wood?

(d) At a certain instant, 10 mg of a radioactive substance is present. After 23 sec-
onds, only ! mg is present. What is the half-life of the substance?

9.2
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In Exercises 18 through 19, derive an equation for the I.V.P. and find its solution.

18. Annual ticket sales for a new professional soccer league are projected to grow at a
rate proportional to the difference between sales at time ¢ and an upper bound of $300
million. Assume that annual ticket sales are initially $0 and must be $40 million after
3 years (or the league folds). Based on these assumptions, how long will it take for
annual ticket sales to reach $220 million?

19. The interior volume of a new library is 5 millon cubic feet. The ventilation system
introduces fresh air into the library at the rate of 45,000 cubic feet per minute. Before
the ventilation system is turned on, the percents of carbon dioxide in the interior of
the library and in the exterior fresh air are measured at 0.4% and 0.5%, respectively.
Determine the percentage of carbon dioxide in the library 2 hours after the ventilation

system is started.

Euler’s Method

The reader should be convinced that not all initial value problems can be solved ex-
plicitly, and often it is impossible to find a formula for the solution y(¢); for example,
there is no “closed-form expression” for the sclution to y = 3 + y? with (0) = 0.
Hence for engineering and scientific purposes it is necessary to have methods for ap-
proximating the solution. If a solution with many significant digits is required, then
more computing effort and a sophisticated algorithm must be used.

The first approach is called Euler’s method and serves to illustrate the concepts
involved in the advanced methods. It has limited usage because of the larger error that
is accurnulated as the process proceeds. However, it is important to study because the
error analysis is easier to understand.

Let [a, b] be the interval over which we want to find the solution to the well-posed
LVP y = f(t,y) with y(a) == yo. In actuality, we will not find a differentiable
function that satisfies the L.V.P. Instead, a set of points {(f, y«)} is generated, and
the points are used for an approximation (i.e., (&) = yi). How can we proceed to
construct a “set of points™ that will “satisfy a differential equation approximately™?
First we choose the abscissas for the potnts. For convenience we subdivide the interval
[a, #] into M equal subintervals and select the mesh points

b—a

{1) f=a+kh fork=01,..., M where h =

The value # is callad the step size. We now proceed to solve approximately

{r0.tp] with  y(tg) = Yo-

2) v = f{r,y) over
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Assume that y(z), ¥'(¢), and y”(¢) are continuous and use Taylor's theorem to
expand y(¢) about t = 5. For sach value ¢ there exists a value ¢y that lies between fp

and ¢ so that

” 2
3) YO = yto) + ¥ (o) (¢ — to) + l_(%‘_ﬂ)

When y'(fp) = f(to, y(tp)) and h = #; — 1y are substituted in equation (3), the
result is an expression for y(#;):

hl
4 (11} = y(o) + hf (o, y(ta)) + y"(ﬂ);-

If the step size & is chosen small enough, then we may neglect the second-order
term (involving 4%y and get

(5] ¥1 = yo+ hf (t0, yo),
which is Euler’s approximation.

The process is repeated and generates a sequence of points that approximates the
solution curve y = y(t). The general step for Euler’s method is

6 nyr1=n+h Ve =¥+hfl,y) fork=0,1, ..., M-1

Example 9.2. Use Euler’s method to solve approximately the initial value problem:
(7} ¥y =Ry over [0,1] with ¥(0) = yg and R constant.

The step size must be chosen, and then the second formula in (6) can be determined
for computing the ordinates. This formula is sometimes called a difference equation an4

in this case it is
(8) Yirl = (I +hR) fork=0,1,..., M—1.
If we trace the solution values recursively, we see that

¥y =yoll + AR}
y2=y:(1 +hR) = yo(1 + hR)?
9)

ym = yu—t(1+hR) = yo(L + hR)M.
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Table 9.1 Compound Interest in Example 9.3

Step Number of
size, iterations, M Approximation to y(5), ya
5
1 5 1000 (1 + 91—1) =1610.51
60
& 60 1000 (1 + %) = 164531
) 01 1800
- 1800 1 —— = K
5 000 ( 1+ 350) 1648.61

For most problems there is no explicit formula for determining the solution points, and
each new point must be computed successively from the previous point. However, for the
initial value problern (7) we are fortunate; Euler’s method has the explicit solution

(1o =kh ye=3y(l—hR* fork=01,.... M.

Formula (10) can be viewed as the “compound interest” formula, and the Euler ap-
proximation gives the future value of a deposit. ]

Example 9.3. Suppose that $1000 is deposited and earns 10% interest compounded con-
tinucusly over 5 years, What is the value at the end of 5 years?

We choose to use Euler approximations with & = 1, % and ?éﬁ to approximate y{5)
forthe LV.P.:

¥ =01y over [0,5] with y(0) = 1000.
Formula (10) with R = 0.1 produces Table 9.1. ]

Think about the different values ¥s, ¥60, and y1gop that are used to determine the
future value after 5 years. These values are obtained using different step sizes and
teflect different amounts of computing effort to obtain an approximation to y(5). The
S0lution to the LV.P. is y(5) = 1000e%5 = 1648.72. If we did not use the closed-form
solution (10), then it would have required 1800 iterations of Euler's method to obtain
¥1300. and we still have only five digits of accuracy in the answer!

If bankers had to approximate the solution to the 1. V.P, (7), they would choose Eu-
Ter’s method because of the explicit formula in (10). The more sophisticated methods
for approximating solutions do not have an explicit formula for finding yy, but they
will require less computing effort.

Geometric Description

1f you start at the point (zy, vg) and compute the value of the slope mp = f (15, yo)
and move horizontally the amount k& and vertically A f (tp, yo), then you are moving
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¢ Figure 9.5 Euler’s approximatioms
Yi—1 = yi +hf (. yi).

along the tangent line to y(r) and will end up at the point (¢}, yj) (see Figu.re 9._5}.
Natice that {ty, i) is not on the desired solution curve! But this is the approximation
that we are generating. Hence we must use (fy, v1} as though it were correct ?nd
proceed by computing the slope m1 = f(#1, y1) and using it to obtain the next vertical
displacement ki f (¢1, y1) to locate (¢, y2), and so on.

Step Size versas Error

The methods we introduce for approximating the solution of an initial value probler
are called difference methods or discrete variable methods. The solution is approx-
imated at a set of discrete points called a grid (or mesh) of points. An elementary
single-step method has the form yir1 = vt + AP (&, i) for some function P called
an increment function.

When using any discrete variable method to approximately solve an initial value
problem, there are two sources of error: discretization and round off,

Definition 9.3 (Discretization Error). Assume that {(#. ys)H is the set of dis-
crete approximations and that y = y(¢) is the unique solution to the initial value probr

lem.
The global discretization error ¢, is defined by

(ll) ey =)’(fk)—)’ic fol' k=0, 1, P M,

1t is the difference between the unique solution and the solution obtained by the discrete

variable method.
The local discretization error €, | is defined by

(12) €+1 = y(hr ) — v — AP, o) for k=0, 1, ..., M -1

[t is the error committed in the single step from 5 to £+ 1
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When we obtained equation (6) for Euler’s method, the neglected term for each
step was ¥ (c)(h?/2). If this was the only error at each step, then at the end of the
interval [a, b], after M steps have been made, the accumaulated error would be

(b —a)y®(c)

_ 1
> h=0th").

M 2 2

h R M
§ ¥ e = = MyP ()= = L@y =
& 2 2 2

There could be more error, but this estimate predominates. A detailed discussion on
this topic can be found in advanced texts on numerical methods for differential equa-
tions (Reference [75]).

Theorem 9.3 (Precision of Euler’s Method). Assume that y(r) is the solution to
the L.V.P. given in (2). If y(#) € C2[r, ] and HER )afc)}fﬂ is the sequence of approxi-
mations generated by Euler’s method, then

lex] = 1y(8) — el = O@),

(13) 5
l€k+1] = |y (te+1) — Y& — Af (e y1)| = O(RD).

The error at the end of the interval is called the final global error (FG.E.):
(14) E (y(b}, h) = |y(b) — yu| = O(h).

Remark. The final global error E(y(b), k) is used to study the behavior of the error for
various step sizes. It can be used to give us an idea of how much computing effort must
be done to obtain an accurate approximation.

Examples 9.4 and 9.5 illustrate the concepts in Theorem 9.3. If epproximations are
computed using the step sizes 4 and & /2, we should have

15) E(y(b), k)~ Ch

for the larger step size, and

o1 1

h
(16) E (y(b), -2-) FCs =3

Hence the idea in Theorem 9.3 is that if the step size in Euler’s methad is reduced by a
factor of § we can expect that the overall EG.E. will be reduced by a factor of §.

Example 9.4. Use Euler’s method to solve the LV.P,
t —
Y =222 on [0.3] with y(0) = 1.

Compare solutions for h = 1, %, %, and 5
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¥
15 L TRE Table9.2 Comparison of Euler Solutions with Different Step Sizes for ' = (r — y)/2
’ / “a over [0, 3] with y(0) = 1
“h=1
1.0 y =y b7 ‘
% % h=1 h=1 h=} h=1} (1) Exact
— 0 10 1.0 L0 1.0 10
03T 0.125 0.9375 0.943239
0.25 0.875 0.886719 0.897491
0.375 0.846924 0.862087
: ; ! * * : 0.50 0.75 0.796875 0.817429 0.836402
00 05 1015 20 25 30 0.75 0.759766 0.786802 0.811868
Figure 9.6 Comparison of Euler solutions with different 1.00 0.5 0.687.‘.f 0‘755.?545 0.790158 0.419592
step sizes for y' = (1 — ¥)/2 over [0, 3] with the initial 1.50 0.765625 0.846386 0.882855 0.917100
condition y(0) =1 2.00 0.75 0.949219 1.030827 1.068222 1.103638
' 2.50 1.211914 1.289227 1.325176 1.359514
3,00 1.375 1.533936 1.604252 1.637429 1.669390
Figure 9.6 shows graphs of the four Euler solutions and the exact solution curve y(t) =
3¢/~ 2+ 1. Table 9.2 gives the values for the four solutions at selected abscissas. For
the step size 2 = 0.25, the calculations are
¥1=1.04+0.25 (9'0 — 1'0) ={0.875, Table 9.3 Relation between Step Size and E.G.E. for Euler Solutions to
2 Y = (¢t — y)/2 over [0, 3] with (0) = 1
0.25 — 0.875°
y2 = 0.87540.25 (———2 ) = 0.796875, etc. FG.E. O(h) = Ch
’ Step Number of Approximation Emroratr =3, where
This iteration continues until we arrive at the last step: size, h sieps, M to ¥(3), yu ¥3) - vy C =0.25
0.294390 0.256
2.75 — 1.440573 1 3 1.375
¥(3) = y12 = 1.440573 4 0.25 (————-) = 1.604252. .
2 3 6 1.533936 0.135454 0.128
Example 9.5, Compare the EG.E. when Euler’s method is used to solve the LV.P 3 12 1.604252 0.065138 0.064
t—y é 24 1.637429 0.031961 0.032
¥y = = over [0,3] with y(0) =1,
% 48 1.653557 0.015833 0.016
. : i 1
using siep sizes 1, 3. - g4 L 1.661510 0.007880 0.008
Table 9.3 gives the FG.E. for several step sizes and shows that the error in the approx- 1 % '
imation to ¥(3) decreases by about 15 when the step size is reduced by a factor of % For 1 192 1.665459 0.003931 0.004
the smaller step sizes the conclusion of Theorem 9.3 is easy to see: o

E(y(3), h) = y(3) ~ ypr = Ok ) = Ch,  where C = 0.256. E
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Prograni 9.1 (Euler’s Method). To approximate the solution of the initial value
problem y’ = f(t, y) with y(a) = yo over {a, b] by computing

beel = Vi HRf (e, ) for k=01, ..., M~ 1L |

function E=euler(f,a,b,ya,M)

%Input - f is the function entered as a string ’'f’

% - a and b are the left and right end points

% - ya is the initial conditiomn y(a)

% ~ M is the number of steps

%Output - E=[T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

h=(b-a)/M;

T=zeros(1,M+1);

Y=zeros(1,M+1);

T=a:h:b;

Y{(1)=ya;

for j=1:M
Y(j+1)=Y(5)+h*feval (£,T(5),Y(i)};

end

E=IT’ Y'];

Exercises for Euler’s Method o

In Exercises 1 through 5 solve the differential equations by the Euler methed.
(a) Let A = 0.2 and do two steps by hand calculation. Thenlet & = 0.1 and do four
steps by band calculation.
{(b) Compare the exact solution y((.4) with the two approximations in part (a).
(c) Does the F.G.E. in part (a) behave as expected when & is halved?
Ly = —ywithy©) = Ly(t) = —e™ +1* =2t +2
2.y =3y +3rwithy(0) =1, () = 3€¥ —t -3

3.y = —ty with y(0) = 1, y() = e™/2

4 ¥ = e 2 — 2y with y(0) = . y(t) = f5e ™ +re”
5. v =202 with y(0) = 1, y(t) = 1/(1 — %) _
6. Logistic population growth.  The population curve P(¢) for the United State$ [

assumed to obey the differential equation for a logistic curve P'=aP -bP? lett

denote the year past 1900, and let the step size be # = 10. The values a = 0.02 Aww
b = 0.00004 produce a model for the population. Using hand calculations, finp the

2

Euler approximations to P(¢) and fill in the following table. Round off each value ﬁ

to the nearest tenth.
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Py)
Year 11 Actual Euler approximation
1900 0.0 76.1 76.1
1910 | 100 92.4 89.0
1920 | 20.0 106.5 -
1930 | 30.0 123.t
1940 | 40.0 132.6 138.2
1950 | 50.0 152.3
1960 | 60.0 180.7
1970 | 70.0 204.9 202.8
1980 | 80.0 226.5

7. Show that when Euler’s method is used to solve the LV.P.

the result is

y=fm

over [a,b] with y(@) =yp =0

yBy= 3 flon,

441

which is a Riemann sum that approximates the definite integral of £(7) taken over the

interval [a, b].

8. Show that Euler’s method fails to approximate the solution y(1) = /2 of the LV.P.

y = ft,y) = 1.5y'3

with  y(0) = 0.

Justify your answer. What difficulties were encountered?

9. Can Euler’s method be used to solve the LV.P.

Y=1+y

over [0, 3] with y(0) =07

Hint. The exact solution curve is y(¢) = tan{r).

Algorithms and Programs

In Problems 1 through 5, solve the differential equations by the Enler method.

(#yLet i = 0.1 and do 20 steps with Program 9.1. Then let & = 0.05 and do 40 steps

with Program 9.1.

{b] Gompare the exact solution y(2) with the two approximations in part (a).
{c) Does the EG.E. in part (a) behave as expected when # is halved?
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(d) Plot the two approximations and the exact solution on the same coordinate system.
Hint. The output matrix E from Program 9.1 contains the x and y coordinates of
the approximations. The command plot (E(:,1},E(:,2)) will produce a graph
analogous to Figure 9.6.

Ly=t2—ywithy@=1,y0)=—e"+2-2r+2

2y =3y+Hhwithy @)=Lyt = §e3' —t = %

3,y = —ry with y(©) = 1, y(r) = e~/?

4, y = e ¥ - 2y with y(0) = 115, ¥() = ﬁ;e‘z‘ +te
5.y = 21y? with y(0) = 1, y(t) = 1/(1 — 13
6. Consider y’ = 0.12y over [0, 5] with y(0) = 1000.
(a) Apply formula (10} to find Euler’s approximation to y(5) using the step sizes
k=1, {5 and 55.
(b) What is the limit in part (2) when i goes to zero?

-2

7. Exponential population growth. The population of a certain species grows at a rule
that is proportional to the current population and obeys the LV.P.

y' =002y over [0.5] with y(0) = 5000.

(a) Apply formula (10) to find Euler’s approximation to y{5} using the step ~1zes
1
h= 1, 13 and %0
(b} What is the limit in part (a) when & goes to zero?
A skydiver jumps from a plane, and up to the moment he opens the parachute the
air resistance is proportional to v¥? (v represents velocity). Assume that the time
interval is [0, 6] and that the differential equation for the downward direction is

v =32 —0.0320%7%  over [0, 6] with v(0) =0.

Use Euler’s method with & = 0.05 and estimate v(6).

9. Epidemic model. The mathematical medel for epidemics is described as follows
Assume that there is a community of L members that contains P infected individyals
and @ uninfected individuals. Let y(¢) denote the number of infected individuals at
time ¢. For a mild illness, such as the commeon cold, everyone continues to be actjve
and the epidemic spreads from those who are infected o those uninfected. Singe
there are PQ possible contacts between these two groups, the rate of change of Pat3]
is proportional to P (. Hence the problem can be stated as the LV.P.

y’ =ky(L —- y) with y(0Q) = yo.

(a) Use L = 25,000, ¥ = 0.00003, and h = 0.2 with the initial condition ¥(0) =
250, and use Program 9.1 to compute Euler’s approximate solution over {0, 607,

(b) Plot the graph of the approximate solution from part (a).

(c) Estimate the average number of individuals infected by finding the averagf of
the ordinates from Euler’s method in part (a).
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(d) Estimate the average number of individuals infected by fittin g a curve to the data
from part (a) and using Theorem 1.10 (Mean Value Theorem for Integrals).

10. Consider the first-order integro-ordinary differential equation
T
y = 1.3y - 0.25y° — 0.000ny y(r)dr.
0
(a) Use Euler’s method with # = 0.2, and y(0) = 250 over the interval {0, 20], and

the trapezoidal rule to find an approximate solution to the equation. Hint. The
general step for Euler’s method (6) is

143
Yert = e+ h(13y; — 0252  0.0001 y f »(x)de).
0

If the trapezoidal rule is used to approximate the integral, then this expression
becomes

Y1 = ye +h(13y; —~ 0.25yF — 0.0001 y, Tx (8)),
where Ty(h) = 0 and
k
Teth) =T (h) + E(yk-l +w) fork=0,1,..., 99

(b) Repeat part (a) using the initial values v(0) = 200 and v(0) = 300.

(¢} Plot the approximate solutions from parts (a) and (b) on the same coordinate
system.

33 Heun’s Method

'I:\'ne next approach, Heun’s method, introduces a new idea for constructing an algo-
nthm to solve the L.V.P. '

(L Y@ = f,y@) over [a,B] with y(p) = y.

To c:-btain the solution point (71, 1), we can use the fundamental theorem of calculus
ond integrate y'(¢) over [tg, f;] to get

H n
@ rayeydi= [y = 3o - v,
Ji % ’
where the antiderivative of y'(¢) is the desired function y(¢). When equation (2) is

solved for y(#;), the result is

h

_(3) y(t) = y(to) + f fa, y@)dr.

o



444 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Now a numerical integration method can be used to approximate the definite inte-
gral in (3). If the trapezoidal rule is used with the step size b == #; — tg, then the result
is

h
(4) y(n) =~ y(o) + E(f(to- y(t)) + finu, y{t))).

Notice that the formula on the right-hand side of (4) involves the yet to be deter
mined value y(#;). To proceed, we use an estimate for y{#;}. Euler’s solution will
suffice for this purpose. After it is substituted into (4), the resulting formula for findin .
(11. ¥1) is called Heun’s method:

h
(5 yi=y{o)+ E(f(to, yo) + fir, yo+ Af (30, yo))).

The process is repeated and generates a sequence of points that approximates the
solution curve y = ¥(r). At each step, Euler’s method is used as a prediction, and then
the trapezoidal rule is used to make a correction to obtain the final value. Tha general
step for Heun’s methed is

Pl = Yo+ Af(te. 1), B =k + A,

(6) h
Vi1 = Yk + 5 (f e i) + f Gty Petr)).

Notice the role played by differentiation and integration in Heun’s method. Dras
the line tangent to the solution curve y = y(r) at the point (£, yo) and use it to find the
predicted point (f1, p1). Now look at the graph z = f(z, y(¢)) and consider the points
(0, fo) and (11, f1), where fo = f (o, yo) and fi = f(#;. p1). The area of the trape-
zoid with vertices (#p, fo) and (¢, f)) is an approximation to the integral in (3), which
is used to obtain the final value in equation (5). The graphs are shown in Figure 9.7.

Step Size versus Error
The error term for the trapezoidal rule used to approximate the integral in (3) is

YN
0] -y (Ck)ﬁ-

If the only error at each step is that given in (7), after M steps the accumulated error
for Heun'’s method would be
M )
h b—a .
8 - De e & ——yP(e)i? = O(R?).
8 k§=1y edys = 5=y (e) (h*)

The next theorem is important, because it states the relationship between EG.E.

and step size. It is used to give us an idea of how much computing effort must be done

to obtain an accurate approxXimation using Heun'’s method.
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Y
r PR
/-"‘f’ o Uy
e {5, ¥(1))

(to’ y(j) pr-te
./»/J, = (1)

N

(tg ) z= At y(1))

\_:_*a.gr"ff)

—— ]

— i :

!0 fl "0 fl

(a) Derivative predictor:
Py = Yo +Af(ty, )

(b) Integral corrector:
h
Y~ ¥ = E(fo + )

Figure 9.7 The graphs y = y{f) and z = f(t. y(#)) in the derivation of Heun's methed.
Theorem 9.4 (Precision of Heun’s Method). Assume that y(s) is the solution 1o

the LV.P. (1). If y(1) € C3[1, b) and {(#;, yk)}f; o 18 the sequence of approximations
generated by Heun’s method, then

lexl = 1y (k) — yil = O(R?),

(9)
lekstl = |y(e1) — ye — A, )| = OB,

where (s, yi) = yie + (h/2)(f (. YO + f ka1, Y& + AF (e )
In particular, the final global error (F.G.E.) at the end of the interval will satisfy

(10) E(y(b), h) = ly(b) — ym| = OhY).

Examples 9.6 and 9.7 illustrate Theorem 9.4. If approximations are computed
using the step sizes 4 and k /2, we should have

(1) E(y(b), h) = Ch?

for the larger step size, and

12 v((b)f)=vch—2—lcﬂ~15 b,
Ely '3 “4—41‘\'1()’(),)-

Hence the idea in Theorem 9.4 is that if the step size in Heun's method is reduced bya
factor of % we can expect that the overall FG.E. will be reduced by a factor of %.
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h=1
— h=1/2
p NS
i y =y
0.5}
L 1 1 : 1 t
0.0 0.5 1.0 L5 2.0

Figure 9.8 Comparison of Heun solutions with different
step sizes for ¥ = (t — y)/2 over [0, 2] with the initial
condition y(0) = I,

Example 9.6. Use Heun’s method to solve the LV.P

Py
2

y = on [0, 3] with y(0) = 1.

Compare solutions fork =1, 1, 1, and }.

Figure 9.8 shows the graphs of the first two Heun solutions and the exact solution curve
y(t) =3e "7 —24+ Table 9.4 gives the values for the four solutions at selected abscissas,
For the step size & = (.25, a sample calculation is

S, yo) = 0—;—1 =-05
Pt = 1.0+ 0.25(—0.5) = 0.875,
s oy = 22088 g5y,
yi = 1.0+ 0.125(—0.5 — 0.3125) = 0.83984375.

This iteration continues until we arrive at the last step:

¥(3) = y12 = 1.511508 + 0.125(0.619246 + 0.666840) = 1.672269. =

Example 9.7. Compare the EG.E. when Heun'’s method is used to solve

,_t—y

Yy = —

over [0, 3] with y(0) =1,

using step sizes 1, §,..., &.
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Table 9.4 Comparison of He

[0, 3] with y(0) =1

447

un Solutions with Different Step Sizes for ¥ = (t — y)/2 over

Yk
tx h=1 h-—"% h=% h=é- y(#x) Exact

0 1.0 1.0 1.0 1.0 1.0

0.125 0.943359 0.943239
0.25 0.898438 0.897717 0.897491
0.375 0.862406 0.862087
0.50 0.84375 0.838074 0.836801 0.836402
0.75 0.814081 0.812395 0.811868
1.00 0.875 0.831055 0.822196 0.820213 0.819592
1.50 0.930511 0.920143 0.917825 0.917100
2.00 1.171875 1.117587 1.106800 1.104392 1.1303638
2.50 1.373115 1.362593 1.360248 1.359514
3.00 1.732422 1.682121 1.672269 1.670076 1.669390

Table 9.5 Relation between Step Size and F.G.E. for Heun Solutions to
¥ = (@t — y}/2 over [0, 3] with y(0) = 1

FGE. o) ~ ch?
Step Number of Approximation Erroratr = 3, where
size, b steps, M to y(3), yus ¥(3) — yus C = —0.0432
1 3 1.732422 —0.063032 —0.043200
i 6 1.682121 —0.012731 —0.010800
i 12 1672269 —0.002879 ~0.002700
3 24 L670076 —0.000686 —0.000675
12 48 1.669558 —0.000168 ~0.000169
5 9% 1.669432 —0.000042 —0.000042
& 192 1.669401 —0.000011 ~0.000011

Table 9.5 gives the F.G.E. and shows that the error in the approximation to y(3) de-
creases by about ; when the step size is reduced by a factor of 3

E(y(3).m)=y(3) — yu = Oh%) ~ Ch?,

where C = —0.0432, ]
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Program 9.2 (Heun’s Method). To approximate the solution of the initia value—g
problem y' = f(z, y) with y(a) = yo over [a, b] by computing :

h
Vel = Yk + E(f(fh yi) + f &1, ye + itk yid))

fork=0,1,.... M — 1

function Hsheun(f,a,b,ya,M)

%Input - f is the function entered as a string *f’
% - a and b are the left and right end points
% - ya is the initial condition y(a)

% - M is the number of steps

YOutput - H=[T’Y'} where T is the vector of abscissas and
% Y is the vector of ordinates

h=(b-a)/M;

T=zeros(1,M+1);

Y=zeros(i,M+1};

T=a:h:b;

Y(1)=ya;

for j=1:M

ki=feval(f,T(j),Y(3));
k2=feval({,T(j+1),Y(j)+h*kl);
Y(j+1)=Y () +(h/2)* (k1+k2);
end
H=(T'Y°];

Exercises for Heun’s Method

In Exercises t through 5 solve the differential equations by Heun's method.
{a) Let iz = 0.2 and do two steps by hand calculation. Then let # = 0.1 and do four
steps by hand calculation.
(b Compare the exact solution y{0.4) with the two approximations in part (a).
(¢) Does the F.G.E. in part (a) behave as expected when h 18 halved?
Loy =2 —ywithy(0) = 1, y(t) = e~  + 12 =21 +2
2.y =3y 43 with y(0) = 1, y(t) = §e¥ —1 — §

3.y = —ry with y(0) = 1, () = e~*'/2

4. v = e~ ¥ — 2y with y(0) = T]Ii' y() = 1%:!_7" + e
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5.y = 2ty? with y(0) = 1, () = 1/(1 — £?)
Notice that Heun’s method will generate an approximation to y(1) even though the
solution curve is not defined at r = 1.

6. Show that when Heun'’s method is used to solve the LV.P. y' = f (1) over [a, b] with
y(a) = yo = 0 the result is

M—1

h
y®) =3 3 (F@0+ f (e,

k=0
which is the trapezoidal rule approximation for the definite integral of f(¢) taken over
the interval [a, b].

7. The Richardson improvement method discussed in Lemma 7.1 (Section 7.3) can be
used in conjunction with Heun's methodl, If Heun's method is used with step size &,
then we have

y(b) & yy + ChE.
If Heurn’s method is used with step size 2k, we have
y{(b) 2 yop + 4CH>.

The terms involving Ch? can be eliminated to obtain an improved approximation for
(b}, and the result is

Ay —
y(b) ~ 3"'_3y?.*_

The improvement scheme can be used with the values in Example 9.7 to obtain better
approximations to y(3). Find the missing entries in the table below.

h Yo |@yn—yp)/3
1 1.732422

1/2 | 1.682121 | 1.665354
1/4 | 1.672269

1/8 | 1.670076

1/16 | 1.669558 | 1.669385
1/32 | 1.669432

1764 | 1.669401

8. Show that Heun'’s method fails to approximate the solution y(7) = 312 of the LV.P
y = fr,y) =15y with 30 =0.

Justify your answer. What difficulties were encountered?
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Algorithms and Programs

In Problems 1 through 5 soive the differential equations by Heun'’s method.

(a) Let # = 0.1 and do 20 steps with Program 9.2. Then let A = (.05 and do 40 steps

with Prograin 9.2.

(b) Compare the exact solution y(2) with the two approximations in part (a).
(a) Does the FG.E. in part (a) behave as expected when # s halved?
{a) Plot the two approximations and the exact solution on the same coordinate system.

LI SN SR

.Y =3y +3ewith y@ =L y() = 3e¥ —r - 1

Hint. The output matrix H from Program 9.2 contains the x and y coordinates of
the approximations. The command plot (H(:,1) ,H{:,2}) will produce a graph
analogous to Figure 9.8.

Y= —ywithy(Q) =1,y() = - +12 -2t 42
1

¥ = -ty with y(0) = 1, y(£) = e~*7/2

¥ =e ¥ =2y with y(0) = g5, y(t) = e ¥ +re”¥
¥ = 2092 with y(0) = 1, y(r) = 1/(} — 12)

. Consider a projectile that is fired straight up and falls straight down. If air resistunce

is proportional to the velocity, the I.V.P. for the velocity v(z) is
K
v =-32- 7 with  v(0) = vp,

where vp is the initial velocity, M is the mass, and K the coefficient of air resistance.
Suppose that vy = 160 ft/sec and K/M = 0.1. Use Heun’s method with # = 0.5 10
solve

v = —=32—-0.lv  over [0,30] with v(0) = 160.

Graph your computer solution and the exact solution »(r) = 480 ~"/1% — 320 ¢n the
same coordinate system. Observe that the limiting velocity is —320 fi/sec.

In psychology, the Wever-Fechner law for stimulus-response states that the rate of
change d R/d S of the reaction R is inversely proportional to the stimulus. The thresh-
old value is the lowest level of the stimulus that can be consistently detected. The
[.V.P. for this model is

k
R = 3wt RGSo =0
Suppose that Sgp = 0.1 and R(0.1) = 0. Use Heun's method with 2 = 0.1 to solve

R = over [0.1,5.1] with R(0.1) =0.
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8. (a) Write a program to implement the Richardson improvement method discussed
in Exercise 7.

(b) Use your program to approximate y(2) for each of the differential equations in
Problems 1-5 over the interval [0, 2]. Use the initial step size # = 0.05. The
program should terminate when the absolute value of the difference between
two consecutive Richardson improvements is < 1076,

94 Taylor Series Method

The Taylor series method is of general applicability, and it is the standard to which we
compare the accuracy of the various other numerical methods for solving an LV.P It
can be devised to have any specified degree of accuracy. We start by reformulating
Taylor's theorem in a form: that is suitable for solving differential equations.

Theorem 9.5 (Taylor’s Theorem). Assume that y(z) € CVt![z, b] and that y(r)
has a Taylor series expansion of order N about the fixed value t = 1, € [1g, b

(1) Vit +R) = y(t) + hTn (e, y(4)) + O RV,
where
N _
@ Tt y) = 3 LB pimt
=1

and yU (1) = £U-D{(r, y(1)) denotes the (j — 1)st total derivative of the function f
with respect to . The formulas for the derivatives can be computed recursively:
yuy=f
YO =fi+fyY =fHi+hi
YO = fir + 2505 + 5" + fry')?
=fu+2fiyf+ fyyfz +H+ 5
YR = fur + 3fuyy + 3ftyy()’j)2 +3fiyy”
+ 5" +3£Y' Y + fryy )
= (frr + 3fuy £ +3Feyy 2+ Fyyy £+ £, (Fue + 2f f + fiy )
+3fi+ DUy + Sy D+ e+ f6)

(3y

and, in general,

(&) y M@y = PPV 5, y(en,
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where P is the derivative operator

] ]
P={—+f—].
(a: * fay)
The approximate numerical solution to the LV.P. (s} = f(1, y) over [ty, 1a]

1s derived by using formula (1) on each subinterval [z, #41]. The general step for
Taylor’s method of order N is

d2h2 d3h3 thN
(5 Yk+1—yk+dlh+-§-'—-+ 3 4+ .-+ N

whered; = yY () forj =1,2,..., Nateachstepk =0, 1,..., M — 1.

The Taylor method of order N has the property that the ﬁnaI global error (FG.E.)
is of the order @ (h¥t!): hence N can be chosen as large as necessary to make this
error as small as desired. If the order N is fixed, it is theoretically possible to a pricr
determine the step size A so that the EG.E. will be as small as desired. However, in
practice we usually compute two sets of approximations using step sizes # and 4 /2 and
compare the results.

Theorem 9.6 (Precision of Taylor’s Method of Order N). Assume that y(s) is
the solution to the LV.P., If y(¢) € C¥*' [y, b] and {(. y)HL ) is the sequence of
approximations generated by Taylor’s method of order N, then

lex] = [y(t) — il = OGN,

(6) ] N
lex+1] = |¥(tes1) = v — AT Ge, yi) | = O(RT).

In particuiar, the FG.E. at the end of the interval will satisfy
(7 E(y(6). h) = ly(b) — yul = OG™).

The proof can be found in Reference [78].

Examples 9.8 and 9.9 illustrate Theorem 9.6 for the case V = 4. If approximat:ons
are computed using the step sizes & and h /2, we should have

® E(y(b), h) = Ch*

for the larger step size, and
(9) E( .2 Lo Legom
2 16 16 T

Hence the idea in Theorem 9.6 is that if the step size in the Taylor method of order 4 is
reduced by a factor of 1 > the overall EG.E. will be reduced by about - 6
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Example 9.8. Use the Taylor method of ordcr N =4tosolve y = (t — y)/2 on [0 3]
with y(0) = 1. Compare solutions forh = 1, 1, 3, and %

The derivatives of y(r) must first be determined. Recall that the solution y(z) is a
function of ¢, and differentiate the formula ¥(£) = f(t, y(r)) with respect to r to get
y@(#). Then continue the process to obtain the higher derivatives.

’ =y
)’(3)==T.

d (t—y 11—y 1-(-w)/2 2—t+y
=g (5) =5 =
y(')"Z( 3 )‘ rE— ) ==
Won A (=241—y\  —041-y 1—(—y)/2 2-1+y
Y ('):E?( g )‘ g 8 16

To find y;, the derivatives given above must be evaluated at the point (z, yp) = (0, 1).
Calculation reveals that

4y = 0y = 00 2 10_ o5

by y Oy o 200010 _ o

ds = Y (0) = i‘?igf:ﬂ = 0375,
de = yWoy = 20700+ 10 1875,

16
Next the derivatives {d;] are substituted into (5) with 2 = 0.25, and nested multiplication
is used to compute the value y;:

0.75
y1=1.0+0.25( 0<+025( > 025( 06375 025(01275))))

= 0.8974915.

The computed solution point is (11, y1) = (0.25, 0.8974915).

'To determine y», the derivatives [d;) must now be evaluated at the point (1|, y;) =
(0.25, 0.8974915). The calculations are starting to require a considerable amount of com-
putational effort and are tedious to do by hand. Calculation reveals that

0.25 — 0.8974915

d = y'(0.25) = ——————— = ~0.3237458,

& = y?(0.25) = 2098 I' 089715 _ 4 6618729,
= yP(025) = —2.0+0.25|B- 0.8974915 _ 0 2iosen
do = y @025y = 20T OIS HOBITONS oo

16
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Table 9.6 Comparison of the Taylor Solutions of Order N = 4 for y' = (¢ — y)/2
over [0, 3] with y(Q) = 1

Yk

t h=1 fl=% hzé h=§ ¥(#) Exact
¢ 1.0 1.0 1.0 1.0 10
0.125 0.9432392 0.9432392
0.25 0.8974915 0.8974908 0.8974917
0.375 0.8620874 0.8620874
0.50 0.8364258 0.8364037 0.8364024 (.8364023
0.75 (.8118696 0.8118679 0.8118678
1.00 0.8203125 0.8196285 0.8195940 0.8195921 0.8195920
1.50 09171423 0.9171021 0.9170998 0.9170997
2.00 1.1045125 1.1036826 1.1036408 1.1036385 1.1036383
2.50 1.3595575 1.3595168 1.3595145 1.3595144
3.00 1.6701860 1.6694308 1.6693928 1.6693906 1.6693905

Now these derivatives {d,} are substituted into (5) with & = 0.25, and nested multiplication
is used to compute the value y;:

¥2 =0.8974915 + 0.25 (—0.3237458

0. =0. .
+0.25 (———66;8729 +0.25 (—-—-——-—0 33609364 +0.25 (0~16::682))))

= 0.8364037.

The solution point is (f2, y2)} = (0.50, 0.8364037). Table 9.6 gives solution values at
selected abscissas using various step sizes. L]

Example 9.9. Compare the FG.E. for the Taylor solutions to ¥’ = (¢ — y)/2 over [0. 3]
with y(0) = 1 given in Example 9.8.

Table 9.7 gives the F.G.E. for these step sizes and shows that the error in the approxi-
mation ¥(3} decreases by about % when the step size is reduced by a factor of 15:

EGQLM =y3)—yw = 0"y~ Ch*,  where C=-0000614. =
The following program requires that the derivatives v', y”, y", and ¥ be saved
in an M-file named df. For example, the following M-file would save the derivatives
from Example 9.8 in the format required by Program 9.3,

fupction z=df{%,y)
z=[{t-y}/2 (2~t+y) /4 (-2+t-y)}/B (2-t+y)/16];

SEC.9.4 TAYLOR SERIES METHOD 455

Table 9.7 Relation between Step Size and F.G.E. for the Taylor Solutions to
¥ =(t~y)f2over(0,3]

FGE. ot = crt
Step Number of Approximation Brroratt = 3, where
size, f steps, M to ¥(3), yu y(3) — yum = —0.000614
1 3 1.6701860 —0.0007955 —0.0006140
3 6 1.6694308 —0.0000403 —0.0000384
1 12 1.6693928 ~0.0000023 —0.0000024
% 24 1.6693906 —0.0000001 —0.0000001
L 1

| Program 9.3 (Taylor’s Method of Order 4). To approximate the solution of the
"

{ initial value problem ¥y’ = f(1, y) with y{a) = yp over [a, b] by evaluating y_", ¥,
] and y"” and using the Taylor polynomial at each step.

i
function T4=taylor(df,a,b,ya,M)
YInput - df=(y’ y’? y’?? y’??’] entered as a string 'af’

A where y’=f(t,¥y)

% - a and b are the left and right end points
% ~ ya is the initial conditiomn y(a)

% ~ M is the number of steps

%0utput - T4=[T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

h={b-a)/N;

T=zeros(1,M+1);

Y=zeros(1,M+1);

T=a:h:b;

Y{i)=ya;

for j=1:M

D=feval(df,T(j),Y{(j));

Y(+1)=Y(j)+h* (DC1)+h*{D(2) /2+h*(D(3) /6+h*D(4)/24)) )
end
Ta=[T’ Y’1;

Exercises for Taylor Series Method

Tn Exercises 1 through 5 solve the differential equations by Taylor’s method of order N = 4.
(a) Let & = 0.2 and do four steps by hand calculation. Then let £ = .2 and do two
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steps by hand calculation.
{b) Compare the exact sclution y(0.4) with the two approximations in part (a).
(e) Does the F.G.E. in part (a) behave as expected when 4 is halved?

Ly =rf—ywithy@) =1,y(t)=—e " +1>2-2t+2
¥

2.y =3y +3twithy(0) =1, y0) = %23’ —-f— %

3. ' = —ty with y{0) = 1, y(t) = e~1*/2
4.y =e ¥ — 2y with y(0) = . y() = ge ™% +re™™
5.y = 2ty? with y(0) = 1, (1) = 1/(1 ~ £?)

6. The Richardson improvement method discussed in Lemma 7.1 (Section 7.3) can be
used in conjunction with Taylor's method. If Taylor’s method of order N = 418
used with step size &, then y(&) ~ y; + CH4. If Taylor’s method of order N = 4 is
used with step size 2h, then y(b) = yu + 16Ck*. The terms involving Ch* can be
eliminated to obtain an improved approximation for y(b):

16yr — you

b)) ~
y{b) s

This improvement scheme can be used with the values in Example 9.9 to cbtain beiter
approximaticns to y(3). Find the missing entries in the table below.

h Yr (16yn — y21)/15
1.0 1.6701860 |
0.5 1.6694308
0.25 1.6693928
0.125 | 1.6693906

7. Show that when Taylor's method of order N is used with step sizes h and /1/2, hen
the overall F.G.E. will be reduced by a factor of about 2~ for the smaller step sz

§. Show that Taylor’s method fails to approximate the solution y(r) = 3/ of the | VP
y = f{t,y) = 1.5¥'/? with y(0) = 0. Justify your answer. What difficulties were
encountered?
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9. (a) Verify that the solution to the LV.P. ¥’ = 32, y(0) = 1 over the interval [0, 1) is
() = 1/l — 1.
(b) Verify that the solution to the LVP. ' = 1 + ¥2, y(0) = 1 over the interval
[0, w/4) is ¥(1) = tan(t + 7 /4).
(c} Use the results of parts {a) and (b) to argue that the solution to the LV.P. y' =
t2 + 2, y(0) = | has a vertical asymptote between 7 /4 and 1. (Its location is
near { = (.96981.)

10, Considerthe LV.P.y' =14 3%, y(0) = 1.
(a) Find an expression for y2(1), yP @), and y*(2).
(b) Evaluate the derivatives at t = 0, and use them to find the first five terms in the
Maclaurin expansion for tan(t).

Algorithms and Programs

In Problems 1 through 5 solve the differential equations by Taylor’s method of order N = 4.

(a} Let A = 0.1 and do 20 steps with Program 9.3. Then let 4 = 0.05 and do 40 steps
with Program 9.3.

(b) Compare the exact solution y(2} with the two approximations in part (a).
{c) Does the F.G.E. in part (a) behave as expected when 4 is halved?

(d) Plot the two approximations and the exact solution on the same coordinate system.
Hint. The output matrix T4 from Program 9.3 contains the x and y coordinates of
the approximations. The command plot (T4(:,1),T4(:,2)) will produce a graph
analogous to Figure 9.6.

Ly = ~ywithy(0)=1,y(t) = =~ +1% -2t +2
Loy =3y +3twithy@) =1, y(t) =fe¥ -1 — 1

Y,y = —ty with y(0) = 1, y(t) = e~'12

4y =e"¥ — 2y with y(0) = {5, y(t) = {5e % 4 1e7¥
5 v =23 with y(0) = 1, y(8) = 1/(1 — %)

6. (a) Write a program to implement the Richardson improvement method discussea
in Exercise 6.

(b) Use your program from part (a) to approximate y(Q.8) for the LV.P. y = 1?4 y2,
y(0) = 1 over [0, 0.8]. The true solution at + = 0.8 is known to be y{0.8) =
5.8486168. Start with the step size s = 0.05. The program should terminate
when the absolute value of the difference between two consecutive Richardson
improvements is < 1075,
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7. (a) Modify Program 9.3 to carry out Taylor’s method of order N = 3.
(b) Use your program from part (a) to solve the LV.P. y' = £2 4 y2, y(0) = 1 oser
[0, 0.8]. Find approximate solutions for the step sizes # = 0.05, 0.025,0.01°5,
and 0.00625. Plot the four approximations on the same coordinate system.

Runge-Kutta Methods

The Taylor methods in the preceding section have the desirable feature that the EG.E.
is of order O(h™), and & can be chosen large so that this error is small. However, the
shortcomings of the Taylor methods are the a priori determination of N and the com-
putation of the higher derivatives, which can be very complicated. Each Runge-Kutta
method is derived from an appropriate Taylor method in such a way that the FG.E. [s of
order O(h™). A trade-off is made to perform several function evaluations at each step
and eliminate the necessity to compute the higher derivatives. These methods can be
constructed for any order N. The Runge-Kutta method of order N = 4 is most popular
It is a good choice for common purposes because it is quite accurate, stable, and easy
to program. Most authorities proclaim that it is not necessary to go to a higher-order
method because the increased accuracy is offset by additional computational effort . If
more accuracy is required, then either a smaller step size or an adaptive method should
be used.

The fourth-order Runge-Kutta method (RK4) simulates the accuracy of the Taylor
series method of order N = 4. The method is based on computing y;; as follows.

(1) Ye+t = Y + wiky + waky + wiky + waky,
where k), ko, k3, and k4 have the form

ky = Bf(te, yi),

ky =hf(t - arh, yg + bik1),

k3 = hf(t + azh, yi + bok| + bskz),

ky = hf (1 + ash, yi + baky + bskz + beks).

(2)

By matching coefficients with those of the Taylor series method of order N =4 50 thot
the local truncation error is of order O (#9), Runge and Kutia were able to obtain the
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following system of equations:

by =a,

by + by = as,

by + b5 + bg = a3,
wtuwr+ws+wyg=1,

wad + waaz + weaz = %,
waal + wiad + wya? = %
& wzai3 + w3a3 + w4a§ = i—,
wsa b + w4talbs + aabg) = é
waayazby + waas{a)bs + axbg) = %
w3albs + walalhs + asbg) = -112-
1
waabibg = 2

The system involves 11 equations in 13 unknowns. Two additional conditions must be
supplied to solve the system. The most useful choice is

@ ay = and by =0.

1
2

Ther the solution for the remaining variables is

8
li

®)

E
]
R = R -

The values in (4) and (5) are substituted into (2} and (1) to obtain the formula for
the standard Runge-Kutta method of order N == 4, which is stated as follows. Start
with the initial point (), yo) and generate the sequence of approximations using

RA+2H+2f5+ fa)
Ye+1 = Yr + 3 »
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where
N1 = Flte, Yo,
h h
f2=f(fk+5,yk+-2-f1),
)]

h h
f3=f(‘k+5,)’k+-2-f2),
Jfa= flt +h, v +Rf3).

Discussion about the Method

The complete development of the equations in (7) is beyond the scope of this book and

can be found in advanced texts, but we can get some insights. Consider the graph of

the solution curve v = y{1) over the first subinterval [ty, ;]. The function values in
(7) are approximations for slopes to this curve. Here fi is the slope at the left, f> and
f3 are two estimates for the slope in the middle, and f4 is the slope at the right (sc¢
Figure 9.9(a)). The next point (#;, y1) is obtained by integrating the slope function

n
(8 ¥ -yl = f fi, ye)de.
)

If Simpson’s rule is applied with step size /2, the approximation to the integral
in (8)is

4] h
(9) / flr, y)de = g(f(to. y(0)) + 4 £ (h 2, y(01,2) + Fo, y())),
fo

where f| /2 is the midpoint of the interval. Three function values are needed; hence we
make the obvious choice f(fg, ¥ (f0)) = f} and F(r1, ¥(#1)) = f4. For the value in the
middle we chose the average of f; and f5:

f2+ f3

MGG R >

These values are substituted into (9}, which is used in equation (8) to get vi:

h 4
(10 ¥ :yo-{—g (f]+&;f3)+f4).

When this formula is simplified, it is seen to be equation (6) with & = 0. The graph
for the integral in (9) is shown in Figure 9.9(b).
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¥

!

y = y(1) (ﬁs)’(fi))
! /n::=f4
w”}/n: =5
i my=f, z
i =f1
| o) (o f2)

(ry0 f3)
a \. e (), fp)
: S L I
IIt) t 1I"2 L Iy Ly f

(b) Integral approximation:

(a) Predicted slopes m; 1o the ’ |
¥t} —¥p= E(fl +12fy + 2y +f4)

solution curve y = y(f)

Figure 9.9 The graphs y = y()andz = f(z. y()} in the discussion of the Runge-Kutta

method of order N = 4.
Step Size versus Error
The error term for Simpson’s rule with step size h/2is
RS
7880
that given in (11), after M steps the accurnulated error

o —y¥(e)

if the only error at each step is
for the RK4 method would be

12)

M h’ b—a 4y, .4 4
@y L W )h* e ORY).
_Zk ¥ 3555~ Fie0”

The next theorem states the relationship between F.G.E. and step si:z.e. I:_[;S ;slzi
1o give us an idea of how much computing effort must be done when using the

method.

Theorem 9.7 (Precision of the Runge-Kutta Method). Assome that y(r) is th'e
solution to the LV.P. If (@) € C°[1o, b} and {(4. YYL, is the sequence of approxi-
trnations generated by the Runge-Kutta method of arder 4, then

lex] = y(8) — el = O,

a3 Ly (tes1) — Vi = AT, Yl = o).

lex+1| =
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In particular, the F.G.E. at the end of the interval will satisfy
(14) E(y(d). k) = [y() ~ yul = O ().

Examples 9.10 and 9.11 illustrate Theorem 9.7. If approximations arv cumputed
using the step sizes k and 2/2, we should have

(13) E(y(b), h) =~ Ch*

for the larger step size, and

h 4 .

= — = —-Ch —E b), k).
(16 E(y(b),z) C T 16 (o), 1)
Hence the ldea in Theorem 9.7 is that if the step size in the RK4 method is reduced by
a factor of we can expect that the overall EG.E. will be reduced by a factor of + -

Example 9.10, Use the RK4 method to solve the LVP y = (r — ¥)/2 on [0, 3] with
y(0) = 1. Compare solutions for k = 1,1 3 4, and L i

Table 9.8 gives the solution values at selected abscissas. For the step size h = 0.25.a
sample calculation is

0.0-1.0

fi= = =-05.,
PRCEE R RS 0:.225(0.5)(-0-5)) = —0.40625,
o Q125040 252(0 S)(0.40625)) 4 4121094,
PR 2§(~0 A4121094)) _ 4 3234863,
104025 (—0.5 + 2(—0.40625) + 2(6—0-4121094) — 0.3234863 )
= 0.8974915. ’

Example 9.11. Compare the FG.E. when the RK4 method is used to solve ¥ = (t —y)/2

over [0, 3] with y(0) = 1 using step sizes 11 3, 4, and g L
Table 9.9 gives the FG.E. for the varlous step swes and shows that the error in the
approximation to y{3) decreases by abont 7 6 when the step size is reduced by a factor

af ks
E(y(3) ) = y(3) — yu = O(hYy = Ch*  where C = —0.000614. ®

A comparison of Examples 9.10 and 9.11 and Examples 9.8 and 9.9 shows what i
meant by the statement “The RK4 method simulates the Taylor series method of order
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Table 98 Comparison of the RK4 Solutions with Different Step Sizes for y' = (t — y)/2
over [0, 3] with y(0) = 1

Yk

% h=1 h=1 h=} h=} () Exact
n 1.0 10 1.0 1.0 1.0
0125 09432392 | 09432392
0.25 0.8974915 0.8974908 | 0.8974917
n.375 0.8620874 | 0.8620874
0.50 0.8364258 0.8364037 08364024 | 0.8364023
0.75 0.8118696 08118679 | 0.8113678
1.00 0.8203125 0.8196285 0.8195940 0.8195921 0.8195920
1.50 0.9171423 0.9171021 09170998 | 0.9170997
2.00 1.1045125 11036826 1.1036408 1.1036385 1.1036383
250 1.3595575 1.3595168 13595145 13595144
3.00 1.6701860 1.6694308 1.6693928 1.6693906 16693905

Table 9.9 Relation between Step Size and F.G.E, for the RK4 Solutions to
¥y =t — ¥)/2 over [0, 3] with y(0) = 1

EGE. Oy ~ Cch?
Step Number of Approximation Errorat: = 3, where
size, k steps, M to y(3), v y(3) — yu = —0.000614
1 3 1.6701260 —0.0007955 —0.0006140
3 6 1.6694308 —0.0000403 —0.0000384
i 12 1.6693928 —0.0000023 —0.0000024
§ 24 1.6693906 —0.0000001 —0.0000001

N = 4. For these examples, the two methods generate identical solution sets {(z., yx)}
over the given interval. The advantage of the RK4 method is obvious; no formulas for
the higher derivatives need to be computed nor do they have to be in the program.

It is not easy to determine the accuracy to which a Runge-Kutta solution has been
computed. We could estimate the size of y(c) and use formula (12). Another way
is to repeat the algorithm using a smaller step size and compare results. A third way is
to adaptively determine the step size, which is done in Program 9.5. In Section 9.6 we
will see how to change the step size for a multistep method.

Runge-Kutta Methods of Order ¥ = 2
The second-order Runge-Kutta method (denoted RK2) simulates the accuracy of the
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Taylor series method of order 2. Although this methed is not as good to use as the
REK4 method, its proof is easier to understand and illustrates the principles involved.
To start, we write down the Taylor series formula for y(r + #&):

(an y(t+ k) = y() + hy'(8) + %hzy”(t) +Cri’ +

where Cr is a constant involving the third derivative of y(¢) and the other terms in the
sertes involve powers of A/ for j > 3.

The derivatives y'(#) and y”(r) in equation (17) must be expressed in terms of
F(r. ¥y and its partial derivatives. Recall that

(18) ¥ = £, .

The chain rule for differentiating a function of two variables can be used to differ-
entiate {18) with respect to 7. and the result is

V') = £ v+ fln, Y@,
Using (18), this can be written
(19) Yy = fitt, M+ 0 f ).

The derivatives (18) and (19) are substituted in (17) to give the Taylor expression
for y(¢r + h):

1
Y+ 1) =y + A, y) + SR fule, )

(20) | 2
+ o S 9 f () + Crh +

Now consider the Runge-Kutta method of order N = 2, which uses a linear com
bination of two function values to express y(¢ + h):

@b y(t 4+ k) = y(t) + Ahfo + Bhf,
where
(22) fﬂ'_" f(t,)P),

fi=f{t+ Ph,y+ Ohfy).

Next the Taylor polynomial approximation for a function of two independent vari-
ables is used to expand f{r, y) (see the exercises). This gives the following represen-
tation for fi:

(23) fi = £l y) + Phfile, y) + Qhfy(t, y) F(1, ) + Cph® +
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where Cp involves the second-order partial derivatives of f(¢, y). Then (23) is used
in (21) to get the RK2 expression for y{t + k):

o4) y(t +h) = y(6) + (A + BYaf(t, ) + BPR* fi(2, ¥)
‘ +BOR (1, 3)f (1, y) + BCpI® + -+

A comparison of similar terms in equations (20) and (24) will produce the follow-
ing conclusions:

hf(t,yy=(A+ BYaf(t, ¥) implies that 1 = A + B,

1 1
S St )y =8 PR £,(2, ¥) implies that > = BP,

"hzfy(t Vf, y) =B f,(t,y) fit,y)  implies ma%: BQ.

Hence, if we require that A, B, P, and Q satisfy the relations

1

1
2 = - = B ) = —,
(25) A+B=1 BP = Q=5

then the RK2 method in (24) will have the same order of accuracy as the Taylor's

method in (20).

Since there are only three equations in four unknowns, the system of equations (25)
is underdetermined, and we are permitted to choose one of the coefficients. There are
several special choices that have been studied in the hterature, we mention two of them.

Case (i): Choose A = — . This choice leads to B = 2, P=landQ =1 1If
equation (21) is written with these parameters, the formula is

h
(26) yi+h) =y + E(f(t’ yy+ f+h y+hf y))).

When this scheme is used to generate {(tx, yx)}, the result is Heun’s method
Case (ii): Choose A = 0. This choice leadsto B =1, P = 2, and O = 5 If
equation (21) is writien with these parameters, the formula is

h
@7 y(it+h) =y@)+hf (r+g,y+5f(r, y)).

When this scheme is used to generate { (¢, yx}}. it is called the modified Euler-Cauchy
method.
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Runge-Kutta-Fehlberg Method (RKF45)

One way to guarantee accuracy in the solution of an L.V.P. is to solve the problem twice
using step sizes s and /2 and compare answers at the mesh points corresponding 1o
the larger step size. Bul this requires a significant amount of computation for the
smaller step size and must be repeated if it is determined that the agreement is not
good enough.

The Runge-Kutta-Fehlberg method (denoted RKF45) is one way to try to resolve
this problem. It has a procedure to determine if the proper step size A 1s being used. At
each step, two different approximations for the solution are made and compared. If the
two answers are in close agreement, the approximation is accepted. If the two answers
do not agree to a specified accuracy, the step size is reduced. If the answers agree to
more significant digits than required, the step size is increased.

Each step requires the use of the following six values:

ky = hf (. yeh

1 1
o =hf |t + =h, =k1 ),
2 J(k+4 yk+41)

3 3 9
= hf Z iy =
kg,---hJ (tk+8h,yk+3k1+3k2),

28) 12 1932 7200 7296
ke =hf (b + —=h. y, &y - ,
4= A (* Tt o T aer? ey 3)
439 3680 845

=hf e fry — e by T

ks = hj (rﬁh.yﬂ STk — Bl + ks 4104:(4),
! 8 3544 1859 11

ke = b (1 + =h, yp — k) + ks — o ks b — ke ).
6 =1 ("+2 Y= 5k + 2k - okt ™ T 20 5)

Then an approximation to the solution of the L. V.P. is made using a Runge-Kutta

method of order 4:
25 1408 2197 1
29 = —k| + ———k —— kg — -k
29 Yert = Yt srekt + 5555 T ator T 5%
where the four function values fi, f3, f4, and f5 are used. Notice that f> is not used
in formula (29). A better value for the solution is determined using a Runge-Kutta
method of order 5:
16 6656 28,561 9

30 Th+1 = Y + Ek[ + 12.825 3 + 56,430k4 ~ 30

2
k —kg.
5+55k6

The optimal step size sk can be determined by multiplying the scalar s times the
current step size k. The scalar s is

Tol h 144 Tol A 174
(31) s= (—a)___) ~0.84 (—0_)
2zhsr — Yieril |Zk+1 — Ye+1l
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Table 9.10  RKF45 Solution to ¥’ = 1 + y2, y(0) =0

RK435 approximation True solution, Error
k I ¥k »(1) = tan(y) Yy — i
0 0.0 0.0000000 0.0000000 ©.0000000
1 0.2 0.2027100 0.2027100 0.0000000
2 04 0.4227933 0.4227931 ~0.0000002
3 0.6 0.6841376 0.6841368 —0.0000008
4 0.8 1.0296434 1.0296386 —0.0000048
5 1.0 1.5574398 1.5774077 —0.0000321
6 1.1 1.9648085 1.9647597 —0.0000438
7 1.2 2.5722408 25721516 —0.0000892
8 13 3.6023295 3.6021024 —0.0002271
9 1.35 4.4555714 44552218 —0.00034%
10 14 5.7985045 57978837 —0.0006208

where Tol is the specified error control tolerance.

The derivation of formula (31) can be found in advanced books on numerical anal-
ysis. It is important to learn that a fixed step size is not the best strategy even though
it would give a nicer appearing table of values. If values are needed that are not in the
table, polynomial interpolation should be used.

Example 9.12. Compare RKF45 and RK4 solutions to the LV.P.
y'=1+4+y* with y0)=0 on [0, 1.4]

An RKF45 program was used with the value Tol = 2 x 107 for the error control
wierance. It automatically changed the step size and generated the 10 approximations to
the solution in Table 9.10. An RK4 program was used with the a priori step size of # = 0.1,
which required the computer to generate 14 approximations at the equally spaced points in
Table 9.11. The approximations at the right end point are

y(1.4) =~ y1p=5.7985045 and y(1.4) = y4 = 5.7919748
and the errors are

Ejp=—0.0006208 and E;4 = 0.0059089

for the RKF45 and RK4 methods, respectively. The RKF45 method has the smaller
CITOI. u




68 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Table 9.11 RK4 Salutionto y' = 1 + y2, y(0) =0

RK4 approximation True solution, ) Error
£ % Y ¥{re) = tan(y ) ¥ = vk
0 0.0 0.0000000 (.0000000 0.0000000
1 0.1 0.1003346 0.1003347 £.0000001
2 0.2 0.2027099 0.2027100 (.0000001
3 0.3 0.3093360 0.3093362 0.0000002
4 0.4 0.4227930 0.4227932 0.0600002
5 0.5 0.5463023 G.5463025 0.0000002
6 0.6 0.6841368 0.6841368 0.0000000
7 0.7 0.8422886 0.8422884 ~0.0000002
g 0.8 1.0296391 10296386 —0.0000005
9 0.9 1.2601588 1.2601582 —0.0000006
10 LD 1.5574064 1.5574017 0.0000013
11 Il 1.9647466 1.9647597 0.0000131
12 12 2.5720718 2.5721516 0.0000798
I3 1.3 3.6015634 3.6021024 0.0005390
14 14 5.7919748 5.7978837 0.005908%

Program 9.4 (Runge-Kutta Method of Order 4), To approximate the solution
of the initial value problem y’ = £z, y) with y(a@) = yp over [a, b] by using the
formuia

h
Yk+l = Yk + E(k: + 2ky -+ k3 4 ka).

|

function R=rk4(f,a,b,ya,M)

“Input -~ £ is the function entered as a string ’f®

% ~ a and b are the left and right end points

2 - ya iz the initial condition y(a)

Y ~ M ia the number of steps

%0utput ~ R=[T’ Y’] where T is the vector of abscissas
¥ and Y is the vector of ordinates

h=(b-a)/M;

T=zeros(1,M+1);

Y=zeros(1,M+1);

T=a:h:b;

Y(1)=ya;

for j=i:M
kil=h*feval (f,T(j),¥(j));
k2=h+feval (£f,T(j)+h/2,Y(j)+k1/2);
k3=hsfeval (£f,T(j)+h/2,Y(j)+k2/2);
ké4=h+feval (f,T{(j)+h,Y(j)+k3);
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Y(j+1)=Y () + (ki+2%k2+2+k3+k4) /6;
aend
R=[T? Y');

The following program implements the Runge-Kutta-Fehlberg Method (RKF45)
described in (28) through (31).

Program 9.5 (Runge-Kutta-Fehlberg Method (RKF45)). To approximate the
solution of the initial value problem ¥* = f(z, ¥) with y(a) = yp over [«, &) with
an error control and step-size method.

function R=rkf46(f,a,b,ya,M,tol)
%Input - f is the function entered as a string ’f’

% - a and b are the left and right end points

% - ya is the initial condition y(a)

% - M is the number of steps

% - tol is the tolerance .
%Output - R=[T? Y’] where T is the vector of abscissas
% and Y is the vector of ordinates

%Enter the coefficients necessary to calculate the
%values in (28} apd (29
a2=1/4;b2=1/4;a3=3/8;b3=3/32;c3=9/32;24=12/13;
b4=1932/2197; c4=-7200/2197;d4=7296/2197; ab=1;
b5=439/216; c5=-8;d5=3680/513;e5=-845/4104;a6=1/2;
b6=-8/27;c6=2;d6=-3544/2565;e6=1859/4104;
£6=-11/40;1r1=1/360;13=-128/4275;r4=~-2197/75240;r5=1/50;
r6=2/55;n1=25/216;n3=1408/2665:n4=2197/4104;n5=-1/5;

big=1el5;

h={b-a)/M;

hmipn=h/64;

hmax=64+h;

max1=200;

Y(1)=ya;

T(1l)=a;

J=1:

br=b-0.00001*abs{b);

while (T(j)<b}
if ({T{j)+h)>br)

h=b-T(j);

end
%Calculation of values in (28) and (29)
ki=h*feval(f,T(j).Y(3i));
y2=Y(j)+b2*ki;
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if big<abs(y2)break,end
k2=h*feval(f,T(j)+a2+h,y2);
y3=Y(j)+b3*k1l+c3xk2;
if big<abs(y3)break,end
k3=h*feval(f,T(j)+a3+h,y3);
y4=Y (j) +bd*kl+cd*k2+d4*+k3;
if big<absa(y4)break,end
kd=h*feval (f,Y(j)+ad+h,y4);
y5=Y(j) +bbxk1+cb*k2+d5+k3+eb5+kd ;
if big<abs(yb5)break,end
kb5=hxfeval (f,T(j)+ab*h,y5);
y6=Y(j) +b6+k1+c64k2+d6+k3+ab+kd+f6+k5;
if big<abs(y6)break,end
k6=h*feval (f,Y(j)+ab+h,y6);
err=abs (ri*kl+r3sk3+rd+kd+rb5*kb+ré+ke6) ;
ynew=Y (j}+nl*kl+n3*k3+nd*k4+n5*k5;
#Error and step size control
if ((err<tol}| (h<2*hmin))

Y(j+1)=ynew;

it ((T(j)+h)>br)

T(j+1)=b;
else
T(j+1)=T(j)+h;

end

J=j*1;
end
if (err==0)

s5=0;
else

s5=0.84* (tol*h/err)~(0.25);
end
1f((s<0.75)& (h>2*hmin))

h=h/2;
end
if((s>1.50)&(2*h<hmax))
h=2%h;
end
if ((big<aba(Y(j))) | (maxl==j)) ,break,end
M=j;
if (b>T(j))

M=j+1;
else

M=3j;
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end

end

R=[T° ¥’1;

Exercises for Runge-Kutta Methods

In Exercises 1 through 5, solve the differential equaticns by the Runge-Kutta method of
order N = 4.

(a) Let h = 0.2 and do two steps by hand calculation. Then let # = 0.1 and do four

steps by hand calculation.

(h) Compare the exact solution y(0.4) with the two approximations in part (a).
(c) Does the FG.E. in part (a) behave as expected when A is halved?

Ly =12 —ywithy(@) =1, y() = —e~" -2 -2t +2

y =3y +3withy@ =1,y(0) = $e¥ -1 - }

y = —tywithy(0) =1,y@) = e12
1

y =e 2 — 2y with y(0) = 15, y(@) = fre™ +re”¥
y' = 2ty? with y(0) = 1, y(1) = 1 /{1 — 1)

Show that when the Runge-Kutta method of order N = 4 is used to solve the LV.P.
y' = f(t, y) over [a, b] with y(a) = O the result is

=N

M-l
yB) = = 3 () +4F (e 2) + L)),
k=0

where i = (b —a)/M, and & = a + kh. and fis1/2 = a + (k + %) h, which is
Simpson's approximation (with step size #/2) for the definite integral of f(r) taken
over the interval [a, b].

. The Richardson improvement method discussed in Lemma 7.1 (Section 7.3) can be

used in conjunction with the Runge-Kutta method. If the Runge-Kutta method of
order N = 4 is used with step size h, we have

y(b) = yu + Ch*.
If the Runge-Kutta method of order N = 4 is used with step size 2k, we have
y(b) = yoi + Ch?.

The terms involving Ch* can be eliminated to obtain an improved approximation for
y(b), and the result is
16yp — y21

b) ~
y(b) 5
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3.y = ~ty with y(0) = 1, y(t) = e~"/2
4.y =e ™ = 2y with y(0) = &, y(t) = e Y + e
5.y =2yt with y(0) = 1, y(t) = 1/(1 — 12)
In Problems 6 and 7, solve the differential equations by the Runge-Kutta-Fehiberg methad.

(a) Use Program 9.5 with initial step size # = 0.1 and tol = 10~7.
(b) Compare the exact solution y(b) with the approximation.

This improvement scheme can be used with the values in Example 9.11 to obtain
better approximations to y(3). Find the missing entries in the table below.

h ¥h (16yy — yan)/15

1 1.6701860 |
1.6694308 |

M—

(¢) Plot the approximation and the exact solution on the same coordinate system.
16693928 | 6. ¥ = 9te™, y(0) = 0 over [0, 3], y(t) = 3re¥ — &¥ + |
1| 1.6693906 _ 7.y =2tan" (1), y(0) = Qover [0, 1], y{(t) = 2t tan~"(¢) — In(1 + %)

8. In a chemical reaction, one molecule of A combines with one molecule of B to form
one molecule of the chemical C. It is found that the concentration y{t) of C at time ¢
is the sclution to the LV.P.

Y =kla-y)b-y) with y©0) =0,

where £ is a positive constant and @ and b are the initial concentrations of A and

For Exercises 8 and 9, the Taylor polynomial of degree N = 2 for a function f(z, y) of two
variables r and y expanded about the point (a, b) is

Py, y) = f@.b) + file. B¢ — @) + fy(a. BY(y — b)

— a2 (a. b)Yy — b)?
4 Jul@ D20V | f b~ a)y — by LB

8. (a) Find the Taylor polynomial of degree N = 2 for f(r, y} = y/t expand:.
about (I, 1).
{(b) Find £»(1.05, I.1) and compare with £(1.05, 1.1). o
9. (a) Find the Taylor polynomial of degree N = 2 for f(t,y) = (1 +t —y)'/*
expanded about (0. 0).
(b) Find P;(0.04, 0.08) and compare with f(0.04, 0.08).

Algorithms and Programs

In Problems 1 through 5, solve the differential equations by the Runge-Kutta method of

order N = 4.

(a) Let A = 0.1 and do 20 steps with Program 9.4. Then let & = 0.05 zand do 40 steps.
with Program 9.4.

(b} Compare the exact solution y(2) with the two approximations in part (a).

{¢) Does the FEG.E. in part (a) behave as expected when 4 is halved?

(d) Plot the two approximations and the exact solution on the same coordinate_ system,
Hint. The output matrix R from Program 9.4 contains the x and y coordinates oﬂ
the approximations. The command plot(R(:,1) ,R{:,2)) will produce a graph

analogous to Figure 9.6.
Ly=P2—ywithy0)=1y()=—e"+12-20+2
2.y =3y +3twithy@ =1, y(t) = ¥ — ¢ — |

B. respectively. Suppose that & = 0,01, ¢ = 70 millimoles/liter, and » = 50 mil-
limoles/liter. Use the Runge-Kutta method of order N = 4 with h = 0.5 1o find
the solution over [0, 20]. Remark. You can compare your computer solution with the
exact solution y(f) = 350(1 — e=%2") /(7 — 52=021) Observe that the limiting value
is50ast — +oo.

9. By solving an appropriate initial value problem, make a table of values of the function
S () given by the following integral;

1 1 d 2 v}

(x)=:—+--——f e ?dr  for 0=<x =<3
4 2 V2 ho

Use the Runge-Kutta method of order N = 4 with & = 0.] for your computations.

Your solution should agree with the values in the following table. Remark. This is a

good way to generate the table of areas for a standard normal distribution.

x| flx)

0.0{ 0.5

0.5 | 0.6914625
1.0 | 0.8413448
1.5 | 0.9331928
2.0 | 0.9772499
2.5 | (.9937903
3.0 | 0.9986501

0. (a) Writs a program to implement the Richardson improvement method discussed

in Exercise 7. .
()  Use your program from part (a) to approximate y(0.8) for the LV.P ¥ =24y?
¥{(0) = 1 over [0, 0.8). The true solution at t = 0.8 is known to be y(0.8) =
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5.8486168. Start with the step size # = 0.05. The program should terminate
when the absolute value of the difference between two consecutive Richardson
improvements is < 1077,

11. Consider the first-order integro-ordinary differential equation:
1
y =13y — 025y% — o.ooozyf y(r)dr.
0

(a) Use the Runge-Kutta method of order 4 with & = 0.2, and y(0) = 250 over the
interval [0, 20], and the trapezoidal rule to find an approximate solution to the
equation (see Problem 10 in the Algorithms and Programs in Section 9.2).

(b) Repeat part (a) using the initial values ¥(0) = 200 and y(0) = 300,

(c) Plot the approximate solutions from parts {a) and (b) on the same coordinate
system.

Predictor-Corrector Methods

The methods of Euler, Heun, Taylor, and Runge-Kutta are called single-step methuds
because they use only the information from one previous point to compute the suc-
cessive point; that is, only the initial point (#p, yo) is used to compute (1, y,) and.
in general, yx is needed to compute vi11. After several points have been found. it
is feasible to use several prior points in the calculation. For illustration, we develnp
the Adams-Bashforth four-step method, which requires y;_3, yi—2, yx-1, and yz in
the calculation of yg.;. This method is not self-starting; four initial points (1, 3.+
(1. ¥1}, (2. ¥2), and (#3, y3) must be given in advance in order to generate the points
e, yi) 1k = 4}

A desirable feature of a multistep method is that the local truncation error (L.T.I-.)
can be determined and a correction term can be included, which improves the accuracs
of the answer at each step. Also, it is possible to determine if the step size is smuill
enough to obtain an accurate value for y; 1|, yet large enough so that unnecessary and
time-consuming calculations are eliminated. Using the combinations of a predictor
and corrector requires only two function evaluations of f(r, y) per step

The Adams-Bashforth-Moulton Method

The Adams-Bashforth-Mouiton predictor-corrector method is a multistep metiiod de-
rived from the fundamental theorem of calculus:

Tt
(M V1) = yUg) + f £, y()) d.
4
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z = f(1, ¥(1))

/"_"-\“——

z = f(t, y(1))

s o L Te fie1 hes Tz Ny L Tt

(a) The four nodes for the
Adams-Moulton corrector
(interpolation is used).

{a) The four nodes for the
Adams-Bashforth predictor
(extrapolation is used).

Figure 9.10 Integration over [#, fr— ] in the Adams-Bashforth method.

The predictor uses the Lagrange polynomial approximation for f(r, y(r)) based
on the points {(#;—3, fe—3). (te—2, fe—2), k-1, fx—1). and (&, fi). It is integrated over
the interval [1, fz+1] in (1). This process produces the Adams-Bashforth predictor:

h
(2) Prt1 = Vi + 53(“9}5«—3 + 37 fi2 — 59 fi—1 + 55 £3).

The corrector is developed similarly. The value pgy; just computed can now be
wsed. A second Lagrange polynomial for f{z, y(#)) is constructed, which is based
on the points (fx-2, fi-2), (t—1. fk—1), (&, fr), and the new point (-1, fk+1) =
{f%x+1, f (41, pr+1)). This polynomial is then integrated over [#, fx+1] producing the
Adams-Moulton corrector:

h
(3) Y+t = Yk + 2—4(1‘&—2 — 5 fi—1 +19f + 9 frr1).

Figure 9.10 shows the nodes for the Lagrange polynomials that are used in developing
formulas (2) and (3), respectively.

Error Estimation and Correction

The error terms for the numerical integration formulas used to obtain both the predictor
and corrector are of the order @ (#%). The L T.E. for formulas (2) and (3) are

(L.T.E. for the predictor),

251 s
) Y1) = Pl = %y”’(ckmh-

(5) Y1) = Yar1 = -9 y®(diy1)h®  (L.T.E. for the corrector).

720
Suppose that k is small and y(j)(t) is nearly constant over the interval; then the
terms involving the fifth derivative in (4) and (5) can be eliminated, and the result is

. —19
(6) Y1} — Y+l & EE()’.&H Pi+1)-
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New mesh—- Y3 79 t172 [

Old mesh— 1, , Ly 1, f

Figure 9.11 Reduction of the step size to &/2 in an adaptive method.

The importance of the predictor-corrector method should now be evident. Fo
mula (6) gives an approximate error estimate based on the two computed vaiues py-
and v+ and does not use y(r).

Practical Considerations
The comrector (3) used the approximation fiy] = Ffitit1, Pa+1) in the calculation
of ve.1. Since yi41 is also an estimate for y(#..1), it could be used in the corrector (3)
to generate a new approximation for fe4y, which in turn will generate a new value
for vi41. However, when this iteration on the corrector is continued, it will convergc
t0 a fixed point of (3) rather than the differential equation. It is more efficient 1o redu:c
the step size if more accuracy is needed.

Formula (6) can be used to determine when to change the step size. Although
elaborate methods are available, we show how to reduce the step size to #/2 or increase
it 10 2k, Let RelBrr = 5 x 10~% be our relative error criterion, and let Small = 1075,

19 |¥es1 — Prt1]

19 Deri = Pertl  poipn
270 Tyers| + Small ~ ot
19 |yk+1 — pat1l  RelErr
270 1 yer1| + Small ~ 100

When the predicted and corrected values do not agree to five significant digis,
then (7) reduces the step size. If they agree to seven or more significant digits, then (8)
increases the step size. Fine-tuning of these parameters should be made to suit your
particular computer.

Reducing the step size required four new starting values. Interpolation of £ (¢, y(z})
with a fourth-degree polynomial is used to supply the missing values that bisect the in-
tervals [ty—2, tk 1] and [, £ ). The four mesh points 1432, te—1, tk—1/2, and 7 used
in the successive calculations are shown in Figure 9.11.

The interpolation formulas needed to obtain the new starting values for the step
size i1 /2 are

h
n then set A = 3

, then set h = 2k.

(8)

~5fi-a+28Bfi-3—T0fr—2+ 140fi—1 + 353 fi

©) i1z = 128
3 fr—a —20fk—3 + 90 fi—2 + 60fi_1 — 5f«
feospz = 128 ‘

Increasing the step size is an easier task. Seven prior points are needed to double
the step size. The four new points are obtained by omitting every second one, as shown
in Figure 9.12.
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Figure 9.12 Increasing the step size to 2k in an adaptive method.

Milne-Simpson Methed

Anothel: popfﬂar predictor-cotrector scheme is known as the Milne-Simpson method.
Its predictor is based on integration of f(7, y(1)) over the interval [g_3, L+l

k4
(10) Ytr) = yli_3) + f ™ r v dr.
| 7Y

The ]?redictor uses the Lagrange polynomial approximation for f(¢, y(+)) based
on t_he points (-3, fi—3), (-2, f2), (e—1, fi1), and (&, f&). It is integrated over
the interval [#x—3, #x+1]. This produces the Milne predictor:

4h
{11) Pk+1 = Ye-3 + ?(ka-z — fim1 +2fi).

The corrector is developed similarly. The value py., can now be used. A sec-
ond Lagrange polynomial for f{z, y(r)) is constructed, which is based on the points
(fe—-1, fim1), (4, fi), and the new point (fr41, fit1) = (het1, FUks1s Pas1)). The
polynomial is integrated over [#:..1, #;+:], and the result is the familiar Simpson’s rule:

) h
(12) Yh+1 &= ¥p—] ‘B‘(fk-l + 4 S+ fes1).

Error Estimation and Correction

The error terms for the numerical integration formulas used to obtain both the predictor
and corrector are of the order O (h%). The L.T.E. for the formulas in (11} and (12) are

28
(13 Yle+1) — PRyl = %yts)(ckﬂ)hs (L. T.E. for the predictor),

—1
14 Y1) — Ye1 = ﬁ;y(s)(dk+l)h5 {L.T.E. for the corrector).
Suppose that 4 is small enough so that (1) is nearly constant over the interva
[*~3, tk+1]. Then the terms invelving the fifth derivative can be eliminated in (13) and
(14} and the result is

28
(15) Y1) = Prrl = E(_‘l’kw - Pk+1)-

Formula (15) gives an error estimate for the predictor that is based on the two
computed values pi+1 and yi..; and does not use y'3)(r). It can be used to improve the
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predicied value. Under the assumption that the difference between the predicted and
corrected values at each step changes slowly, we can substitute p; and yx for pe+) and
vt in (15) and get the following modifier:

(16) Myt = Pk+l +23yk2_9pk-

This modified value is used in place of py.41 in the correction step, and equation (12}
becomes

h
(17 Yk+1 = k-1t g(fkhl + 4 fr + s, me+1))

Therefore, the improved (modified) Milne-Simpson method is

4h .
Pisl = Yk-3 + ?(ka-z — Je=1 +2fk) (predictor)

Yk — Pk .
= 28 modifier)
(18) Myl = Pr41 + 29 (
Jer1t = k1. Mps1)
h
Ye+l = Yi—1+ é‘(fk—l +4fr + fet) {corrector).

Hamming’s method is another important method. We shall omit its derivation, but
furnish a program at the end of the section. As a final precaution we mention that all
the predictor-corrector methods have stability problems. Stability is an advanced topic
and the serious reader should research this subject.

Example 9.13. Use the Adams-Bashforth-Mculton, Milne-Simpson, and Hamming meth-
ods with & = % and compute approximatiens for the solution of the L.V.P.

y = ng_y, y® =1 over [0,3]

A Runge-Kutta method was used to obtain the starting values
yi = 094323919,  y» =0.89749071, and y3 = 0.86208736.

Then a computer implementation of Programs 9.6 through 9.8 produced the values in Ta-
ble 9.12. The error for each entry in the table is given as a multiple of 102, In all entries
there are at least six digits of accuracy. In this example, the best answers were produced by
Hamming’s method. (]
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Table .12 Comparison of the Adams-Bashforth-Moulton, Milne-Simpson, and Hamming
Methods for Solving v = (t — ¥)/2, y(0) = 1

Adams-
Bashforth- Milne- Hamming’s
k Moulton Error Simpson Error method Error
0.0 1.00000000 0E—8 | 1.00000000 0E—-8 | 1.00000000 0E-8
0.5 0.83640227 8E—8 | 0.83640231 4E—-8 | 0.83640234 1E -8
0.625 | 0.81984673 16E—8 | 0.81984687 2E—8 | 0.81984688 1E-8
0.75 0.81186762 22E-8 | 0.81186778 6E—8 | 0.81186783 1E—-8
0.875 | 0.81194530 28E—8 | 0.81194555 3E—-8 | 0.81194558 0E-8
1.0 0.81959166 32E-8 | 0.81959190 8E—8 | 0.81959198 0E—8
1.5 0.91709920 46FE—8 | 0.91709957 9E—8 | 0.91709967 —-1E—8
20 1.10363781 S51E—-8 | 1.10363822 10E~-8 | 1.10363834 —2E—8
25 1.35951387 52E—8 | 1.35951429 10E—-8 | 1.35951441 —2E-8
2.625 1.43243853 S2E—8 | 1.43243899 6E 8 | 1.43243907 —2E—-8
275 1.50851827 52E—-8 | 1.50851869 10E-8 | 1.50851881 —2E-8
2.875 1.58756195 S51E—8 | 1.88756240 6E—8 | 1.58756248 —2E—8
3.0 1.66938998 S0E—8 | 1.66939038 10E —38 1.66939050 —2E-8
The Right Step

Our selection of methods has a purposel first, their development is easy enough for a
first course; second, more advanced methods have a similar development; third, most
undergraduate problems can be solved by one of these methods. However, when a
predictor-corrector method is used to solve the LV.P. y' = £(z, y), where y(f) = yp.
over a large interval, difficulties sometimes occur.

If fy(r, y) < 0 and the step size is too large, a predictor-corrector method might
be unstable. As a rule of thumb, stability exists when a small error is propagated as a
decreasing error, and instability exists when a small error is propagated as an increasing
error. When too large a step size is used qver a large interval, instability will result and
is sometimes manifest by oscillations in the computed solution. They can be attenuated
by changing to a smaller step size. Formulas (7) through (9) suggest how to modify
the algorithm(s). When step-size control is included, the following error estimate(s)
should be used:

(19) y(t) — e 195% (Adams-Bashforth-Moulton),
(20) Y =y~ ”",;i (Milne-Simpson),

Yk .
(21) ¥ () = yi = 9ﬁ# (Hamming).

In all methods, the corrector step is a type of fixed-point iteration. It can be proved
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that the step size h for the methods must satisfy the following conditions:

. 2.66667
h &« ———— {Adams-Bashforth-Moulton),

22) T ]
300000
150 )

2.66667 .
—_— {(Hamming).
e "< TRl

(23) h (Milne-Simpson})

The notation < in (22) through (24) means “much smaller than” The pext example
shows that more stringent inequalities should be used:

0.75

P TRE
0.45

= ThG

0.69 N
b ).
@7 PGy (Hemming

(23) (Adams-Bashforth-Moulton),

(26) h (Milne-Simpson),

Inequality (27) is found in advanced books on numerical analysis. The other two in-
equalities seem appropriate for the example.

Example9.14, Use the Adams-Bashforth-Moulton, Milne-Simpson, and Hamming meth~-
ods and compute approximations for the solution of

y' =305y, y(@) =1 over the interval [0, 10].

All three methods are of the order O(h%). When N = 120 steps was used for all three
methods, the maximum error for each method occurred at a different place:

y(0.41666667) — ys = —0.00277037 (Adams-Bashforth-Moulton),
y(0.33333333) — yq = —0.00139255 (Milne-Simpson),
¥(0.33333333) — ys &= —0.00104982 (Hamming).

At the right end points ¢ == 10, the error was

y(10) - yi20 = 0.00000000 (Adams-Bashforth-Moulton),
y(10) — y120 = 0.00001015 (Milne-Simpson),
{10} - yi29 == 0.00000000 (Hamming).

Both the Adams-Bashforth-Moulion and Hamming methods gave approximate solution
with eight digits of accuracy at the right end point.
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L A R T R - N |

L L | L 1 i N s :

0 1 2 3 4 5 6 7 8 9 10

Figure 9.13 (a) The Adams-Bashforth-Moulton solution
to ¥ = 30 — 5y with N = 37 steps produces oscilla-
tion. It is stabilized when N = 65 because & = 10/65 =
0.1538 = 0.15 = 0.75/5 = 0.75/1 f, (t. ¥).

L L L ! \ N ! L .

0 1 2 3 4 5 6 7 8 9% 10

Figure 9.13  (b) The Milne-Simpsou solution to y' = 30 —
5y with N = 93 steps produces oscillation. It is stabilized
when N = 110 because i = 10/110 = 0.0909 = 0.09 =
0.45/5 = 045/ fy (¢, Y)I.

It is instructive to see that if the step size is too large the computed solution os-
cillates about the true solution, Figure 9.13 illustrates this phenomenon. The small
number of steps was determined experimentally so that the oscillations was about the
same magnitude. The large number of steps required to attennate the oscillations were
determined with equations (25) through (27).

Each of the following three programs requires that the first four coordinates of T
and Y be initial starting values obtained by another method. Consider Example 9.13,
where the step size was i = % and the interval was [0, 3]. The following string of
commands in the MATLAB command window will produce appropriate input vec-
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. _—...a,«vc\ﬁbvﬂoﬁ(ﬁ‘ N=70
' N=350

[ R N T - S
;

0O 1 2 3 4 5 6 7 8 9 10

Figure 9.13 (c) Hamming's solution to y' = 30 — Sy
with N = 50 steps produces oscillation. It is stabilized
when N = 70 because h = 10/70 = 0.1428 == (.138 =
0.68/5 = 0.69/| £, (t, ¥)I.

tors T and Y.

>>T=zeros(1,25);

>>Y=zeros(1,25);

>>T=0:1/8:3;

>>Y(1:4)=[1 0.94323919 0.89749071 0.86208736]:

of the initial value problem y" = f(z, y) with y(a) = yo over [a, b] by using the

predictor ;

h
Pi+1 = Yk + ﬂ('—9fk—3 +37 feea — 591+ 55f%)

and the corrector

h
Vel = Y+ Eag(fk-z = 5fi—1+19fc + 9 fr1).

function A=abm(f,T,Y)

%Input - £ is the function entered as a string 'f’

% - T is the vector of abscissas

% - Y is the vector of ordinates

%Remark. The first four coordinates of T and Y must

% have starting values obtained with RK4

#Output - A=[T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

n=length(T);

Program 9.6 (Adams-Bashforth-Moulton Method). To approximate the solution !

SEC. 9.6 PREDICTOR-CORRECTOR METHODS 483

if n<5,break,end;

F=zeros(1,4);

F=feval(f,T(1:4),Y(1:4));

h=T{2)-T(1);

for k=4:n-1
%Predictor
p=Y(k)+(h/24)*(F*[-9 37 -59 55]17);
T(k+1)=T(1)+h*k;
F=[F(2) F(3) F{(4) feval(f,T(k+1),p)];
YCorrector
v{k+1)=Y(k)+{(h/24)x(F*{1 -5 19 9]’);
F(a)=feval(f,T(k+1),Y(k+1));

end

A=[T’ Y’1;

Program 9.7 (Milne-Simpson Method). To approximate the solution of the initial
value problem y’ = f(t, y) with y(a) = yo over [, b] by using the predictor

4h
Pr+l = Yk-3+ ?(ka—:z — fe—1+2f1)
and the corrector

h
Vi1 = Ve—1+ 'j’(fk—l + 4 fr + fe+1)-

function M=milne(f,T,Y}

%Input - f is the function entered as a string ’f’

% - T is the vector of abscissas

% - Y is the vector of ordinates

YRemark. The first four coordinates of T and Y must

% have starting values obtained with RK4

%0utput - M=[T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

n=length(T);

if n<5,break,end;

F=zeros{1,4);

F=feval (f,T(1:4).Y(1:4));

h=T(2)-T(1};

pold=0;

yold=0;

for k=4:n-1
YPredictor
pnew=Y(k-3)+(4*h/3)*(F(2:4)*[2 -1 21°);
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YModifier
pmod=pnew+28* (yold-pold}/29;
T(k+1)=T(1)+h*k;
F=[F{2) F(3) F(4) feval(f,T(k+1),pmod)];
Y%Corrector
V{kr1)=Y(k-1)+(h/3)*(F(2:4)*[1 4 1]°);
pold=pnew;
yold=Y(k+1);
r{4)=feval(f,T(k+1),Y{k+1));

end

M=[T" ¥'];

problem y' = f(z, y) with y(a) = yp over [a, b] by using the predictor

4k
P+l = Y3+ T(ka-z — fi—1+2f)

and the corrector

Yer] = Mf:-?& + :jgﬁ(—fk—l +2fk+ fer1)

function H=hamming(f,T,Y)
%Input - £ is the function entered as a string °'f’
% - T is the vecter of abscissas
% -~ Y is the vector of ordinates
YRemark. The first four coordinates of T and Y must
% have starting values obtained with RK4
YOutput ~ H=[T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates
n=length(T};
if n<b,break,end;
=zaros(1,4);
F=feval(f,T(1:4),Y(1:4));
h=T(2)-T(1};
pold=0;
cold=0;
for k=4:n-1

%Predictor

pnew=Y (k-3)+(4*n/3)* (F(2:4)%[2 -1 2]°);

YModifier

pmod=pnew+112* (cold-pold)/121;

T{k+1)=T(1)+h*k;

[?mgram 9.8 (Hamming Method). To approximate the solution of the initial value .
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F=[F(2) F(3) F(4) feval(f,T(k+1),pmod)];
%Corrector
cnew=(9%Y (k) -Y (k-2)+3xh* (F(2:4)*[-1 2 1]’))/8;
Y{k+1)=cnew+9* (pnew-cnav) /121;
peld=pnew;
cold=cnew;
Fl4)=feval (f,T{(k+1},Y(k+1));
and
H=[T’ Y’];

Exercises for Predictor-Corrector Methods

In Exercises | through 3, use the Adams-Bashforth-Moulton method, the three starting
values y(, y2, and y3, and the step size £ = 0.05 to calculate by hand the next two values
y4 and ys for the LV.P. Compare your solution with the exact solution y(t).

Ly=>2—y yO=lover[05Lyt)=—e"+2—2r+2
¥(0.05) = 0.95127058
$(0.10) = 0.90516258
»{0.15) = D.86179202

2,y =y+3t—12y0)=lover[0.5], y() =2¢' +12 -1 — 1
(0.05) = 1.0550422

¥(0.10) = 1.1203418
$(0.15) = 1.1961685

3 ¥y =—tfy, ¥y = 1over[l, 1.4}, y(t) = (2 — %)
¥(1.05) = 0.94736477

¥{1.10) = 0.88881944
y(1.15) = 0.82310388

In Exercises 4 through 6, use the Milne-Simpson method, the three starting vatues y;, y».
- and y3, and the step size & = 0.05 to calculate by hand the next two values 4 and ys for
the L.V.P. Compare your solution with the exact solution y(z).

4. y =& -y, y(0) =1over{0,5], y(t) = te~! + ¢
¥(0.05) = 0.99879090
¥(0.10) = 0.99532116

»(0.15) = 0.98981417
5. y' =2y, y(0) = 1 over {0, 0.95], y(1) = 1/(1 — 13

y(0.05) = 1.0025063
¥(0.10) = 1.0101010
¥(0.15) = 1.0230179
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6. y' =1+ y2, y(0) = 1 over [0, 0.75, y(t) = tan(t + 7r/4)
y(0.05) = 1.1053556
¥(0.10) = 12230489
¥(0.15) = 1.3560879
In Exercises 7 through 9, use the Hamming method, the three starting values y;. v», and
¥3, and the step size # = 0.05 to calculate by hand the next two values y4 and ys for the
I.V.P. Compare your solution with the exact solution y(¢).
7. v =2y — ¥2. y(0) = 1 over [0, 5], y(r} = 1 + tanh(r)
y(0.05) = 1.0499584
¥{0.10) = 1.0996680
¥{0.15) = 1.1488850
8. ¥ = (1 — ¥)HY2, y(0) = 0 aver [0, 1.55), y(r) = sin(r)
¥(0.05) = 0.049979169
y(0.10) = 0.099833417
¥(0.15) = 0.14943813
9, y' = y2sin(?), y(0) = 1 over [0, 1.55], y(#) = sec(s)
y(0.05) = 1.0012513
y(0.10) = 1.0050209
y(0.15) = 1.0113564

Algorithms and Programs

1. (a) Use Program 9.6 to solve the differential equations in Exercises 1 through 3.
(b) Plot your approximation and the exact solution on the same coordinate system.

2. (a) Use Program 9.7 to solve the differential equations in Exercises 4 through 6.
(b) Plot your approximation and the exact solution on the same coordinate system.

3. (a) Use Program 9.8 to solve the differential equations in Exercises 7 through 9.
(b) Plot your approximation and the exact solution on the same coordinate systen.

4. Produce a graph analogous to Figure 9.13 by using Program 9.6 with N = 37 and
N = 65 to solve the LV.P.

¥y =30—-5y, y@®=1 over[0,10].

5. Forthe LV.P. ¥' = 45 — 9y, v(1) = O over[1, 20]:
(a) Use inequality (22) to determine for which step sizes the Adams-Bashforth
Moulton method might be unstable.
(b) Based on your results from part (a) select step sizes h; and h, for which the
Adams-Bashforth-Moulton method should be stable and unstable, respectively.
Use a Runge-Kutta method to generate three starting values y;, y2, and y1 for
each of the step sizes.
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(e) Use Program 9.6 to generate two approximations, one for each step size, to the
LV.P.

(d)} Use your results from part (c) to produce a graph analogous to Figure 9.13. You
may find it necessary to experiment with several sets of step sizes.

9.7 Systems of Differential Equations

This section is an introduction to systems of differential equations. To illustrate the
concepts, we consider the ihitial value problem

dx f@ )
— = ft,x,y -
(1) dt with { x(to) = xo,

dy _ ¥(10) = yo.
a1 =gl{t,x,y)

A solution ta (1) is a pair of differentiable functions x(¢) and y(¢) with the propery
that when ¢, x(¢), and y(¢) are substituted in f(z, x, y) and g(¢, x, ¥}, the result is equa!
1o the derivative x'(#) and y'(¢), respectively; that is

(2)

x'(8) = flr,x(0), y(1) wipn | ¥ =0
Y () =gt x (@), y(1)) ¥{t0) = yo.

For example, consider the system of differential equations
dx 42
== y 0) = €
3) d with lx( ) =6

dy ¥(0) = 4.
= =3x+2
o X+ 2y

The solution to the L.V.P. (3} is

x(f) = 4de¥ + 27",

4
@ y(1) = 6™ — 2¢7.

This is verified by directly substituting x (¢) and y(z) into the right-hand side of (3),
computing the derivatives of (4), and substituting them in the left side of (3) to get

166¥ — 267 = (4 + 2¢7%) + 2(6e™ — 2¢7),
24eM 4 2¢7F = 3(de™ + 2e7") + 2(6e¥ — 2e7).
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Numerical Solutions

A numerical solution to (1) over the interval @ < t < b is found by considering the
differentials

(5) dx = f(t,x,y)dt and dy==g(, x,y)d:.

Euler’s method for solving the system is easy to formulate. The different
iy — tk» X = Xg41 — Xg, and dy = yiq1 — yi are substituted into (5) to ge

Xia1 — Xk = f{te, Xk, YO (e = 1),

0)
Yh+1 — Y = glt, Xiy Yeder1 — f)-

The interval is divided into M subintervals of width # = (b — a)/M, and the mesh

points are 4] = f; + 4. This is used in (6) to get the recursive formulas for Euler’s

method:

Lyl =& +h,
(7 Xiy | = Xk + Bf (, Xk, yi),
Ye+rl = Ye +hglte, xe, ) for k=0,1, ..., M— L

A higher-order method should be used to achieve a reasonable amount of accurac:.
For example, the Runge-Kutta formulas of order 4 are

h
el =X+ (i + 22421 + fa),
(®) 6

h
Yk+1 = ¥+ -6-(31 +2g2 -+ 283 + g4),
where
g1 = gtk Xk, Yi).

YA . h I PR
1= f{k 5 X 2f1.yk+281 v =gt utsfintze).

fi = ft. Xk, Y&).

2 2
fa= f(t+h, xe+hfs y+ hga),

h h h h h h
f=flu+s nt+gfantsa) s=g\ntgpatzfontzel
g4 = gtk +h, X + hf3. ye + hg3).
Example 9.15. Use the Runge-Kutta method given in (8) and compute the numerica|

solution to (3) over the interval [0.0, 0.2] using ten subintervals and the step size h = 0.02.
For the first point we have t; = 0.02 and the intermediate calculations required tQ

SEC. 9.7 SYSTEMS OF DIFFERENTIAL EQUATIONS

Table 9.13 Runge-Kutta Solution to x'(t) = x + 2y, y'(t) = 3x + 2y
with the Initial Values x(0) = 6 and y(0) = 4

k Y £ Y&

1] Q.00 6.00000000 4.,00000000
1 0.02 6.29354551 4.53932490
2 0.04 6.61562213 5.11948599
k| 0.06 6.96852528 5.74396525
4 0.08 7.35474319 6.41653305
5 0.10 7.77697287 7.14127221
6 0.12 8.23813750 7.92260406
7 0.14 8.74140523 8.76531667
8 0.16 9.29020055 9.67459538
) 0.18 9.88827138 10.6560560
10 0.20 10.5396230 11.7157807

compute x; and y| are

fi = £(0.00,6.0,4.0) = 14.0 1 = 5(0.00,6.0,4.0) = 26.0
h
—fi =6.14
xg + 3 h=6

£ = F(0.01,6.14,4.26) = 14.66

h
¥o -+ 531 = 4.26
g2 = £(0.01,6.14,4.26) = 26.94
h h
X + Efg = 6.1466 yo + 582 = 4.2694

f2 = £(0.01, 6.1466, 4.2694) = 14.6854

g3 = F(0.01, 6.1466, 4.2694) = 26.9786
xo +hfs = 6293708  yo+ hgy = 4.539572
fs = £(0.02, 6.293708, 4.539572) = 15.372852
24 = F(0.02, 6.293708, 4.539572) = 27.960268

These values are used in the final computation:

0.02
x =6+ —6—-(14.0 + 2(14.66) 4+ 2(14.6854) + 15.372852) = 6.29354551,

yr=4+ %(26.0 + 2(26.94) + 2{26.9786) + 27.960268) = 4.53932490.

The calculations are summarized in Table 9.13.
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The numerical solutions contain a certain amount of error at each step. For the
example above, the error grows, and at the right end point t = 0.2 it reaches its maxi-
mum:

x(0.2) - x10 = 10.5396252 — 10.5396230 = 0.0000022,
¥(0.2) — yyo = 117157841 — 11.7157807 = 0.0000034.

Higher-order Differential Equations

Higher-order differential equations involve the higher derivatives x”(¢), x" (1), and so
on. They arise in mathematical models for problems in physics and engineering. For
example,

mx"(t) + cx'(t) + kx(t) = g(r)

represents a mechanical system in which a spring with spring constant & resiores a
displaced mass m. Damping is assumed to be proportional to the velocity, and the
function g(r) is an external force. It is often the case that the position x (z3) and velocity
x'(2p) are known at a certain time 7.

By soiving for the second dertvative, we can write a second-order initial value
problem in the form

) (1) = fir.x(), x'(1))  with x(fo) = xo and x'(t) = yp.

The second-order differential equation can be reformulated as a system of two first-
order equations if we use the substitution

(10 x'() = y(1).
Then x”(¢) = y/(¢) and the differential equation in (9) becomes a system:

dx

(11 j; with
L = ?
ar St x. ¥

x(tp) = xyp,
»(fo) = Yo.

A numerical procedure such as the Runge-Kutta method can be used to solve (11)
and will generate two sequences {x;} and {y;}. The first sequence is the numerical
solution to (9). The next example can be interpreted as damped harmonic motion.
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Table 9.14 Runge-Kutta Solution to x”(¢) + 4x'(¢) + 5x(t) = 0 with
the Initial Conditions x(0) == 3 and x'(0) = -5

k t Xi x(tg)
0 0.0 3.00000000 3.00000000
1 0.1 2.52564583 2.52565822
2 Q2 2.10402783 210404686
3 0.3 1.73506269 1.73508427
4 0.4 1.41653369 1.41655509
5 0.5 1.14488509 1.14490455
10 1.0 0.33324302 (.33324661
20 2.0 —0.00620634 —0.00621162
30 30 —0.0070107% —0.00701204
40 4.0 —0.00091163 —0.00091170
48 4.8 —0.00004972 —0.00004969
49 4.9 —-0.00002348 —0.00002345
50 J 5.0 —0,00000453 —0.00000490

Example 9.16. Consider the second-order initial value problem
X' +4x' () +5x() =0 with x(0®) =3 and x'(0) = -5.

(a) Write down the equivalent system of two first-order equations,

{b) Use the Runge-Kutta method to solve the reformulated problem over [0, 5] using
M =: 50 subintervals of width 5 = 0.1.

{c) Compare the numerical solution with the true solution:
x{f) = e~ H cos{?) + P sin(¢).
The differential equation has the form
2"y = F,x(), %' (1)) = —4x' (1) — Sx(1).

|'sing the substitution in (10}, we get the reformulated problem:

dx _

dr with x({) =3,
d_y = —5x —dy ¥y = -5,
dt

Samples of the numerical computations are given in Table 9.14. The values {y;} are ex-
traneous and are not included. Instead, the true solution values {x(fx)} are included for
comparison. ]
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4. Solve the system x’ = y — 4x, ' = x -+ y with the initial condition x(0} = 1 and
y(0) = 1 over the intervai 0 < ¢ < 1.2 using the step size # = 0.05. The polygonal
path formed by the solution set is given in Figure 9.17 and can be compared with the
analytic solution:

Exercises for Systems of Differential Equations

In Exercises 1 through 4, use # = 0.05 and

(a) Euler’s method (7) by hand to find (x1, y1) and (x2, y2).

3e—V201/2 _ 3,¥351/2 e~ VIS1/2 + ov281/2
(b) the Runge-Kutta method (8) by hand to find (x;, y;).

x(t) = e + " 23
A /2 2e3t/2
1. Solvethe system x’ = 2x+3y, y' = 2x+y with the initial condition x (0} == —2.7 and 2329

¥(0) = 2.8 over the interval 0 < ¢ < 1.0 using the step size A = 0.05. The polygonal and ,

path formed by the solution set is given in Figure 9.14 and can be compared with the —TeVBH2 L 7B VB2 g B
analytic solution: yin = 2/29¢3/2 + 332

69 _ 3 69 _ 1
xt)=——e' + =¥ and y() = —e ' + e In Exercises 5 through 8:

25 30 25 25

2. Solve the system x' = 3x — y, ¥’ = 4x — y with the initial condition x(0) = 0.2 and
¥(0) = 0.5 over the interval 0 < ¢ < 2 using the step size # == 0.05. The polygonal

path formed by the solution set is given in Figure 9.15 and can be compared with the
analytic solution:

(a) Verify that the function x(¢) is the solation.
(b) Reformulate the second-order differeniial equation as a system of two first-order
equations.

(¢) Use i = 1.1 and Euler’s method by hand to find x; and x2.

(d) Use h = 0.05 and the Runge-Kuita method by hand to find x;.

5. 2x”(s) — 5x°(t) — 3x(1) = 45¢% with x(0) = 2 and x'(0) = 1
x(t) = de™1? 4 7% — 9™

6. x"(#) + 6x(r) + 9x(r) = 0 with x(0) = 4 and x'(0) = —4
x(1) = 4¢3 4 Bre=¥

7. x"(t) + x(t) = 6cos(t) with x(0) =2 and x"(0) = 3
x(t) = 2cos(t) + 3 sin(f) + 31 sin(r)

I 1 1 i

X = Ee’ - Tate‘ and  y(r) = —2-e‘ — —te’.

3. Solve the system x’ = x — 4y, y' = x + y with the initial condition x(0) = 2 and
¥(0) = 3 over the interval 0 < < 2 using the step size & = 0.05. The polygonal
path formed by the solution set is given in Figure 9.16 and can be compared with the
analytic solution:

x(t) = ~Ze' + 4e* cos?(t) — 12¢' cos(t) sin{t)

and 8. x"(2) + 3x'(t) = 12 with x(0) = 5and x'(0) = 1
— " -3
y(t) = —3e' + 6e' cosz(t) + 2¢' cos(¢) sin(r). xt)=d+drte
y ¥y Y Y
3 g 0.8 - — A ' /
\ . ./_ X
\_/2._ 06l 3
T
04} 2
1r 1+ ——————
0.2
i I3 L 1 x N i 0 0‘2 0'4 0'6 0‘8 i X
-2 -1 0 1 2 0‘0 0_ 1 0.2 0. .. 5 ! .
Figure 9.14 The solution to the sys- Figure 9,15 The solution to the sy- Figur!e 916 The soluslon to the sys ' 3" ’ilwmsglutf:o_li ? + ;\{:r
temx’ = 2x +3yand y' = 2x + y over temx’ =3x — yand y' = 4x — y over tem x' = x ~ 4y and y' = x + y over t;ﬂ(;xlz—y-— * y=rTy
[0.0. 1.0]. [0.0, 2.0]. (0.0, 2.0). 0.0, 121,




494 CHAP.9 SOLUTION OF DIFFERENTIAL EQUATIONS SEC. 9.7 SYSTEMS OF DIFFERENTIAL EQUATIONS 495
Algorithms and Programs Use the Runge-Kutta methed to solve the differential equation over the interval [0, 2]
using M = 40 steps and A = 0.03.
1. Write a program to solve a system of equations by the Runge -Kutta method of order 11. The mathematical model of a certain RLC electrical circuit is
N =4 (8).
In Problems 2 through 3, use your computer implementation of the Runge-Kutta method Q70 +200°0) +1250() = 9sin(3)
for systems to solve each system using the step size A = 0.05. Plot your approximation with 0(0) = D and Q’'(0) = 0. Use the Runge-Kutta method to solve the differential
and the analytic solution on the same coordinate system. equation over the interval [, 2] using M = 40 steps and i = 0.05. Remark. I(f) =
2 x' =2x + 3, y =2x+y, withx(0) = —2.7, y(0) = 2.8 over0 < 2 < 1.0 Q'(1) is the current at time ¢.
— — 3 4 — . N .
x(0)=—Fe " + Fe¥ and y(r) = Fe ' + e 12. Attime 7, a pendulum makes an angle x () with the vertical axis. Assuming that there
I x=3x—y,y=4x—y withx(0) =02, y(0) =0.50ver0 <t <2 is no friction, the equation of motion is
=l Lt = 1ot — lspt
x(1) = g€’ — e’ and y(1) = 3¢° — zte mix"(f) = —mg sin(x (1)),
4 ¥'=x—4y,yY =x+y,withx(0)=2,y(0)=3over0 <t <2
x() = —2¢' + 4e' cos2(r) — 12¢' cos(?) sin{) where m is the mass and / is the length of the string. Use the Runge-Kutta method
y(t) = —3e' + 6e cos?(t) + 2e’ cos(t) sin(r) to solve the differential gquation over the interval [0, 2] using M = 40 steps and
5. x'=y—4x y =x+y,withx(0) = 1, y(0) = Lover0 < t < 1.2 h=005ifg =32ftsec’and
35=VI1/2 _ 312 Bt/ + B2 (a) [=32ftandx(0)=0.3and x’(0) = 0.
a— — — ! —
x(t) = Wi R + ST by !=08ftandx(0)=0.3and x"(0) = 0.
VB2 V3172 VB2 4 B 13. Predator-prey model. An example of a system of nonlinear differential equations
y(1) = ~7e +7e £ Tte is the predator-prey problem. Let x (¢) and y(¢) denote the population of rabbits and
24/29¢3112 2¢3/2 foxes, respectively, at time ¢. The predator-prey model asserts that x(r) and y(1)
In Problems 6 through 9: satisfy
(a) Reformulate the second-order differential equation as a system of two first-order x'(H) = Ax(t} — Bx(t)y(1),
equations. Y () = Cx(£)y(ty — Dy(1).
(b) Use your computer implementation of the Runge-Kutta method for systems to solve . . . . .
cach system over the interval [0, 2] with the step size & = 0.05. A typical computer simulation might use the coefficients
() Plot your approximation and the analytic solution on the same coordinate system. A=2 B=002 (C=00002, D=08.
6. 2x"(1) - S—x!;gt ) - 3; Q =2‘1L5"2‘ with x(0) = 2and x’(0) =1 Use the Runge-Kutta method to solve the system of differential equations over the
x(@)=4e7" 4+ Te* —9e interval [0, 5] using M = 50 steps and h = 0.2 if
7. 2" + 6x' (1) + 9x (1) = 0 with x(0) = 4 and x'(0) = —4 (a) x(0) = 3000 rabbits and y(0) = 120 foxes.
x(1) = de™3 4 8re™H (b) x(0) = 5000 rabbits and y(0) = 100 foxes.
8. x“(1) 4+ x(2) = 6cos(r) with x(0) = 2 and x’(0) = 3 14, Solve x’ = x — xy, y = —y + xy with x(0) = 4 and y(0) = 1 over [0, 8] using

x(1) = 2cos(t) + 3sin(r) + 3¢ sinlt)
9. x" () +3x"(1) = 12with x() =Sand 2’ () = 1

kh = 0.1. The trajectories of this system form closed paths. The polygonal path
formed by the solution set is one of the curves shown in Figure 9.18.

x(f)=d4+at+e 15. Solve x' = ~3x — 2y — 2xy?, y' = 2x — y + 23> with x(0) = 0.8 and y(0) = 0.6

In Problems 10 through 19, use your computer implementation of the Runge-Kutta method over [0, 4] using & = 0.1. For this system, the origin is classified as a spiral point that

of order N = 4 to solve the given differential equation or system of equations. Plot each is asymptoticaily stable. The polygonal path formed by the solution set is one of the
approximation. curves shown in Figure 9.19.

10. A certain resonant spring system with a periodic forcing function is modeled by 16. Solve x' = y* —x% y' = 2xy with x(0}) = 2.0 and ¥(0) = 0.1 over [0.0, 1.5]

using £ = 0.05. For this system, there is an unstable saddle point at the origin. The

x"(r) +25x(t) = Bsin(5¢)  with x(0) =0 and x'(0) = 0. polygonal path formed by the solution set is one of the curves shown in Figure 9.20.
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Figure 9.18 Solutions to the systam Figare 9.19 Solutions to the system

X =x—xyandy = —y +xy. ¥ =-3x—2y-2xytandy = 2x —
¥+ 2y°.
y ¥y
- »
20 / / \ /
1.6 u-——/
1.2 ' 1
0.8y \
N
041" ¥= |
: =
0.0 0.5 1.0 1.5 2‘..0 -2 -1 1 2

Figare 9.21 Solutions to the system

Figure 9.20 Solutions to the system
M=1l—yady =12 —y2

2 _ x2and ¥ == 2xy.

x'=v

17. Solve x' = 1 — v, y = x2 — y? with x(0) = —1.2 and y(0) = 0.0 over [0, 5] using
h = 0.1. The point (1, 1} is a spiral point that is asymptotically stable, and the point
(—1. 1) is an unstable saddle point. The polygonal path formed by the solution set is
one of the curves shown in Figure 9.21.

18. Solve x’ = x3 — 2xy%, ¥ = 2x?y — y? with x(0) = 1.0 and y(0) = 0.2 over
[0. 2] using A = 0.025. This system has an unstable critical point at the origin. The
polygenal path formed by the solution set is one of the curves shown in Figure 9.22.

19. Solve x' = x2 — y2, ¥/ = 2xy with x{0) = 2.0 and y{D) = 0.6 over [0.0, 1.56] using
h = 0.02. The origin is an unstable critical point. The polygonal path formed by the
solution set is one of the curves shown in Figure 9.23.

9.8
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Figure 9.23 Solutions to the system

Figure 9.22 Solutions to the system
' =x%~yland y' = 2xy.

x' =x% - 2xy? and y = 2x%y — 3.

Boundary Value Problems

Another type of differential equation has the form

(4))] "= f(t,x,xy for a<t=<b,
with the boundary conditions

) x@)=a and x(b)=24.

This is called a boundary value problem.

The conditions that guarantee that a solution to (1) exists should be checked be-
fore any numerical scheme is applied; otherwise, a list of meaningless output may be
generated. The general conditions are stated in the following theorem.

Theorem 9.8 (Boundary Value Problem). Assume that £(z, x, ¥} is continuous on
the region R = {{(t,x,y):a <t = b, —00 < x < 00,—00 < ¥y < oo} and that
af/ox = fe(t,x, y) and 3f/8y = fy(t, x, y) are continuous on R. If there exists a
constant M > 0 for which f; and f, satisfy

3) frlt,x,¥)>0 for all (¢, x,y)€ R and
@ Ify¢t,x, yl=M  for all (t,x,y) € R,

then the boundary value problem

5 x" = f{t,x,x'y with x(a) = and x(b) = 8

has a unique solution x = x{¢) fera <r < b.
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The notation y = x’(¢) has been used te distinguish the third variable of the func-
tion f(r, x, x"). Finally, the special case of linear differential equations is worthy ol
mention.

Corollary 9.1 (Linear Boundary Value Problem). Assume that f in Theorem 9.8
has the form f(¢, x,y) = p{t)y + q(t)x + r() and that f and its partial derivatives
df/0x = ¢g(t)and 8f/0y = p(¢) are continuous on R. If there exists a constant M > ()
for which p(¢) and g(¢) satisfy

(6) g(t) >0 for all ¢ € [a, k], and
) lp() =M =a12-§i<xbﬂp(t)|}.

then the linear boundary value problem
®) X =pOxX' N+ g x@) +r(@t)  with x(a) =« and x(b) - g

has a unique solution x = x(f} overa <t < b.

Reduction to Two I.V.P.’s: Linear Shooting Method

Finding the solution of a linear boundary problem is assisted by the linear structure of
the equation and the use of two special initial value problems. Suppose that u(1) is the
unique solution to the L.V.P.

(9 W= py' () + g@u(ty +7r(t) with u(a) = and u'(a) = 0.
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Furthermore, suppose that v(¢) is the unique solution to the LV.P.

10 v = pW' () + q(t)v(r)  with v(g) =0 and v'ia)= 1.

Then the linear combination

(1 x(ty = u(t) + Cuv(t)

is a solution to x” = p(1)x'(t) + g(t)x (1) + r{r) as seen by the computation

= a" + OV = p(d @) + q()u(t) + r (1) + PIOCY (1) + g(1)Cutr)
PO ) + CY(0) + g()u(r) + Cuv®)) + rin)
PO () + q()x(6) + r(2).

The solution x(r) in equation (11} takes on the boundary values

x(@)=ulag)+Cr(@) =a+0:=q,

a2 x(B)Y =u(b) + Cu(b).

Imposing the boundary condition x(b) = 8 in (12) produces C = (8 — u(b))/vih).
Therefore, if u(b) 5 0, the unique solution o ®)is

B —u)

(13) x(6) = u(t) + o)

v(t),

Remark. If ¢ tulfills the hypotheses of Corollary 9.1, this rules out the troublesome
solution v(¢) = 0, so that (13) is the form of the required solution. The details are feft
for the reader to investigate in the exercises.

Example 9.17.  Solve the boundary value problem

x”([:) -

2

Foen

Ty O e+
with x(0) = 1.25 and x(4) = —0.95 over the interval [0, 4}.

The functions p, g, and r are p(t) = 2i/(1 + 12, g(t) = —2/(1 + £2), ana
r(t) = 1, respectively. The Runge-Kutta method of order 4 with step size h = 0.2
is used to construct numerical solutions {u;} and (v ;1 ta equations (9) and (10), respec-
tively. The approximations {u j) for u(r) are given in the first column of Table 9.15. Then
(4) % uzg = —2.893535 and v(4} % vog = 4 are used with (13} to construct

b—u@)

Wy = ij =0.485884Uj.
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Table 9.15  The Approximate Solutions {x;} = {u; + w;} to

. P I oo

the Equation (1) = T zzx (1) — 1—-_;?2- +1

& i W) xj=ujtw;
0.0 1.250000 0.000000 1.250000
Q.2 1.220131 0.097177 1.317308
0.4 1.132073 0.194353 1.326426
0.6 0.950122 0.291530 1.281652
0.8 0.8C00569 0.388707 1.189276
1.0 0.570844 0.485884 1.056728
1.2 0.308850 0.583061 0.891911
1.4 0.022522 0.680237 0.702759
1.6 —0.280424 0.777413 0.496989
[.8 —{(.592609 0.874591 0.281982
2.0 —0.907039 0971767 0.064728
2.2 —1.217121 1.068944 -0.148177
2.4 —1.516639 1.166121 —{.350518
2.6 —1.799740 1.263297 —0.536443
2.8 —2.060904 1.360474 —0.700430
3.0 —2.294916 1.457651 —0.837265
3.2 ~2.496842 1.554828 —0.942014
34 —2.662004 1.652004 —1.010000
3.6 —2.785960 1.749181 -~1.036779
38 —2.864431 1.846358 -1.018123
4.0 —2.893535 1.943535 —0.950000

Then the required approximate solution is {x i} = {u; + wjl. Sample computationx are
given in Table 9.15, and Figure 9.24 shows their graphs. The reader can verify that v{;) = s
is the analytic solution for boundary value problem (10); that is,

—u{?)

v = V() - —

2t
142 142
with the initial conditions v{0) == 0 and v'(0) = I.
The approximations in Table 9.16 compare numerical solutions obtained with the linear
shooting method with the step sizes A = 0.2 and & = 0.1 and the analytic solution

1 1,
x(t) = 1.25 + 0.4860896526¢ — 2.25t% + 2r arctan(r) — 5 In(l + 2y 4 o In(t + r%).

A graph of the approximate solution when 2 = 0.2 is given in Figure 9.25. Included in
the table are columns for the error. Since the Runge-Kutta solutions have error of order
O(h*), the error in the solution with the smaller step size h = 0.1 is about ¢ the error of
the solution with the large step size 2 = 0.2. ]

Program 9.10 will call Program 9.9 to solve the initial value problems (9) and (10).
Program 9.9 approximates solutions of systems of differential equations using a mod-
ification of the Runge-Kutta method of order ¥ = 4. Thus, it is necessary to save
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¥y
2} / y = wit)

| QK
! N~

——— Y = ulr)

-3 L

Figure 9.24 Numerical approximations «(r) and w(y) used to
form x(r) = u(r) + w(r) which is the solution 1o

. 2r . 2
x') = 1+r2xm_ 7 _Hzx(r) +1.

1

Xy x(lj) x(rj)—xj IJ' X(IJ') X(Ij)—.\’j
£ h=0.2 exact ermor t; h=0.1 exact error

0.0 1.250000 1.250000 | 0.000000 || 0.0 1.250000 L.250000 | 0.000000
0.1 1.291116 1.291117 | 0.000001
0.2 1.317308 1.317350 | 0.000042 || 0.2 1.317348 1317350 | 0.000002
0.3 1.328986 1.3289%0 | 0.000004
0.4 1.326426 1326505 | 0.000079 0.4 £.326500 1.326505 | 0.000005
0.5 1.310508 1.310514 | 0.000006
0.6 1.281€52 1.281762 ; 0.000110 || 0.6 1.281756 1.281762 | 0.000006
0.8 1.189276 1.189412 | 0.000136 0.8 1.189404 1.189412 | 0.000008
1.0 1.056728 1.056885 | 0.000158 1.0 [.056876 1.056886 | 0.000010
1.2 0.891911 0.8920865 | 0.000175 1.2 0.892076 0.892086 | 0.000010
1.6 0.496982 0.457187 | 0.000198 1.6 0.497175 0.497187 | 0.000012
2.0 0.064728 0.064931 | 0.000203 2.0 0.064919 0.064931 | 0.000012
24| -0350518 | —0.350325 | 0.000193 24} -0.350337 | —0.350325 | 0.000012
2.8 ~0.700430 | —0.700262 | 0.000168 2.8 —-0.700273 | —0.700262 | 0.000011
32| —0.942014 | —0.941888 [ 0.000126 321 —0.941895 | —0.941883 | 0.000007
3.6 | —1.036779 | —1.036708 | 0.000071 3.6 | —1036713 | —1.036708 | 0.000005
4.0 [ —0.950000 | ~0.950000 | 0.000000 || 4.0 | —0.950000 | —0.950000 0.000000

. . 2t 2
- " _ .
Table .16 Numerical Approximations for x”(1) = rapy 2 — T [Zx(r) +1

the equations (9) and (10) in the form of the systern of equations (11) of Section 9.7.
As an illustration, consider the boundary value problem in Example 9.17. The follow-
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#Dutput - T is the vector of steps

4 - Z=[x1(8)...xn(t)]; where xk(t) is the approximation
1o % to the kth dependent variable
h=(b-a)/M;
0.5 T=zeros(1,M+1);
Z=zeros(M+1,length(Za));
0.0 LN 2 : : T=a:h:b;
1 2 3 4 Z{1,:)=Za;
0.5 ¢ for j=1:M
ki=h*feval (F,T(j),2(j,:));
-1.0F ~— k2=h+feval(F,T(j}+h/2,Z2(5,:)+k1/2);
. . . L k3=hxfeval (F,T(j)+h/2,Z(j,:)+k2/2);
Figure 9.25 The graph of the numerical approximation for k4=h*feval(F,T(j)+h,Z(j, :)+k3);
Z(j+1,:)=Z(3, : )+ (k1+2%k2+2*k3+k4) /6;
K0 = (1) - ——xt) + 1 J J
L4t 1412 end
(using b = 0.2),

ine M-fil ed \ s _ Program 9.10 (Linear Shooting Method). To approximate the solution of the
Ing M-hle, named F1, will save the .V.P (9) in the form of a system of differentjal boundary value problem x” = p(f)x'(t) + g(t)x(t) + r() with x(a) = o« and

equations. x(b) = B over the interval [a, b] by using the Runge-Kutta method of order N = 4.
function Z=F1(t,Z)
x=Z(1);y=2(2); function L=1insht(F1,F2,a,b,alpha,beta,M)
ZZ=[y,2*t*y/(1+t“2)-—2*x/(1+t‘2)+1]; %Input - F1 and F2 are the systems of first-order eguations
A similar M-file, named F2, will save the LVP. (10) just let r(r) = 0 in F1) in the : e e i n D) and (10), respectively;
appropriate form. h input as strings ', ’
A plot of the approximation obtained from Program 9.10 can be constructed by :/“ - a. and b are the end points of the interval L
using the command plot (L(:,1), L(:,2)). f - :lpha 1=1 x(a)] and :eta = x(b); boundary conditions
A - M is the number of steps
- - “O0utput - L =[T’ X]; where T’ is the (M+1)x1 vector of
Program 9.9 .(Runge-Kutta Method of Order N = 4 for Systems). To approxi- v abscissas and X is the (M+1)x!l vector of ordinates
mate the solution of the system of differential equatjons
! #Solve the system F1i
XD = A, x(8), ..., x()) i Za=[alpha,0];
. ! [T,Z]1=rks4(F1,a,b,Za,M);
: : U=Z(:,1);
X5 (1) = fu(t, 2100, ..., 20 () %Solve the system F2
) Za=[0,1];
with x;(a) = a1, ..., xp(a) = a, over the interval [a, b]. [T,Z]=rks4(F2,a,b,Za,M);
function [T,Z]l=rks4(F,a,b,Za,M) ' V=Z(:,1);
%Input - F is the system input as a string ’F’ %Calculate the solution to the boundary value problem
% - a and b are the end points of the interval X=U+(beta-U(M+1) ) ¥V/V(M+1) ;
% - Za=[x(a) y(a)] are the initial conditions L=[T> XI;

% - M is the number of steps
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Exercises for Boundary Value Problems

1. Verify that the function x (#) is the solution to the boundary value problem,
@ x"=(=2/0x'+ 2/tHx + (10cos(In(r))/1? over [1, 3] with x(1) = 1 and
x(3y = —1.

o 4335950689 ~ 0.3359506908:% — 3:2 cos(ln()) + 2 sin(In{z))
Xttt} =
. 2

(b) x"=-2x"—2x+ e"’r+ sin(2r) over [0, 4} with x(0) = 0.6 and x (4) = —0.1.
1 1 2
x{f) = s+ e~ — Ee-" cos(z) — 5 cos?(r)
-t 1 .
+ 3.670227413¢ " sin(t) — 3 cos(?) sin(z)
(e) x" = —4x"—4x 4 5cos(4t) + sin(2f) over [0, 2] with x(0) = 0.7 and x(2) =
0.25.

9 .
x() = _4_»15 + 1.025¢% — 1.915729975te™ % + 2 cos“(r)

- g cos4(t) - g cos(r) sin(s) + 2- cos’(t) sin(t)

(@) x"+1/0x + (1~ 1/@3)x = 0over [1, 6] with x(1) = 1 and x(6) = 0.
0.2913843206 cos(?) + 1.001299385 sin(z)
x(@t)y= 7

(® x"—(L/0x" + (1/t%)x = 1 over [0.5, 4.5] with x(05)y=1andx(4.5)=2.

x() = 1% — 025258264917 — 2.5284422971 In(r)

2. Does the boundary vaiue problem in Exercise 1(¢) satisfy the hypotheses of Corol-
lary 9.17 Explain.

3. If ¢ fulfills the hypothesis of Corollary 9.1, show that v(¢) = 0 is the unique solution
to the boundary value problem

v = pW () + q(®)v(t)  with v(a) =0 and v(b) = 0.

Algorithms and Programs

1. (a) Use Programs 9.9 and 9.10 to solve each of the boundary value problems in
Exercise 1, using the step size & = 0.05.
(b} Graph your solution and the actual solution on the same coordinate system.

9.9
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2. Construct programs analogous to Program 9.9 based on
(a) Heun’s method,
{b) the Adams-Bashforth-Moulton method, and
(c) Hamming’s method.

3. (a) Modify Program 9.10 to call each of your programs from Problem 2.
(b) Use your programs to solve each of the five boundary value preblems in Exer-
cise I using the step size & = 0.05.
(¢)  Graph your solutions and the actual solution on the same coordinate system.

Finite-difference Method

Methods involving difference quotient approximations for derivatives can be used for
solving certain second-order boundary value problems. Consider the linear equation

(1) = p@)x' (1) + gt)x(t) + r (r)

over [a, b] with x(a) = a and x(b) = B. Form a partition of [a, &] using the points
a=1Il <l <---<iy=h where h = b—a)/Nandt; =a+ jhforj =01,
..., N. The ceniral-difference formulas discussed in Chapter 6 are used to approximate
the derivatives

a(tj1) — x{tj_1)

(2) x(t;) = — T+ 0(h%)

and
(3) I”(f_,‘) - J:(tj+1) - 2:[(;]) +x(tj_l)

To start the derivation, we replace each term x(t;) on the right side of (2) and (3)
with x; and the resulting equations are substituted into (1) to obtain the ralation

+ Oh).

Xjpl —2x; + x5
(4) h?

+ O(r%) = p(1)) (f’—“—z"hﬁ + oaﬂ;.)

+q(t_,')xj + i"'([j).

Next, we drop the two terms @ (k%) in (4) and introduce the notation pi = pQj),
i, = q(t;), and r; = r(¢;); this produces the difference equation

5) Xj+1 =20+ xj-1 pyFL Xl
‘ h? / 2k
which is used to compute numerical approximations to the differential equation (1).
This is carried out by multiplying each side of (5) by 42 and then collzcting terms
involving x;_1, x;, and x| and arranging them in a system of linear equations:

+qjxj+rj.

5,

—h h
6} (—2—-pj - l)xjwl + (2+h2qj)xj + (Epj —l)xj+] -_*—hz;r'j,
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forj=1,2,...,N—1,where xg = o and x = 8. The system in (6) has the familjar
tridiagonal form, which is more visible when displayed with matrix notation:

2+ K2 Epi—1 NN
Hpr—1 2+h%p Ep—1 0o X2
Fpi~1  2+h%; ipi—1 X
0 Fov2—1 2+h%qyv bpvoa—1||xno2
:;!!'-PNA -1 2+ h%gn_y Nl

—R2ry_) +en

where

h ~h
ep = (EPI + 1) a and ey= (TPN—I + 1) B.

When computations with step size & are used, the numerical approximation to the
solution is a set of discrete points {(¢;, x;)}; if the analytic solution x (¢ ) is known, we
can compare x; and x(¢;).

Example 9.18.  Solve the boundary value problem

2t 2
17 t2x (f) - 'H—ﬂx(t) +1
with x{0) = 1.25 and x (4) = —0.95 over the interval [0, 4].

The functions p, ¢, and r are p(t) = 2t/(1 + 1), g(t) = —2/(1 + £2), and r (1) = |,
respectively. The finite-difference method is used to construct numerical solutions {x i1 us-
ing the system of equations (6). Sample values of the approximations {x gk {xg ok {x5h
and {x; 4} corresponding to the step sizes &y = 0.2, hy = 0.1, k3 = 0.05, and kg = 0.025
are given in Table 2.17. Figure 9.26 shows the graph of the polygonal path formed frqm
{(t;, xj.1)} for the case Ay = 0.2. There are 41 terms in the sequence generated with
h2 == 0.1, and the sequence {x;,2} only includes every other term from these computations;
they correspond to the 21 values of {;} given in Table 9.17. Similarly, the sequences {x ;.3
and {x, 4} are a portion of the values generated with step sizes k3 = 0.05 and k4 = 0.025,
respectively, and they correspond to the 21 values of {1;} in Table 9.17.

Next we compare numerical solutions in Table 9.17 with the analytic solution: x (1) =
1.25+0.486089652 — 2.25¢ + 2t arctan(?) — 5 In(1 +¢2) + 1¢2 In(1 + 7). The numerical

I”(f) —
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2
x'(r) — m-z-x(;) +1

Table 9.17  Numerical Approximations for x"(f) = T

i TS *j,3 i ()
f h=02 h=0.1 h =0.05 k= 0.025 exact
0.0 1.250000 1.250000 1.250000 1230000 1.250000
0.2 1.314503 1.316646 1317174 1.317306 1.317350
0.4 1.320607 1.325045 1.326141 1.326414 1.326505
0.6 1.272755 1.279533 1281206 1.281623 1.281762
0.8 1.177399 1.186438 1.188670 1.189227 1.189412
1.0 1.042106 1.053226 1.055973 1.056658 1.056886
1.2 0.874878 0.887823 0.8691023 0.891821 0.892086
1.4 0.683712 0.69318t 0.701758 0.702650 0.702947
1.6 0.476372 0.492027 0.493900 0.496865 0.497187
E8 0.260264 0.276749 0.280828 0.281846 0.282184
2.0 0.042399 0.059343 0.063537 0.064583 0.06493]
22 —0.170616 —0.153592 —0.149378 —0.148327 -0.147977
24 —0.372557 —0.355841 —0.351702 --0.350669 —-0.350325 .
26 ~-0.557565 —0.541546 --0.537580 -~-0.536590 ~0.536261
2.8 ~0.720114 —0.705188 —0.701492 —-0.700570 —0.700262
3.0 ~0.8549388 —0.841551 —0.838223 —0.837393 —0.837116
3.2 —0.957250 —0.945700 —0.942839 -0.942125 —0.941888
34 —1.022221 —1.012958 -1.010662 —1.010090 -1.009899
36 —1.045457 --1.038880 —1.037250 —1.036844 —1.036709
3.8 —1.022727 -1.016238 -1.018373 —1.018158 —1.018086
4.0 —0.950000 -0.950000 —0.950000 —0.950000 —0.950000

solutions can be shown to have error of order €' (A2). Hence reducing the step size by a
factor of % results in the error being reduced by about %. A careful scrutiny of Table 9.18
will reveal that this is happening. For instance, at ¢ j = 1.0 the errors incurred with step
sizes 1, A7, h3, and A4 are ;.1 =0.014780, ¢; 2 = 0.003660, e;1 = 0.000913, and €4 =
0.000228, respectively. Their successive ratios e j.2/€j.1 = 0.003660,/0.014780 = 0.2476,
€;.3/€5,2 = 0.000913/0.003660 =: 0.2495, and e;4/e; 3 = 0.000228/0.000913 = 0.2497
are approaching 1.

Finally, we show how Richardson’s improvement scheme can be used to extrapolate
the seemingly inaccurate sequences {xj1h {x;2}, {x; 3], and {xj.4} and obtain six digits
of precision. Eliminate the error terms O (A2) and Q((h/2)%) in the approximations {x;1}
and {x; 2} by generating the extrapolated sequence {z; 1} = {(4x; 7 — x;1)/3}. Similarly,
the error terms O ((h/2)%) and O(h/4)%) for {xj,2] and {x; 3} are eliminated by generat-
ing {zj2) = [(4x;3 —x j.23/3}. Tt has been shown that the second level of Richardson’s
improvement scherne applies to the sequences {z;,1} and {z; 5}, so the third improvement
is {(16z;2 — z;,1)/15} (see Reference [41]). Let us illustrate the situation by finding the
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y
1.0 /\
y = u(r)

0.5}

. . L
0.0 1 2N 3 4
05}
-1.0} —

Figure 9.26 The graph of the numerical approximation for
x(1} = u{t) + w() which is the solution to

2, 2
- H+1
72 @ Tt

x”(t) =

{using h = 0.2).

extrapolated values that correspond to £; = 1.0, The first extrapolated value is

4xj,z —Xj,1 _ 4(1.053226)3— 1.042106 = 1.056932 = 2.
3

The second extrapolated value is
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Table 9.18  Errors in Numerical Approximations Using the Finite-difference Method

4xj0=xj2 41055979 - 1053226 | (e

3 3

Finally, the third extrapolation involves the terms z, ; and z; 3:
16z;2 — 5,1 _ 16(1.056889) — 1.056932
15 h 15

This last computation contains six decimal places of accuracy. The values at the other
[

= 1.056886.

points are given in Table 9.19.

Program 9.12 will call Program 9.11 to solve the tridiagonal system (6). Pro-
gram 9.12 requires that the coefficient functions p(r), g(2), and r(r) (boundary value
problem (1)) be saved in M-files p.m, q.m, and r.m, respectively.

Program 9.11 (Tridiagonal Systems). To solve the tridiagonal system CX = B,
where C is a tridiagonal matrix.

function X=trisys(A,D,C,B)

x(tj)—xjq x(rj)—xj2 x(t;)—x;3 x(t)—x; 4
2l =el =52 =€j3 =¢€j4
hp =02 hy =0.1 hy =0.05 hy =0.025
0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.002847 0.00G704 0.000176 0.000044
0.4 0.005898 0.00146( 0.000364 0.000091
0.6 0.009007 0.002229 0.000556 0.000139
0.8 0.012013 0.002974 0.000742 0.000185
1.0 0.014780 0.003660 0.000913 0.000228
1.2 0.017208 0.004263 0.001063 0.000265
1.4 0.019235 0.004766 0.001189 0.000297
1.6 0.020815 0.005160 0.001287 0.000322
1.8 0.021920 0.005435 0.001356 0.000338
20 0.022533 0.005588 0.001394 0.006348
2.2 0.022639 0.005615 0.001401 0.000350
24 0.022232 0.003516 0.001377 0.000344
26 0.021304 0.005285 0.001319 0.000329
2.8 0.019852 0.004926 0.001230 0.000308
3.0 0.017872 0.004435 0.001107 0.000277
3.2 0.015362 0.003812 0.000951 0.000237
34 0.012322 0.003059 0.000763 0.000191
3.0 0.008749 0.002171 0.000541 0.000135
38 0.004641 0.001152 0.000287 0.000072
4.0 0.000000 0.000000 0.000000 0.000000
AInput - A is the subdiagonal of the coefficient matrix
% - D is the main diagonal of the coefficient matrix
A ~ C is the superdiagonal of the coefficient matrix
% - B is the constant vector of the linear system
%#Cutput - X is the solution vector
N=1length(B);
for k=2:N

malt=ACk-1)/D(k-1);
D{k)=D(k)-mult*C(k-1);
B{(k)=B(k)-mult*B(k-1);

end

X(N)=B(N)/D(N);

for k= N-1:-1:1
X(k)=(B(k)-C(K)*X (k+1)}/D(k);

end
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%Initialize vectors and h

Table 9.19  Extrapolation of the Numerical Approximations {x; 1}, {x; 2}, {x; 3} Obtained
T=zeros(1,N+1);

with the Finite-difference Method

X=zeros(1,N-1);

dxjamxa drj3=xj2 1622 EJ(‘:;’C)[ Va=zeros(1,N-2);
3
I = 31‘] =12 ’ solution }fbﬂzeros(l N-1);
0.0 1.250000 1250000 1.250000 1250000 :;;:zeros (.82
0.2 1.317360 1317351 1317350 1317350 hzéf;‘)’jﬁ‘" D;
0.4 1.326524 1.326506 1.326504 1.326505 ;
0.6 1.281792 1.281764 1.281762 1.281762 %Calculate the constant vector B in AX=B
0.8 1.189451 1.189414 1.189412 1.189412 Vt-a+h:h:a+h*(N-1);
1.0 1.056932 1.056889 1.056886 1.05688¢ Vb=-h"2xfeval(r,Vt);
| o700 0702951 0702947 3702945 Yo(D)=Vb(1)+(1+h/24feval (p, V£ (1))) salpha;
1.6 0.497246 0.497191 0.497187 0.497187 b (N-1)=Vb(N-1)+(1-h/2+feval (p, Vt (N-1))) #beta;
1.8 0.282244 0.282188 0.282184 0.28218+ 4#Calculate the main diagonal ef A in AX=B
2.0 0.054991 0.064935 0.064931 0.06493 | Vi=2+h"2*feval (g,Vt) ;
22 -0.147918 —0.147973 —0.147977 —0.147977 YCalculate the ; . _
2.4 —0.350268 -0.350322 ~0.350325 ~0.350325 ViasVe(l,2: Nl_ll;up erdiagonal of A in AX-B
2.6 ~0.536207 -0.536258 —0.536261 —0.536261 Vae-1-B/2%fevallp.V y
2.8 —0.700213 —0.700259 —0.700263 —0.700262 evalip,Vta);
3.0 -0.837072 —0.837113 —0.837116 —0.837116 #Calculate the subdiagonal of A in AX=B
3.2 —0.941850 —0.941885 —0.941838 —0.94188% Vte=Ve(1,1:N-2);
34 —1.009870 —1.009898 —1.009899 —1.00989u Ve=-1+h/2%feval (p,Vtc) ;
3.6 ~1.036688 —1.036707 —1.036708 —1.03670% YSolve AX=B using trisvs
3.8 —1.018075 —1.018085 —1.018086 —1.018080 oo *1RE ¥
4.0 —0.950000 —0.950000 —0.950000 —0.950000 k=trisys(Va,Vd,Vc,Vb);
S T=la,Vt,b];
X=[alpha,X,beta] ;
F=[T7 X°1;

Program 9.12 (Finite-difference Method). To approximate the solution of the |
boundary value problem x” = p(f)x'(t) + g()x(t) + r{t) with x(a) = o and |
x(b) = B over the interval [a, b] by using the finite-difference method of order !
e10:25%

Remark. The meshisa = #; < ---

N1
{'[fjsxj)}jzl .

< ty41 = b and the solution points arc |

function F=findiff(p,q,r,a,b,alpha,beta,N)
%Input - p,q,and r are the coefficient functioms of (1)
% input as strings; ’p’,’q’,’r’

% - a and b are the left and right end points
% - alpha=x(a) and beta=x(b)
% - N is the number of steps

#0utput - F=[T’ X’]:whers T’ is the 1xN vector of abscissas
% and X’ is the 1xN vector of ordinates

Exercises for Finite-difference Method

n Exercises 1 through 3, use the finite-difference method to approximate x{a+0.5}.

(a} Let hy = 0.5 and do one step by hand calculation. Then let hy = 0.25 and do two

steps by hand calculation.
{b} Use extrapolation of the values in part (a} to obtain a better approximation {i.e.,
zj10 = (x52 — x;1)/3).
(¢) Compare your results from parts (a) and (b) with the exact value x(a + 0.5).
L x”=2x'—x + % — Lover [0, ] with x(0) = 5 and x(1) == 10
x(t)=1t>+4r45

2. X"+ (1/0x" + (1 ~ 1/(42))x = 0 over [1, 6) with x(1) = 1 and x(6) = 0

0.2913843206 cos{r) + 1.001299385 sin(f}
7

x(t) =
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x" = (/" + (1/1‘2)x = 1 aver [0.5,4.5] with x(0.5) = 1 and x(4.5) = 2
x(1) = 12 - 0.2525826491t — 2.528442297¢ In{¢)

. Assume that p, ¢, and r are continuous over the interval {a, b} and that g(¢) = O tor

a =t < b. If h satisfies 0 < h < 2/M, where M = max,<;<»{| p(#)[}. prove thar
the coefficient matrix of (6) is strictly diagonally dominant and that there is a unique
solution.

. Assume that p(f) = C; > Oandg(?) = C2 > 0. (a) Write out the tridiagonal lincar

system for this sitzation. (b) Prove that the tridiagonal system is strictly diagonall:
dominant and hence has a unique solution, provided that C,/C2 < k.

Algorithms and Programs

1.

Use Programs 9.11 and 9.12 to solve the given boundary problem using step sizes
# = 0.1 and & = 0.01. Plot your two approximate solutions and the actual solution
on the same coordinate system.
(8) x”=2x" —x+1%~1over[0, 1] with x(0) = 5 and x(1) = 10

) =12 +4t+5
) x” + (1/0x' + (1 — 1/4t?))x = 0 over [1, 6] with x{1) = 1 and x(6)=0

0.2913843206 cos (1) + 1.001299385 sin(¢)
()=
r

© x"—(1/0x + (1/t*)x = 1 over [0.5, 4.5] with x(0.5) = 1 and x(4.5) =2

x(r) = 12 — (.2525826491¢ — 2.528442297: In(?)

[n Problems 2 through 7, use Programs 9.11 and 9.12 to solve the given boundary problem
using step sizes # = 0.2, A = 0.1, and & = 0.05. For each problem, graph the three
solutions on the same coordinate system.

2.

S e s oW

X = (=2/0x + (2/t)x + (10cosn(r))) /2 over [1, 3] with x(1) = 1 and x(3) =
-1

" = —5x’ —~ 6x + te=2 4 3.9 ¢cos(3¢t) over [0, 3] with x(0) = 0.95 and x(3) = 0.15
x7 = —4x’ — 4x + 5 cos(4t) + sin(2t) over [0, 2] with x(0) = 0.75 and x(2) = 0.2F
2" = —2x' — 2x +e~" + sin(2r) over [0, 4] with x(0) = 0.6 and x(4) = --0.1

x4+ (2f0x — (2/19x = sin(2)/ ¢ over [1, 6] with x(1) = —0.02 and x(6) = 0.02
cx (1 0x (- 1/¢41%))x = /T cos(z) over [L, 6] with x(1) = 1.0 and x(6)

—0.5

Construct a program that will call Programs 9.11 and 9.12 and carry out the extrapo-
lation process illustrated in Example 9.18 and Table 9.19.

. For each of the given boundary value problems, use your program from Problem 8

and the step sizes h = 0.1, A = 0.05, and & = 0.025 to construct a table analogous
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to Table 5.19. Plot your extrapolated sclution and the actual solution on the same
coordinate system.
(@) x" =2x"—x+: —1over]0, }] with x(0) = 5 and x(1) = 10

O =1+4t +5
®) x"+ 1700 + (1 —1/(4%)x =0 over {1, 6] with x(1) = 1 and x(6) = 0
0.2913843206 cos(r) + 1.001299385 sin(r)

/i

() =" —(1/e)x' + (1/%)x = 1 over [0.5, 4.5} with x(0.5) = 1 and x(4.5)= 2

x{f) = #* — 0.2525826491r — 2528442297t ln(t)

x(t)y =




10

Solution of
Partial Differential Equations

Many problems in applied science, physics, and engineering are modeled mathemat-
ically with partial differential equations. A differential equation involving more than
one independent variable is called a partial differential equation (PDE). It is not nec-
essary to have taken a specialized course in PDEs to understand the rudimentary prin-
ciples involved in obtaining computer solutions. In this chapter we will study finite-
difference methods which are based on formulas for approximating the first and second
derivatives of a function. We start by classifying the three types of equations under
investigation and introduce a physical problem for each case. A partial differential
equation of the form

(1) Ay + BDyy + COyy = fx, 7, P, @, D)),

where A, B, and C are constants, is called quasilinear. There are three types of quasi-
linear equations:

2) If B2 -4AC <0, the equation is called elliptic.
3) If B? —4AC = 0, the equation is called parabolic.
4) If B2 — 4AC > 0, the equation is called hyperbolic.

As an example of a hyperbolic equation, we consider the one-dimensional 1mudel
for a vibrating string. The displacement u(x, t) is governed by the wave equation

(5 pur(x, ¥y =Tug(x,2) forO<x <L and 0 <t < 00,
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——————— ~---» x Figure 10.I The wave equation
x=L models a vibrating string,

X Figure 10,2 The heat equation
models the temperature in an
insulated rod.

——
xmL
u(l.,t)::c:2

with the given initial position and velocity functions

ux,0=f(x) fort=0and 0<x<1L,

6
©) i (x,0) = glx) fort=0and O<x <L,
and the boundary values
0, t) = =
7 w(0,2) =0 forx=0and 0 <+ < o0,

w(L,)=0 forx=L and 0 <t < ox.

The constant o is the mass of the string per unit length and T is the tension in the
string. A diagram of a string with fixed ends at the locations (0, 0) and (L, 0) is shown
in Figure 10.1.

As an example of a parabolic equation, we consider the one-dimensional model for
heat flow in an insulated rod of length L (see Figure 10.2). The heat equation, which
involves the temperature u(xx, r) in the rod at the position x and time 7, is

(%) Ky (x, 1y =0opu(x,t) for0<x <L and 0 <t < co,
the initial temperature distribution at t = O is

19) ulx,0)= f(x) fort=0and 0<x<1L,

und the boundary values at the ends of the rod are

(10) u0,0=¢; forx=0and 0<t < o0,
wl,)=¢c forx=L and 0=t < o0.
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.
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TT<ss=
0.8 \ﬁ
06 T
0.4
0.2 ——————
0.0 x Figure 10.3 Solution curves
0.2 0.4 0.6 08 Lo u(x, y) = C to Laplace’s equation.

The constant « is the coefficient of thermal conductivity, o is the specific heat, and p
is the density of the material in the rod.

As an example of an elliptic equation, consider the potential function u(x, y),
which might represent a steady-state electrostatic potential or a steady-state temper-
ature distribution in a rectangular region in the plane. These situations are modeled
with Laplace’s equation in a rectangle:

(11y Uee(x, Y)Y+ uy(x,y)=0 forO0<x<land 0<y<l.
with boundary conditions specified:

u(x,0) = fix) for y=0 and 0 <x <1 (on the bottom),
u(x,1)= fr(x) for y=1and 0<x <1 (onthe top),
(@0, y)=fi(y) for x=0and 0<y =1 (onthe left),
u(l,y)= fa(y) for x=1and 0 <y <1 (on the right).
A contour plot for #(x, y) with boundary functions fi(x) = 0, fa(x) = sin{mx),
f3(¥) = 0, and f4(y) = O over the square R = {(x, y) : N<x=<10=<y=<llis
shown in Figure 10.3.

Hyperbolic Equations

Wave Equation

As an example of a hyperbotic partial differential equation, we consider the wave equa-
tion

1) U lx, 1) = Cugrlx,t) for 0<x <aand 0 <t <b,
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i
5
] Figure 10.4 The grid for solving
! *2 X1 i Hir) Zn-1 T w(x.t) = uge(x, 1) over R.

with the boundary conditions

w(0,)=0 and wu(@ =0 TForO=<r=<sh,
2 uix,0) = fx) for 0 <x <a,
ur(x, 0y = g(x) for 0 < x <a.

The wave equation models the displacement « of a vibrating elastic string with fixed
ends at x = 0 and x = a. Although analytic solutions to the wave equation can
be obtained with Fourier series, we use the problem as a prototype of a hyperbolic
equation.

Derivation of the Difference Equation

Partition the rectangle R = {(x, 1) : § =< x < a,0 < r < b} into a grid consisting of
n—1by m—1 rectangles with sides Ax = k and At = k, as shown in Figure 10.4. Start
at the bottom row, where ¢ = f; = 0 and the solution is known to be u(x;, 1) = f(x:).
We shall use a difference-equation method to compute approximations

{wij:i=1,2,..., n}insuccessiverows for j=2,3, ..., m.

The true solution value at the grid points is «(x;, #;).
The central-difference formulas for approximating u,, (x, t) ana u,, (x, 1} are

u(x, t+ k) —2ulx. )+ ulx,t — k)

@) un(x. 1) = e + 0%
and
@ donlE. 1) = ulx +h, 0 —2uix,)+ulx—h,1) + o).

lhz
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* i
1
!
raur._l'j . ¥ iy
(2~ 2r2)ui‘ ;
Figure 10.5 The wave equation
i j stencil.

The grid spacing is uniform in' every row: x;j 41 = x; + & (and x;_1 = x; — h); and it is
uniform in every column: ¢4 = ¢; + k (and t;,_y = t; — k). Next, we drop the terms
O (k%) and O (A?) and use the approximation «; ; for u(x;, t;) in equations (3) and (4),
which in turn are substituted into (1); this produces the difference equation

) Uij+l — 2:;,;' tdijet _ airlj = 2:;;‘ + i1, ,

which approximates the solution to (1). For convenience, the substitution ¥ = ck/h is
introduced in (5), and we obtain the relation

2
® Wi+l — 20 j b g = r i, — 2ug ;a1 ).

Equation (6) is employed to find row j + ! across the grid, assuming that approxima-
tions in both rows j and j — 1 are known:

N wi et = (2= 20 j 4 rP i + #io1, ) = -1,

fori =2,3,...,n— 1. The four known values on the right side of equation (7), which
are used to create the approximation u;, ;. |, are shown in Figure 10.5.

Caution must be taken when using formula (7). If the error made at one stage of
the calculations is eventually dampened out, the method is called stable. To guarantee
stability in formula (7), it is necessary that r = ck/k < 1. There are other schemes.
called implicit methods, that are more complicated to implement, but do not have «ta-
bility restrictions for r (see Reference [90]).

Starting Values

Two starting rows of values corresponding to j = 1 and j = 2 must be supplicd in
order to use formula (7) to compute the third row. Since the second row is not usuully
given, the boundary function g(x) is used to help produce starting approximations in
the second row. Fix x = x; at the boundary and apply Taylor’s formula of order | for
expanding u(x, 1) about (x;, 0). The value u(x;, k) satisfies

(8 u(xi, k) = u(x;, 0) + u (x;, Ok + O(K2).
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Then use u(x;, 0y = Ffix)) = fi and u,(x;,0) = g{x;) = g; in (8) to produce the
formula for computing the numerical approximations in the second row:

9 wip=fi+kgi for =23 ...,n-1,

Usually, u(x;, ) # ui 3, and such errors introduced by formula (9) will propagate
throughout the grid and will not be dampened out when the scheme in (7) is imple-
mented. Hence it is prudent to use a very small step size for k so that the values for
u; 2 given in (9) do not contain a large amount of truncation error.

Often, the boundary function f(x) has a second derivative #”(x) over the interval.
In this case we have u,,(x, 0) = f"(x), and it is beneficial to use the Taylor formula
of order n = 2 to help construct the second row. To do this, we go back to the wave
equation and use the relationship between the second-order partial derivatives to obtain

(10w (x, 0) = use (%, 0) = 2 f(x;) = + omh.

2 fir1 = 2fi + fin
P Nt NN i §
h2
Recall that Taylor’s formula of order 2 is

2
(11) u(x, k) = u(x, 0) + u, (x, 0),{4_@)62,_0)}_ + 0%,

Applying formula (11} at x = x;, together with (9) and (10), we get
C2k2 .
12 uxi B = fi +kes + 7 (fitr = 2fi + fi1) + OO + 0.

Using r = ck/h, formula (12) can be simplified to obtain a difference formula for the
improved numerical approximations in the second row:

2
(13) uiz = (1 —rz)ﬂ-+kgi+£2—(fx+1 + i)

fori =2,3,...,n—1.

)’ Alembert’s Solution
The French mathematician Jean Le Rond d’ Alembert (1717—1783) discovered that
114} u(x, ty=F(x+ct) + Glx —ct)

15 2 solution to the wave equation (1) over the interval 0 < x < g, provided that
F', F", G', and G" all exist and F and G have period 2a and obey the relationships
F(—z2) = —=F(2), F(z + 2a) = F(2), G(—z) = —G(z), and G(z + 2a) = G(z) for
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all z. We can check this out by direct substitution. The second-order partial derivatives
of the solution (14} are

(15) ue(x, 1) = A F"(x + et) + *G"(x — c1),
{16} (X, )= F'(x +ct) + G"(x — ¢1).

Substitution of these quantities into (1) produces the desired relationship:

Upe(x, 1) = 2 F"(x +¢t) + c*G"(x — ct)
=2 (F"(x+ct) + G"(x — ct))

= czun(x, ).

The particular solutton that has the boundary values 1(x, 0) = f(x) and u;(x,0) = 0
requires that F(x}) = G(x) = f{x)/2 and is left for the reader to verify.

Two Exact Rows Given

The accuracy of the numerical approximations produced by the equations in (7) de-
pends on the truncation errors in the formulas used to convert the partial differential
equation into a difference equation. Although it is unlikely to know values of the exact
solution for the second row of the grid, if such knowledge were available, using the
increment k = ck along the £-axis will generate an exact solution at all the other points
throughout the grid.

Theorem 10.1. Assume that the two rows of values u;; = u(x;,0) and u;> =
ulx;, k), fori = 1,2, ..., n, are the exact solutions to the wave equation (1). If the
step size kK = A/c is chosen along the r-axis, thert » = | and formula (7) becomes

(17 Wil = Wi+l j+Hio1j = M1

Furthermore, the finite-difference solutions produced by {17) throughout the grid are
exact solution values to the differential equation (neglecting computer round-off error).

Progf. Use d’Alembert’s selution and the relation ck = k. The calculation x; —cz; =
(i—Dh—c(j—Dk=(—1Dh~(j~ 1}h=(i — j)h and a similar one producing
xi+ctj = (i + j — 2}k are used in equation (14) to produce the following special form
of Ui g

(18) wij = F((i — R)+ GG+ ] —2Dh),

fori = 1,2, ...,nand j = 1,2, ..., m. Applying this formula to the terms

SEC. 10.1 HYPERBOLIC EQUATIONS 521

Wetl,js 4i—1 j, and #; ;1 on the right side of (17) yields

Wit],j T Mio1,j = Hij—]
=F+1-m+F(i—-1-j)
—Fi—~G - +GUi+1+j-2h)
+GCU~1+j =D -G{(i+j—1-2h)
=FU-G+DW)+ G+ j+1~2¥)y=u; 41,

fori=012...,nand j=1,2,.,..m. .

Warning. Theorem 10.1 does not guarantee that the numerical solutions are exact
when numerical calculations based on (9) and (13) are used to construct approxima-
tions ;> in the second row. Indeed, truncation error will be introduced if u; 2 #
w(x;, k) for some i, where 1 < i < n. This is why we endeavor to obtain the best
possible values for the second row by using the second-order Taylor approximations in
equation {13). :

Ezample 10.1. Use the finite-difference method to solve the wave equation for a vibrating
siring:

19) wre(x, 1) =duz(x,t) forQ<x<1and 0<r <05,
with the boundary conditions
u(@,t)=0 and u(l,5)=0 for0<r <05,
(20) u(x,0) = f{x) =sin(wx) + sin(2rx) for0=x =<1,
u(x,0) =g(x)=0 for0<x <1

For convenience we choose k = 0.1 and & = 0.05. Since ¢ = 2, this yields » =
ck/h = 2(0.05)/0.1 = 1. Since g(x) = 0 and r = 1, formula (13) for creating the second
row is

_ fict+ fin
h 2

Substituting r = 1 into equation (7) gives the simplified difference equation

(21) Ui for =23 ...,9

22) Wi j4l = iyl + Bizyj — Hij—1.

Applying formulas (21} and (22) successively to generate rows will produce the approxi-
mations to u(x, t) givenin Table 10.1 for0 < x; < land 0 < t; <0.50,

The numerical values in Table 10.1 agree to more than six decimal places of accuracy
with those obtained with the analytic sofution

ulx, t) = sin(rx) cos(2ms) + sin(2mx) cos(dn ).



522 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

Table 10.1  Solution of the Wave Equation (19) with Bourdary Conditions (20}

7] £ 3 X4 x5 L3 X7 xg Xg Yo
0.00 0.896802 1.538842 1.760074 1.538842 1.000000 0.363271 | —0.142040 | ~0.363271 | =0178Tbd
0.05 | 0769421 1.328433 1.538842 1.380037 0.951056 | (1428980 | 0.000000 | —0.210404 [ ~0ABNG Y
0.10 0.431636 0.76%9421 0.948401 0.951056 0.808017 0.587785 0.360616 0.181636 | €.068264
0.15| 0.000000 [ 0051599 | ©.181636 | 0377381 | 0.587785 | 0.740653 | 0.769421 | 0.639384 | 0.3 3L¥
0.20 | —0.380037 | —0.587785 | —0.519421 | —0.181636 | 0.309017 0.769421 1.019421 0951056 | DETIVIY
0.25 | —0.587785 | —0.951056 | —0.951056 | —0.587785 0.000000 0.587785 0.951056 0.951056 0.5%TT8S
0.30 | —0.571020 | —0.951056 | —1.019421 | ~0.76942]1 | —0.309017 | 0.181636 | 0.519421 | 0587785 | ©.>%0037
0.35 | —0.363271 | —0.639384 | —0.769421 | —0.740653 | ~0.587785 | —0.377381 | —0.181636 | —0.051599 | 0.000000
040 | —0.068364 | —0.181636 | —0.360616 | —0.587785 | —0.809017 | —0.951056 | —0.948401 | —0.769421 | ~0.4B46d%
045 | 0.181636 | 0.210404 | 0.000000 | —0.428980 | —0.951056 | —1.380037 | —1.538842 | —1.328438 | —0.76942{
0.50 | 0.278768 | 0.363271 | 0.142040 | —0.363271 | —1.000000 | —1.538842 | —1.760074 | —1.538842 | 0. 83&RH02

o

==
a

7

~ ]~

T

i
S—

Figure 10.6 The vibrating string for equations (19) and (20).

A three-dimensional presentation of the data in Table 10.1 is given in Figure 10.6.

Example 10.2. Use the finite-difference method to solve the wave equation for a vibrating

string:
(23) Uerx, 1) = Ay (x, 1)
with the boundary conditions
u(©0,) =0
24

u(x,0) = f(x) = ’1‘

and

w(x,00=glx)=0

for 0 <x < 1.

for 0<x<1and 0 <t < 0.5,

u(l,) =0 for0=<t <1,
for 0<x <3
S5—15x for f<x<1,
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Table 10.2  Solution of the Wave Equation (23) with Boundary Conditions (24)

i‘j X2 X3 X4 X5 X6 x7 Xg X0 X10

0.00 [ 0.100 | 0.200 0300 | 0400 | 0500} 0600 0450 0.300 0.150
0.05 0.100 | 0.200 0300 | 0400 | 0.500] 0475 0450 | 0.300 0.150
0.10 ( 0.100] 0200 0300 0400 0.375 0.350 | 0.325 0.300 0.150
015 0.100 | 0.200| 0.300 0.275 0.250 | 0.225 0.200 | 0.175 0.150
020 0100 | 0200 0.175 0.150 0.125 0.100 | 0.075 0.050 0.025
025} 0100 | 0.075 0.050 0.025 0.000 | —0.025 | —0.050 | —0.075 | —0.100
030 | -0.025 | -0.050 | —0.075 [ —0.100 | —0.125 | —0.150 | —0.175 | —0.200 | —0.100
0.35 | —=0.150 | —=0.175 | —0.200 | —0.225 | —0.250 | —-0.275 | —0.300 | —0.200 | —0.100
0.40 | —0.150 | —0.300 [ —0.325 | —0.350 | —0.375 | —0.400 | —0.300 | —0.200 | ~0.100
0.45 1 —0.150 | —0.300 | 0,450 | -0.475 | —0.500 | —0.400 | —0.300 { —0.200 | —0.100
0.50 | —0.150 | —0.300 | —0.450 | —0.600 | —0.500 | —0.400 | —0.300 | —0.200 | —0.100

=

Figure 10.7 The vibrating string for equations (23) and {24).

For convenience we choose # = 0.1 and k = 0.05. Since ¢ = 2, this again yields
r = 1. Applying formulas (21) and (22) successively to generate rows will produce the
approximations to u{(x, ¢) given in Table 10.2 for0 < x; < 1and 0 < ¢; < 0.50. A three-
dimensional presentation of the data in Table 10.2 is given in Figure 10.7. (]

Program 10.1 approximates the solution of the wave equation ((1) and (2}). A three-
dimensional presentation of the output matrix U can be obtained by using the com-
mands mesh (U} or surf (U). Additionally, the command contour (U) will produce a
graph analogous to Figure 10.3, while the cormmand contour3(U) will produce the
three-dimensional analogy of Figure 10.3.
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Program 10.1 (Finite-difference Solutlon for the Wave Equation). To approx-
imate the solution of u, (x, 1) = c%u,(x, 1) over R = {x,1) :0<x <q0<
r = b} with u(0,7) = 0, u(g,t) = 0,for 0 < ¢ < b, and u(x,0) = fix),
w(x,0)=g(x), for0<x <a.

525

Exercises for Hyperbolic Equations

function U = finedif(f,g,a,b,c,n,m)

%“Input - f=u(x,0) as a étring £

% - g=ut(x,0) as a string ’g’

% - a and b right end points of (0, aJ and [0,b]

% - ¢ the constant in the wave equation

% = 0 and m number of grid points over [0,a] and [0,b]

AQutput - U solution matrix; analogous to Table 10.1

%Initialize parameters and U
h=a/(n-1);

k=b/(m-1) ;

r=c*k/h;

r2=r-2;

ra2=r-2/2;

sl=1-r"2;

82=2-2*%1r"2;

U=zeros{n,m);

“Compute first and second rows
for i=2:pn-1
U(i,1)=feval (f,h*{i-1));
U(i,2)=sl*feval (f ,h*(i-1))+k*feval (g,h*(i-1)) ...
+r22+(feval (f ,h*i)+feval (f,h*{(i-2)));
end

%Compute remaining rows of U
for j=3:m,
for i=2:(p-1),
U@, 30 = s2%U(E, j-1)+r2% (UGE-1, j=1)+U(GE+1, j-1))-U, §-2) ;
end
end

U=},

1. (a) Verify by direct substitution that u{x, ) = sin(nmrx) cos(2nsrt) is a solution to
the wave equation s, (x, 1) = du,,(x, t) for each positive integern = 1,2, .. ..
(b} Verify by direct substitution that u(x, ) = sin{nmx)cos(cnrt) is a solution
1o the wave equation o, (x, 1) = c*u.c(x, 1) for each positive integer n = 1,
2,.. ..
2. Assume that the initial position and velocity are u(x, 0} = f(x) and u,(x, 0)
respectively. Show that the d’ Alembert solution for this case is
flx+ct)+ f(x —ct)
2 .
3. Obtain a simplified form of the difference equation (7) in the case & = 2ck.

0,

]

u(x,t)y =

In Exercises 4 and 5, use the finite-difference method to celculate the first three rows of
the approximate sclution for the given wave equation. Carry out your calculations by hand

(calculator).

4, wy(x, 1) = duxfx,t), for0 < x < 1and0 <t < 0.5, with the boundary conditidns

w(0,1)=0 and w(l,1}=0 for0 <t <05,
ufx,0) = f(x) = sin(mx) for0<x =<1,
wlx, ) =gx)=0 forQ<x=<1l,
Letk =02, k=01,andr =1.

DSy (x,t) == dug(x, 1), for0 = x < 1and 0 ¢ = 0.5, with the boundary conditions

u@0,0=0 and u(l,)=0 forO0=<tr=<05,
S5x
2
15— 15x

forOs_xE%.

u(x, 0} = f(x) =

for %5:5{,

wx,0)=gx)=0 forQ<x<]l,

Leth=02k=0.l1,andr=1.
6. Assume that the initial position and velocity are u(x, 0) = f(x) and &,(x, 0) = g(x),
respectively. Show that the d’ Alembert solution for this case is
Fx+e+ flx—et) 1 """"‘
5 + o j g(s)ds.

X =t
7. For the equation uy (x, t) = ux.(x, {), what relationship between h and k& must occur
in order to produce the difference equation u;, j+1 = di+1,j + #i-1,j — Wi j—17
8. What difficulty might occur when trying to use the finite-difference method to solve
s (x, t) = duyy(x, t) with the choice k = 0.02 and 2 = 0.03?

ulx, 1) =
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Algorithms and Programs

In Problems 1 to 8, use Program 10.1 to solve the wave equation u, (x, 1) = cu, . (x. 1),
for) < x < e and 0 = < b, with the boundary conditions
u@,1) =0 and wu(a,t)=0
u(x,0) = f(x)
u(x,0) = g(x)

for 0<r<b,
for0<x<a,
for 0 <x <a,
for the given values. Use the surf and contour commands to plot your approximate

solutions.

1. Usea=1,b=1c =1, f{x) = sin(xx), and g(x} = 0. For convenience, choose
h=0landk =0.1.

2.Usea=1,b=1l,c=1, fx) = x — x2, and g(x) = 0. For convenience, choose
h=01andk =0.1.

2x for0<x < %—,
A Usea=1b=1c=1, flx)y= I for% <r<l
glxy=0,h=0.1,andk =0.1.
Usea=1.b=1,c=12, f(x) =sin(wx), g{x) =0,2 =0.1, and k = 0.05.
. Usea=1,b=1,c=2, fx)=1x -.‘rz.g(x)z(),h = 0.1, and £ = 0.05.
. Repeat Problem 3, but with ¢ = 2 and k& = 0.05.
. Repeat Problem !, but with f(x) = sin(2xx) + sin{dz x).

. Repeat Froblem 1, but with ¢ = 2, f{x)} = sin(2nx) + sin(4mx), and k = 0.05.

= I RN

Parabolic Equations

Heat Equation

As an example of parabolic differential equations, we consider the one-dimensiong
heat equation

(1) up(x,t) = czut,x(x, t} for0<x<aand O0<t <b,
with the initial condition

(2) u(x,0)=f(x) fort=0and 0<x <a,

and the boundary conditions

w@t)=g1t)=c; forx=0and 0<r<h,
wla,t)=gt)=c; forx=aand 0<t <bh.

3
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b

Figure 10.8 The grid for solving

x . . X
N 2 N % # Fne1 ow(x, ) = Qg (x, ) over R.

The heat equation models the temnperature in an insulated rod with ends held at con-
stant temperatures ¢y and ¢ and the initial temperature distribution along the rod be-
ing f(x}. Although analytic solutions to the heat equation can be obtained with Fourier
series, we use the problem as a prototype of a parabolic equation for numerical solu-
tion,

Derivation of the Difference Equation

Assume that the rectangle R = {{x,#) : 0 < x < q,0 < t < b} is subdivided into
n —1bym — 1 rectangles with sides Ax = & and At = k, as shown in Figure 10.8.
Start at the bottom row, where r = 7; = 0, and the solution is ulxi, 1) = flx). A
method for computing the approximations to u(x, ¢) at grid points in successive rows
{wlx, ey i=1,2,...,n}, forj=2,3,...,m, will be developed.

The difference formulas used for u, (x, 1) and u,, (x, t) are

u(x, t+ky —uix, )

(4) u(x, 1) = P + O(k)

and

ulx —h, 6y = 2u(x, )+ ux+h, 1)

(5 Hyy(x, 1) = ¥

+ O3,

The grid spacing is uniform in every row: x; ;1 = x; + Ak (and Xi—1 =x; —h), and
itis uniform in every column: #;4; = t; + k. Next, we drop the terms O (k) and O (h1)
and use the approximation u; ; for w{x;, £7} in equations (4) and (5), which are in turn
substituted into equation (1) to obtain

Mijbl T Hij oMl = 24t Mig, )

© k X ’
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B

P,

™i+LJ  Figure 10.9 The forward differ-

a- 2r)ul-_] ence stencil.

which approximates the solution to (1). For convenience, the substitution r = ¢2k/ 4>
is introduced in (6), and the result is the explicit forward-difference equation

(7) wjl = (1= 2ryu; ; +riu;q;+uigr ;)

Equation (7) is employed to create the (j + 1)th row across the grid, assuming that
approximations in the jth row are known. Notice that this formula explicitly gives the
value w; jy intermsof u; ) j, #; ;,and u; 11 ;. The computational stencil representing
the situation in formula (7) is given in Figure 10.9.

The simplicity of formula (7) makes it appealing to use. However, it is impor-
tant to use numerical lechniques that are stable. If any error made at one stage of
the calculations is eventually dampened out, the method is called stable. The explicit
forward-difference equation (7) is stable if and only if r is restricted to the intervai
0=<r= % This means that the step size k must satisfy & < h2/(2c2). If this condition
is not fulfilled, errors committed in one line {x; ;} might be magnified in subsequent
lines {u; p} for some p > j. The next example illustrates this point.

Example 10.3. Use the forward-difference method to solve the heat equation
&) ui(x, 8y = Upefx, ) for 0<x <1 and 0 <1 <« 0.20,

with the initial condition

(9) u(x, 0y = f(x) =4x —4x fort=0and 0=<x <1,

and the boundary conditions

u0,n=g1@)=0 forx=0and 0 <1 =020,

10 :
(10) w(l, ) =g2(t)=0 forx=1and 0 <1 =0.20.

For the first illustration, we use the step sizes Ax = 2 = 0.2 and At = k = 0.02 and
¢ = 1, so the ratio is r = 0.5. The grid will be n =: 6 columns wide by m = 11 rows high.
In this case, formula (7) becomes

u._..+u. g
(an Wi = __'_Lf_zL”
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Table 10.3  Using the Forward-difference Method with r = 0.5

X =000 | xp3=020| x3=040 | x4=060 | x5=080 | x5=100

1 =0.00 [ 0.000060 0.640000 0.960000 0.960000 0.640000 0.000000
1 =0.02 | 0.000000 0.480000 0.800000 0.800000 0.480000 0.000000
t3 =0.04 [ 0.000000 0.400000 0.640000 0.640000 0.400000 0.000000
t4 =0.06 | 0.000000 0.320000 0.520000 0.520000 0.320000 0.000000
15 =0.08 | 0.000000 0.260000 0.420000 0.420000 0.260000 0.000000
tg = 0.10 | 0.000000 0.210000 0.340000 0.340000 0.210000 0.000000
t7=0.12 | 0.000000 0.170000 0.275000 0.275000 0.170000 0.000000
g =0.14 | 0.000000 0.137500 0.222500 0.222500 0.137500 0.000000
19 =0.16 | 0.000000 0.111250 0.180000 0.180000 0.111250 0.000000
tio = 0.18 5 0.000000 0.090000 0.145625 0.145625 0.080000 0.000000
11 =0.20 | 0.000000 0.072812 0.117813 0.117813 0.072812 0.000000

T

Figure 10.10 Using the forward difference method withr = 0.5.

Formula (11) is stable for r = 0.5 and can be used successfully to generate reasonably
accurate approxitnations to #(x, t). Successive rows in the gnid are given in Table 10.3.
A three-dimensional presentation of the data in Table 10.3 is given in Figure 10.10.

. For our second illustration, we use the step sizes Ax = A =02and At =k = 316 R
0.033333, so that the ratio is r = 0.833333. In this case, formula (7) becomes

(12) w1 = —0.666665u; ; + 0.833333(u;—1 j + uit1.5).
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Table 0.4  Using the Forward-difference Method with r = 0.833333

x1=000] xp=020| x3=040 | x4 =060 | x5 =0.80 | x =100

t; = 0.000000 | 0.000000 0.640000 | 0.960000 [ 0.960000 | 0.640000 | 0.000000
ty = 0.033333 | 0.000000 0.373333 | 0.693333 | 0.693323 | 0.373333 | 0.000000
t3 = 0.066667 | 0.000000 0.328889 | 0.426667 | 0.426667 | 0.328889 | 0.000000
14 = 0.100000 | 0.000000 0.136296 | 0.345185 | 0.345185 | 0.136296 | 0.000000
t5 = 0.133333 | 0.000000 0.196790 | 0.171111 | 0.171111 { 0.196790 | 0.000000
ts = 0.166667 | 0.000000 0.011399 | 0.192510 | 0.192510 | 0.011399 | 0.000000
t7 = 0.200000 | 0.000000 0.152826 | 0.041584 | 0.041584 | 0.152826 | 0.000000
1g = 0.233333 | 0.000000 | —0.067230 | 0.134286 | 0.134286 | —0.067230 [ 0.000000
tg = 0.266667 | 0.000000 (.156725 | —0.033644 | —0.033644 | 0.156725 | 0.000000
tio = 0.300000 | 0.000000 | —0.132520 | G.124997 | 0.124957 | —0.132520 ( 0.000000
13 = 0.333333 | 0.000000 (.192511 | —0.089601 | —0.089601 | 0.192511 | 0.000000

§

Figure 10.11 Using the forward difference method with r =
0.833333.

Formula (12) is unstable in this case, because r > %, and errors committed at one row ~anll

be magnified in successive rows. Numerical values that turn out to be imprecise approx
imations to u(x, 1}, for 0 < r < (.33333, are given in Table 10.4. A three-dimensicnal
presentation of the data in Table 10.4 is given in Figure 10.11.

The difference equation (7) has accuracy of the order O (k) + O (#?). Because the
term € (k) decreases linearly as k tends to zero, it is not surprising that it must be made
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small to produce good approximations. However, the stability requirement introduces
further considerations. Suppose that the solutions over the grid are not sufficiently
accurate and that both the increments Ax = hg and Ar = ko must be reduced. For
simplicity, suppose that the new x increment is Ax = k| = hg/2. If the same ratio r
is used, k; must satisfy

()2 _rthe)* ko

2 42 T %’

ki =

This results in a doubling and quadrupling of the number of grid points along the x-axis
and t-axis, respectively. Consequently, there must be an eightfold increase in the total
computational effort when reducing the grid size in this manner. This extra effort is
usually prohibitive and demands that we explore a more efficient method that does not
have stability restrictions. The method proposed will be implicit rather than explicit.
The apparent rise in the level of complexity will have the immediate payoff of being
uncenditionally stable.

The Crank-Nicholson Method

An implicit scheme, invented by John Crank and Phyllis Nicholson (see Reference
[29]), is based on numerical approximations for solutions of equation (1) at the point
(x. t+k/2) that lics between the rows in the grid. Specifically, the approximation used
for ue(x, t + k/2) is obtained from the central-difference formula,

( k) ulx, t + k) —ulx, )
U =

3 = )
(13) i+ 3 p + 0@

The approximation used for u, (x, ¢ + k/2} is the average of the approxamations
i, (x, 1) and uy (x, t + k), which has an accuracy of the order O(42):

k 1
0 Hyx (X, f+ 5) = Eﬁ(u(x —ht+ky —2ulx, t+ky+ulx+h,r+k)
+u(x — k1) = 2u(x, )+ ulx + h, ) + OH?).
[ a fashion similar to the previous derivation, we substitute (13) and (14) into (1) and
neglect the error terms @ (k%) and O (k%). Then employing the notation ; ; = u(x;, 1)

will produce the difference equation

Mij+l —Hij _ 2Mi-Lj4l T 20y gt F Uit g U1 — 20 Ui
k - 2h2 '

(15)

Also, the substitution r = ¢2k/#? is used in (15). But this time we must solve for the
three “yet to be computed” values w;—y j11, #;, j+1, and w41, j4.1. This is accomplished
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Hio), U jsl Hiv) jal

- Figure 10.12 The Crank-
Y4 ij ¥ili  Nicholson stencil.

by placing them all on the left side of the equation. Then rearrangement of the terms
in equation (15) results in the implicit difference formula

(16) —rui—1je1 + 2+ 2r)ui jr1 — ritigl j+1
= (2 = 2r)u;j +r(ttiz1,j + ir1,5)-

fori = 2.3,...,n — 1. The terms on the right-hand side of equation (16) are all
known. Hence the equations in (16) form a tridiagonal linear system AX = B. The
six points used in the Crank-Nicholson formula (16), together with the intermediate
grid point where the numerical approximations are based, are shown in Figure 10.12.

Implementation of formula (16) is sometimes done by using the ratior = 1, in
this case the increment along the r-axis is Af =k = h%/c?, and the equations in (16)
simplify and become

(i7n —Hi—1 1 A ] — Wikl et = i) T i
fori = 2,3,...,n— 1. The boundary conditions are used in the first and last equations

(i.e, w1,; = up j+1 = c1 and up j = Hn jp1 = €2 respectively). Equations (17) are
especially pleasing to view in their tridiagonal matrix form AX = B.

[ 4 —} U2, [ 2c; +us
-1 4 -1 0 M3, 41 uzjt s
-1 4 -1 Upjrl | = | #p—1,j T Upt1 ]
0 -1 4 —1)lup 1 Up—3 5 +dn—1,;
| =1 4] |un—r,ja1f | #n-2j 202

When the Crank-Nicholson methaod is implemented with a computer, the linear system
AX = B can be solved by either direct means or by iteration.
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Table 10.5 The Values u(x;, f;) Using the Crank-Nicholson Method with ¢, = (j — 1)/100

xp=01| r3=02 | x4=03 ] x5 =041{ =05} x37=06| x3=07 | x0=08 | xj0=09

| 1.118034 | 1.538842 | 1.118034 { 0.363271 | 0.000C00 | 0.363271 | 1.118034 | 1.538842 | 1.118034
15| 0.616905 | 0928778 | 0.862137 { 0.617659 | 0.490465 | 0.617659 | 0.862137 | 0.928778 | 0.616905
171 0394184 | 0.647957 | 0.718601 | 0.680009 | 0.648834 | 0.680009 | 0.718601 | 0.647957 | 0.394184
14 | 0.288660 | 0.506682 | 0.625285 | 0.666493 | 0.673251 | 0.666493 | 0.625285 | 0.506682 | 0.288660
15 | 0.233112 | 0.425766 | 0.556006 | 0.625082 | 0.645788 | 0.625082 | 0.556006 | 0.425766 | 0.233112
15 | 0.199450 | 0372035 | 0.499571 | 0.575402 | 0.600242 | 0.575402 | 0.499571 | 0.372035 | 0.199450
17 | 0.175881 | 0.331490 | 0.451058 | 0.525306 | 0.550354 | 0.525306 | 0.451058 | 0.331490 | 0.175881
g | 0.157405 | 0298131 | 0.40B178 [ 0477784 | 0.501545 | 0.477784 | 0.408178 | 0.298131 | 0.157405
g | 0141858 | 0.269300 | 0.369759 | 0433821 | 0455802 | 0.433821 | 0.369755 | 0.269300  0.141858
fg | 0128262 | 0.243749 | 0.335117 | 0.393597 | 0.413709 | 0.393597 | 0.3351i7 | 0.243749 | 0.128262
f) | 0116144 | 0220827 | 0.303787 | 0.356974 | 0.375286 | 0.356974 ; 0.303787 | 0.220827 { 0.116l44

Example 10.4. Use the Crank-Nicholson method to solve the equation

(18) (X, 1) = uxe(x, 1)

with the initial condition

(19 u(x,® = f(x) =sin(rx) + sin(3rx)

and the boundary conditions

w0, )=g1(1)=0
u(l,) =g2(t) =0

For simplicity, we use the step sizes Ax = & = 0.1 and At = k = 0.01 50 that the
ratio is ¥ = 1. The grid will be n = 11 columns wide by m = [1 rows high. Applying the
algorithm generates the values in Table 10.5for0 < x; < land ) <1; < 0.1

The values obtained with the Crank-Nicholson method compare favorably with the

analytic solution u(x, t) = sin(mrx)e™" % + sin(Z!er)e"g"z', the true values for the final

row being

for0<x<1and O<t <0lI,

for x-==0and 0<¢ <01,
for x=1and 0 <t <0.1.

forr=0and 0<x <1

;| 0.115285 ] 0219204 0301570 ] 0.354385 | 0.372569 | 0.354385] 0301570 0.219204 | 0.115285

A three-dimensional presentation of the data in Table 10.5 is given in Figure 10.13. =

0=<r<bh

Program 10.2 (Forward-difference Method for the Heat Equation). To approx-
imate the solution of &, (x, 1} = uglx,Dover R={{(x,1):0<xr<g,0<r <
b} with u(x,0) = f(x),for 0 < x < g, and u(0,1) = ¢, u(a, t) = cz, for

function U=forwdif(f,cl,¢c2,a,b,c,n,m)
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end

\ U=y’;
//’ - -
Program 10.3 (Crank-Nicholson Method for the Heat Equation). To approx-
7 imate the solution of u,(x, 1) = cuy (x, 1) over R = {(x,1):0 < x <q4q,0<
t < b} withu(x,0) = f(x),for0 < x < g, and u(0,1t) = ¢1, u(a, t) = 3, for
iOsrs&
u function Uscrnich(f,c1,c2,a,b,c,n,m)
#Input - f=u(x,0) as a string ’f’
% - ¢l=u(0,t) and c3=u(a,t)
% - a and b right end points of [0,a] and [0,b]
! 4 - ¢ the constant in the heat equation
% - 0 and m number of grid points over [0,a) and [0,b]
¥ #0utput - U solution matrix; analogous to Table 10.5

%Initialize parameters and U

Figure 10.13 u = u(x;, t;) from the Crank-Nicholson method. i:l::’; E;_i; :
r=c”2%k/h"2;
s1=2+2/1;
#Input - f=u(x,0) as a string ’f’ 82=2/1-2;
% - ¢1=u(0,t) and c2=u(a,t) U=zeros(n,m);
% - a and b right end points of [0,a] and [0,b] YBoundary conditions
% - ¢ the constant in the heat equation UL, 1:m)=c1;
% - n and m number of grid points over [0,a] and [0,b] Uln,1:m)=c2,
%0utput - U solution matrix; amalcgous to Table 10.4 YGenerate first row
%Initialize parameters and U U(2:n-1,1)=feval(f,h:h: (n-2)*h)
h=a/(n-1); %Form the diagonal and off-diagonal elements of A and
Kb/ ) %the constant vector B and solve tridiagonal system AX=B
r=§‘§*k/h"2; Vd(1l,1:n)=s1*ones(1,n);
=1 VA(1)=t;
U=zeros{(n,m); Vdgn;=i;
%Boundary conditions Yam—ones (1,n-1);
U{t,1:m)=cl; Va(n-1)=0;
Ul{n,1:m)=c2; Ve=-ones (1,0-1) ;
%Generate first row Vo (1)=0;
U{2:n-1,1)=feval (f,h:h: (n-2)*h)’; Vb(1)=c1;
%Generate remaining rows of U Vb(n?=c2;
for j=2:m

for j=2:m
for i=2:p-1
Ui, jr=s*U(i, j~1)+r*(U(i-1, j-1)+U(i+L,j-1));
end

for i=2:n-1
Vb(i)=U(i—1,j-1)+U(i+1,j—1)+52*U(i,j—1);
end
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X=trisys(Va,vd,Vc,Vb);
U(l:n,jy=x’;

end

U=y’

Exercises for Parabolic Equations

1, (a) Verify by direct substitution that u(x, ) = sin(mm)e“"'z’r ™ is a solution to the
heat equation u,(x, 1) = 4uxy(x, t) for each positive integern =1,2,....
(b) Verify by direct substitution that u(x, 1) = sin(nnx)e‘(”'”)z’ is a solution to
the heat equation u,(x, 1) = c2u,(x, t) for each positive integern = 1,2, .. ..
2. What difficulty might occur if Az = k = A2/c? is used with formula (7)?

In Exercises 3 and 4, use the forward-difference method to calculate the first three rows of
the approximate solution for the given heat equation. Carry out your calculations by hand
(calculator).
30 u{x, ) = ugelx,t), ford < x < 1and 0 < ¢t < 0.1, with the initial condition
u(x,0) = f{x) =sin(mwx),forr =0and 0 < x < 1, and the boundary conditions

u(0,8) =c1 =0 forx=0and 0 < <01,
u(l,)=cy=0 forx=1and 0<¢<0.1l.

Leth=0.2,%k=0.02,and r =0.5.

4 (1) = ,c(x,1), for 0 < x < land 0 < ¢t < 0.1, with the initial condition
u(x,0) = fix) =1—-j2x~1|,fort =0and 0 < x < 1, and the boundary
conditions

u@t)=c =0 forx=0and 0<t=<0.1,
u(l,t)=cy; =0 forx=1and 0<:=<0.l.

5

Suppose that At = k = h?/(2c2).

(a) Use this in formula (16) and simplify.

(b) Express the equations in part (a) in the matrix form AX = B.

(¢) Is the matrix in part (b} strictly diagonally dominant? Why?

6. Show that u(x, 1) = Z?;l aje_(f’”z‘ sin{jzx) is a solution to u (x, £} = ey, (x, 1),
for0 < x < 1 and 0 < ¢, and has the boundary values (0, £) = 0, u(1,¢) = 0, and
u(x, 0y = Z?;] aj sin{jrx).

7. Consider the analytic solution u(x, t) = sin(zx)e~™"! + sin(3rx)e~ that was
discussed in Example 10.4.
{a) Hold x fixed and determine lim,_, o u(x, 7).
(b} What docs this mean physically?
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8. Suppose that we wish to sclve the parabolic equation u, (x, 1) — uy {x,t) = hix).
(a) Derive the explicit forward-difference equation for this situation.
(b) Derive the implicit difference formula for this situation.

9. Suppose that equation (11) is used and that f(x) = 0, g;{r) = 0, and g2 =0
(a) Show that the maximum value of u(x;, ti+1) in row j + 1 is less than or equal
to the maximum of u(x;, #;) in row j.
(b) Make a conjecture concerning the maximum of u(x;, 7,) in row n as n tends to
infinity.

Algorithms and Programs

In Problems | and 2, use Program 10.3 to solve the heat equation u, (x, 1) = c2u . (x, 1),
forO < x < land0 < ¢t < 0.1, with the initial condition u(x.0) = f(x), forr = Qand
0 = x < 1, and the boundary conditions
0, t)=¢;=0 forx=0and 0<:<0.l,
u(l,ity)=c3=0 forx=1and 0<1 <0.l,
for the given values. Use the surf and contour commands to plot your approximate
solutions.
L Use f(x) = sin(wx) +sin(2ax), # = 0.1,k = 0.01, and » = 1.
2 Use fFx)=3—-{3x—1|-3x -2, A=0.1,k=001and r = 1.
3. (@) Modify Programs 10.2 and 10.3 to accept the boundary conditions (0, 1} =
g1(t) # 0and ufa, r) = ga(r) # 0.
(b) Use your modified Program 10.3 to solve the heat equations in Problems 1 and
2, but use the boundary conditions
w0, ) =gy(t) =¢* forx=0and O<r <0.1,
u(l.)=g20)=¢" forx=1and 0<r=<0l,
inplace of ¢; = ¢» = 0.
(c) Use the surf and contour commands to plot your approximate solutions.

4. Construct programs to implement your explicit forward-difference equations and im-
plicit difference formula from parts (a) and (b) of Exercise 8, respectively.

5. Use your programs from Problem 4 to solve the heat equation u,(x, 1) — uy (x,1) =
sin(x), for0 < x < land 0 < ¢ < 0.20, with the initial condition u(x, 0) = fx) =
sin{(zrx) + sin(37x) and the boundary conditions

w0, =ec;=0 for x=0 and 0 <t < 0.20,
‘wll,)=c3=0 forx=1and 0 <t <0.20.

Leth =0.2,k =0.02,and r =0.5.
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Elliptic Equations

As examples of elliptic partial differential equations, we consider the Laplace, Poisson,
and Helmholtz equations. Recall that the Laplacian of the function u(x, v) is

(1) V2u=u_-rx+uyy.

With this notation, we can write the Laplace, Poisson, and Helmholtz equations in the
following forms:

2) V=0 Laplace’s equation,
(3) Viu = g2(x, ¥} Poisson’s equation,
) VZiu 4 flx, u=gx,y) Helmholtz’s equation.

It is often the case that the boundary values for the functions ¢ and f are known at all
points on the sides of a rectangular region R in the plane. In this case, each of these
equations can be solved by the numerical technique known as the finite-difference

method.

The Laplacian Difference Equation

The Laplaciar operator must be expressed in a discrete form suitable for numerical

computations. The formula for approximating f”(x) is obtained from

Jx+h)=2fx)+ fx—h)
hZ

When this is applied to the function u(x, y) to approximate g, (x, y) and uy, (x, y)

and the results are added, we obtain

-+ 0.

(5 o =

wlx+h, ¥} +ulx—hy)+ u(xf;zy +h) +ulx,y—h)—4ulx.y) + 0D,
Assume that the rectangle R = {(x,y) : 0 <x <a,0<y < b, whereb/a = m/n}
is subdivided into n — 1 x m — 1 squares with side & (i.e., a = nh and b = mh), as
shown in Figure 10.14.

To solve Laplace’s equation, we impose the approximation
. u(x +h,y)+ulx —h, yy+ulx, y+h)+ulx,y—h)—4u(x,y) _ 0
(7) 2 =0,
which has order of accuracy ©(h2) at all interior grid points (x, y) = (x;,y ;) for
i=2...,n—land j =2, ..., m — 1. The grid points are uniformly spaced:
Xyl = X +h, xicy = x; —h, yiy1 = yi +h,and vi_ = y; — h. Using the
approximation u; ; for u(x;, y;}, equation (7} can be written in the form

6) Viu=

Wil jtUi—1,; i jo1 +upj—1 — 4

K2 =0

8 Vi~
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%
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41 Fi i i
gure 10.14 The grid used with
x X, X; X X ;
! 2 -1 % il =1 % Laplace’s difference equation.
f Hijet
i : — . .
-1, _4“4',_4? — 4y 1
b
i -1 Figure 10.15 The Laplace stencil.

which is known as the five-point difference formula for Laplace’s equation. This
formula relates the function value u;, j 1o its four neighboring valves u;y, Jr Hiel,
u; j+1, and u; j_1, as shown in Figure 10.15. The term h? can be climinated in (8) to
obtain the Laplacian computational formula

9 Wigl,j +ti1; F 8 ey + it j—1 —4u; j = 0.

Setting Up the Linear System

Assume that the values #(x, y) are known at the following boundary grid points:
ulxy, yjy=uy;; for2<j<m-—1 (ontheleft),

(on the bottom),

w(xp, y;)) =un; for2<j=<m-—1 (ontheright),

{on the top).

w(xi, y1} = u;,) for 2<i<n-—1

u(x;, yp) =u;n, for2<i<n-1

Then applying the Laplacian computational formula (9) at each of the interior points
of R will create a linear system of (n — 2) equations in (n — 2) unknowns, which is
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* Figure 10.16 A 5 x 5 grd for
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solved to obtain approximations to uz(x, y) at the interior points of R. For example,
suppose that the region is a square, that n = m = 5, and that the unknown .v‘alues (-)f
u(x;, v;) at the nine interior grid points are labeled py, p3, ..., po and positioned in
the grid as shown in Figure 10.16.

The Laplacian computational formula (9) is applied at each of the interior grid
points, and the result is the system AP = B of nine linear equations:

—4p1+ m + Ppa = H2 U2
pr—4p:+ p3 + ps = —u3,)
pr—4ps + Pps = —l4,] — U552
P —4ps+ ps + p7 = —u)3
7 + ps—4dps+ ps + ps =0
P3 + ps—4dpg + py=—us3
Pa —4p7+ pr =-—U25 — 14
Ps + pr—4ps-+ py=—uis
: 13 + pg—4py = —uqs — us4.

Example 10.5. Find an approximate solution to Laplace’s equation V2u = 0in the
rectangle R = {(x,y) : 0 < x < 4,0 < y = 4}, where u(x, y} denotes the temperature at
the point (x, v) and the boundary values are

w(x,00=20 and u(x,4)=180 for 0<x <4,
and

wi0,y)=8 and u, y)=0 for O0<y<4

See Figure 10.17 for the grid to be used.
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g 5= 180 uy =180 1, ;=180

ul’4280 - - - pu5'4=0
Py Py Py
u 3=80 . . . us 3=0

uy,2=80 * . . T us =0

Figure 10.17 The 5 x 5 grid in

iy =20 w3 ;=20 u, =20 Example 10.5.

Applying formula (9) in this case, the linear system AP = B is

-4p1+ p2 + p4 =100
Pi—4p+ p3 + b5 = 20
p2—4p3 + ps =-20
P ~4ps+ ps + p7 = —80
p2 + pa—4ps+ ps + s =0
P3 + ps—4ps + ps=0
P4 —4p1+ ps = —260
Ps + pr—4pg+ pe=—I180
P6 + pg~4po=—180

The solution vector P can be obtained by Gaussian elimination (or more efficient
schemes can be devised, such as the extension of the tridiagonal algorithm to pentadiagonal
systems). The temperatures at the interior grid points are expressed in vector form

P=[pi p2 b3 P» pPs Ps P71 ps pof
= [85.7143 43.2143 27.1429 79.642% '10.0000
45,3571 112.857 111.786 84.28577. [

Derivative Boundary Conditions

The Neumann boundary conditions specify the directional derivative of u(x, ¥) normal
to an edge. For our illustration we will use the zero normal derivative condition,

3
(1m Wu(x, y)y=0.
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2:41',2 -4u.'

i—1.m i+ 1l,m

4y Zui. m-1
Uy i+l By jvl

—4u

20y, je—e———g

_4“l.j (_.__. Zuz_j

ul'j_l un.j—ﬁ

Figure 10.18 The Neumann stencils.

“or applications in the area of heat flow, this means that the edge is thermally insulated

and the heat flux throughout the edge is zero. o ' i
i Suppose that x = x,, is held fixed and that we are considering the right edge x =3

oftherectangle R = {(x,y) 10 <x =a. 0=y = b)}. The normal boundary condition
to be used along this edge is

(11) %:u(xn,yj) = uy(xn. y5) = 0.

Then the Laplace difference equation for the point (x,, y;) is
(12) Untij + Un—i.j + Un j41 + Mo j—t — dtnj =0

The value #,.+1,; is unknown, because it lies outside the region R. However, we can
use the numerical differentiation formula

Hntl,j — Bn-1,j

(13) - ~ ux(en, yj) =0

. , L
and obtain the approximation uq.41,j = #a--1,;, Which has order of accuracy O(n")
When this approximation is used in (12), the result is

Qup_t,j +Unjr1 Funj—1 — 4y ;=0
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Uy 5=180 w3 5=180 u, ;=180

ur],4=80 . . . s 4=0
910 a5 di2
uy 4 =80 . . . 5 3=0
5} gz )
U2 =80 * * . s ,=0
‘7 qj 73 '
u =80 . . us 1=0 . . -
Figure 10.19 The 5 x 5 grid in
9 L7 3

Example 10.6.

This formula relates the function value lp,; 0 its three neighboring values u,,— 1j
Up jvtoand up j_j.

The computational stencils for the other edges can be derived similarly (see Fig-
ure 10.18). The four cases for the Neumann computational stencils are summarized
next:

(14) 2uis w1+ viy1,] — 41 =0 (bottom edge),
(15) 2Wim—1 + Uiy + Uil m — dUim =0 (top edge),
(16) 2u2,j+u|'j_1 tur i —duy ;=0 {left edge),
{17} 2Un-y;+up i1+ Hpj+1 — 4y ;=0 (right edge).

Suppose that the derivative condition du(x, y) /3N = 0 is used along part of the
boundary of R, and that known boundary values of #(x, y) are used on the other por-
tions of the boundary; then we have a mixed problem. The equations for determining
dpproximations for u(x;, y;) at boundary points will involve appropriate Neumann
¢omputational stencils (14) ta (17). The Lapiacian computational formula (9) is stil]
used to determine approximations for u(x;, y ;) at the interiar points of R.

Exampie 10.6. Find an approximate solution to Laplace’s equation VZu = 0 in the

tectangle R = {(x,») :0<x <4,0 < ¥ = 4}, where u(x, y) denotes the temperature at
tue point (x, y) and the boundary values are shown in Figure 10.19:

u(x,4) = 180 for 0 <x <4,

Uy(x,0)=0 for 0 <x <4,
u(@, y) = 80 for 0 <y <4,
w(d,v)=0 for 0<y <4
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The Neumann computational formula (14) is applied at the boundary po:mts gi. 92,
and ¢3. and the Laplace computational stencil (9) is applied at the other points g4. gs.
....q12- The result is a linear system A @ = B involving 12 equations in 12 unknowns:

—4q + @ + 244 = —80
gi—4n+ @ + 245 =0
72 — 443 + 246 =0
q1 —dga+ g5 + @7 = —80
o + qa—4gs+ g6+ a8 =0
g3 + g5 —4qe + g9 =0
g4 ~d4g7+ gs + g0 = -80
g3 + g71—4gs+ go + 4qu =0
s + g3 4g9 + quz=0
q7 —4qi0+ 4u = 260
gs + gio—4qu + g1z = —180
g + qu —4qz=—180

The solution vector @ can be obtained by Gaussian elimination (or more efficient
schemes can be devised, such as the extension of the tridiagonal algorithm to pentadiag-
onal systems). The temperatures at the interior grid points and along the lower edge ate
expressed in vector form as

Q=[g1 92 43 24 45 9 @7 48 9 Q10 qui qu2]
== [71.8218 56.8543 32.2342 75.2165 61.6806 36.0412

87.3636 78.6103 50.2502 115.628 115.147 86.3492}. [

Iterative Methods

The preceding method showed how to solve Laplace’s difference equatio.n by con-
structing a certzin system of linear equations and solving it. The shortcoming of this
method is storage; each interior grid point introduces an equation to be solved. Since
betier approximations require a finer mesh grid, many equations might be nee_dled. For
example, the solution of Laplace’s equation with the Dirichlet boundary conditions re-
quires solving a system of (n — 2)(m — 2) equations. If R is divided into a modest
number of squares, say 10 by 10, there would be 91 equations involving 91 unknowns.
Hence it is sensible to develop techniques that will reduce the amount of storage. An
iterative method would require only the storage of the 100 numerical approximations
{u1; ;} throughout the grid.
Let us start with Laplace’s difference equation

(1) Wiglj+ M1+ Uit —4uij =0
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and suppose that the boundary values «(x, v) are known at the following grid points:

u(xp, ¥)y=uwu1; for2<j<m—1 (ontheleft),
(19 u(x;, y1) = uy, for 2=<i<pnp-1 (on the bottom),
U(xn, yj) =un; for2<j<m—1 (ontheright),

w(xi, ym) =wim for 2<i<n—1  (on the top).

Equation (18) is rewritten in the foliowing form that is suitable for iteration:

(20) uij =i +rij.

where

, Uiv1,j+8izt,j + Ui jp1 +ug -1 — du; g
I\ZI) = B

4

for2<i<n-—-land2=<j<m-—1.

Starting values for all interior grid points must be supplied. The constant X, which
is the average of the 2n + 2m — 4 boundary values given in (19), can be used for this
purpose. One iteration consists of sweeping formula (20) throughout all of the interior
points of the grid. Successive iterations sweep the interior of the grid with the Laplace
iterative operator (20} until the residual term r;, j on the right side of equation (20) is
“reduced to zero” (i.e., |7i, ;i < e holdsforeach2 < i <n —1and2 < i<m-—1.
The speed of convergence for reducing all the residuals {r;, j} to zero is increased by
using the method called successive overrelaxation (SOR). The SOR method uses the
ireration formula

Bigl,j A Uimy,y gy w1 — Ay
Ui =H;;F
@2) bR ( 4
= ujj + ki,
where the parameter @ lies in the range 1 < w < 2. In the SOR method, formula (22)
is swept across the grid until |r; ;| < €. The optimal choice for « is based on the study

of eigenvalues cf iteration matrices for linear systems and is given in this case by the
formuia

2o oo ) s (s5))

If the Neumann boundary condition is specified on some portion of the boundary,
we must rewrite equations (14) through (17) in a form that is suitable for iteration. The

(23) w =
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four cases are summarized next and include the relaxation parameter w:

24) Uiy =1 +w (ZHI"2 + i1t 1_ Uiti. = 4t ) {(bottom edge}.
(25)

Uim == Uiy +© (2”"'"’"1 + ui“"”‘4+ Litlm — 4“””) {top edge),
(26)

wijj=ui;+e (2uz,j + UL :: il = 4u]'j) (left edge),
(27

Un j 4

Qp_1 i+ ty i1 +ten it — Ytn; .
= Hp +w ( n—1,j n.j—1 n,j+1 HJ) (ﬂ.ght edge).
Example 10.7. Use an iterative method to compute an approximate solution to Laplace's
equation VZ=0inR={(x,y):0<x <4,0=<y <4}, where the boundary values are:

u(x,00=20 and u(x,49 =180 forO<x <4,

and
u(0,y) =80 and u(4,y)=0 for 0 <y <4,

For illustration, the square is divided into 64 squares with sides Ax = & = 0.5 and
Ay = h = 0.5. The initial value at the interior grid points was set at u;; = 70 for
eachi =2, ...,8and j = 2, ..., 8. The SOR method was used with the parameter
w = 1.44646 (substitute » = 9 and m = 9 in formula (23)). After 19 iterations, the residual
was uniformly reduced (i.e..|ry ;| < 0.000606 < 0.001). The resulting approximations are
given in Table 10.6. Because of the discontinuity of the boundary function at the corners
the boundary values u; y = 50. ug,| = 10, u},0 = 130, and ug 9 = 90 have been introduced
in Table 10.6 and Figure 10.29; they were not used in the computations at the interior grid

points. A three-dimensional presentation of the data in Table 10.6 is given in Figure 10.20
"

Example 10.8. Use an iterative method to compute an approximate solution to Laplace's
equation V2 = 0in R = {(x,y) : 0 < x < 4,0 < y < 4}, where the boundary :&lue
are
u(x, =180 for y=4 and O<x <4,
uy(x,0) =0 for y=0 and 0O<x <4
u(0, ¥) = 80 for x=0 and 0O=<y<4,
u(d,v) =0 for x=4 and 0O0=<y<4

For illustration, the square is divided into 64 squares with sides Ax = h = 0.5 and
Ay = h = 0.5. Starting values using linear interpolation were used along the edge when
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" Table 10.6  Approximate Solution to Laplace’s Equation with Dirichlet Conditions

x) X2 x3 x4 xs x4 x7 g X9

yo | 130.000 | 180.000 { 180.000 | I80.000 | 1R80.000 | 180.000 | 180.000 | 180.000 | 90.0000
yg| 80.000 | 124.821 | 141172 | 145414 | 144.005 | 137478 | 122642 | B8.5070| ©.0000
yr| 80.000 | 102.112 | 113453 | 116479 | 113.126 | 103.266 | 84.4844| 517856 0.0000
ve! 80000 | 89.1736( 94.0499| 9392101 88.7553| 77.9737; 60.2439| 34.0510| 0.0000
ys| 80000 | 80.5319| 79.6515| 76.3999| 70.0003| 59.6301| 44.4667| 24.1744| 0.0000
ya | 80.000 733023 | 67.6241| 62.0267| 552159 460795 33.8184] 18.1798 | 0.0000
¥y | 80.000 65.0528 | 55.5159| 48.8671| 42.7568| 35.6543| 265473 14.7266| 0.0000
y2| 80.000 | 513931 405195 35.1601( 31.2899| 272335 21.99%00| 14.1791| 0.0000
¥y 50.000 20.0000 | 20.0000 | 20.0000| 20.0000( 20.0000] 20.0000] 20.0000{ 10.0000

Figure 10.20 « = u(x, y) with Dirichlet boundary values.

¥y = y1 = 0. The initial value at the interior grid points was set at u;, ; = 70 for each
i=2 ...,8and j = 2,..., 8 Then the SOR method was employed with the parameter
@ = 1.44646 (as in Example 10.7). After 29 iterations, the residual was uniformly reduced;
(ie., |ri ;1 < 0.000998 < 0.001). The resulting approximations are given in Table 10.7.
Because of the discontinuity of the boundary functions at the corners, the boundary values
u1,9 = 130 and ug 9 = 90 have been introduced in Table 10.7 and Figure 10.21; they were
not used in the computations at the interior grid points. A three-dimensional presentation

of the data in Table 10.7 is given in Figure 10.21. =
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Table 10.7  Approximate Solution to Laplace's Equation with Mixed Boundary Conditions

x| X2 X3 x4 x5 x5 x7 Xg X9

yo | 130.000 | 180.000 | 180.000 | 1B0.000 | 130.000 | 180.000 180.000 | 180,000 | 90.0000
‘Vg 80,000 | 126.457 | 142311 | 146.837 | 145468 | 138.762 | 123.583 B9, 15)08 0.0000
v| 80000 | iC3.518 | 115951 | 119.568 | 116.270 | 105.999 86.4683 52.81!01 0.0000
‘ﬁﬁ 80.000 91.6621; 98.4053 | 99.2137] 94.0461 } 824936 634715 35.7‘.[ 13| 0.0000
.v5 80.000 $4.7247 ) 86.7936 | 84.8347| 782063 | 664578 49.2124 26.5;:38 0.0000
Jy4 80.000 804424 | 79.2080 | 75.1245] 674860 559185| 40.3665| 21.2915 0.%
.;'3 80.000 77.8334 | 744742 68.9677| 60.6944| 493635 35.0435( 18.2459 O 0
-tj 80.000 76.4244 1 71.8842 | 655772 569600 45.7972| 32.1981 16.6:}85 0.8830
:vl 80.000 759774 | 71.0605| 64.4964 [ 55.7707| 44.6670| 31.3032| 16.1500| O

Figure 10.21 u = u(x, y) for a mixed problem.

Poisson’s and Helmholtz’s Equations
Consider Poisson’s equation
(28) Viy =gx, y).

Using the notation g; ; = g(x;, y;), the generalization of formula (20) for solving (28)
over the rectangular grid is

2, .
wig1,j i1t o — A — g
(29) uip =1+ 4 ;
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Consider Helmholtz’s equation
(30) Viu+ f(x, y)u=glx, y).

Using the notation f; j = J{xi, ¥;), the generalization of formula (20) for solving (30)
over the rectangular grid is

Uirl,j F Wizt +bijet + i1~ (4 — B2 fi yui ; — kg
4 - hzf,'u,' '

Gl wij=u+

These formulas are explored in greater detail in the exercises.

Improvements

A modification of (8) that can be employed is the nine-point difference Sormula tor
Laplace’s equation:

i
2 e
Vuy j == ~6-}~1-2~(uf+[.14 RACIE W B ok TRS I N S P R
+4uigy ; +duioy +du; g+ duy g — 20u; ;) = 0.

The truncation error for the nine-point difference formuia is of the order O (#*) when
it is used to solve the Poisson or Helmholtz equation; thus there is no improvement if
the nine-point difference formula is used instead of the five-point difference formula.
However, when the nine-point formula is used to solve Laplace’s equation V2u = 0,
the truncation error is of the order O(kf’) and there is an advantage to using the nine-
point difference formuija.

Program 10.4 (Dirichlet Method for Laplace’s Equation). To approximate the
solution of uex{(x, ¥) + uyu(x,y) =O0over R = {(x,¥): 0 < x < 4,0 <y < b}
with u(x,0) = fi(x), u(x,b) = fo(x), for 0 < x < a, and u(0, ¥) = fa(y),
u(a, y} = fa(y).for0 < y < b. It is assumed that Ax == Ay = & and that integers
n and m exist so that @ = nh and b = mh.

function U=dirich(f1,£2,f3,f4,a,b,h,tol,max1)

AInput - £1,£2,f3,f4 are boundary functions input as strings
% - a and b right end points of [0,a]l and [0,b]

% - h step size

A - tol is the tolerance

A0utput - U solution matrix; analogous to Table 10.6

%Initialize parameters and U
n=fix(a/h)+1;

m=fix(b/h)+1;

ave={a*(foeval (£1,0)+feval (£f2,0))
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+b*(feval (£3,0)+feval (£4,0)))/(2%a+24b);
U=ave*ones(n,n);
%Boundary conditions
U(1,1:m)=feval (f3,0:h: (m-1)*h)’;
U(n,1:m)=feval(f4,0:h: (m-1)*h)’;
U(l:n,1)=feval{f1,0:h: (n-1)*h);
U(l:n,m)=feval(f2,0:h: (n-1)*h);
U1, 1)=(U(1,2)+U(2,1))/2;
U(L,m)=CU{1,m-1)+U(2,m))/2;
U(n,1)=(U-1,1)+0(n,2)3/2;
U(n,m)=(U(n-1,m)+U(n,m-1))/2;
%SOR parameter
w=4/{2+sqrt{4-(cos{pi/(n-1) }+cos(pi/(m-1)))"2});
%Refine approximations and sweep operator throughout
%the grid
err=1;
cnt=0;
while{(err>tol)&(cnt<=max1))
err=0; 4
for j=2:m-1
for i=2:n-1
relx=w (U(i, j+1)+U(1, j-1)+U0+1, I+UG-1, §)-4+U0(5, 31074,
U(i,j)=U(i,j)+relx;
if (err<=abs(relx})
err=abs(relx);
end
end
end
ent=cnt+1;
end
U=flipud(U’):

Exercises for Elliptic Equations

1. (a) Determine the system of four equations in the four unknowns pi, pz, p3, and 5,
for computing approximations for the harmonic function 4 (x. y) in the rectan ple
R=1{(x,y):0=<x =<3,0 =y < 3} (see Figure 10.22). The boundary values
are

u(x,00) =10 and w(x,3)=90 for O<x <3,
w(@,y)=70 and u(3,y)=0 for O0<y<3
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4y =90 u; 4 =90

u1'3=70 4 - . 4 uaﬁ._!:(]
Py Py
uy =70 . . t 8y ,=0

L P] p2

Uy =10 u; =10

Figure 10.22
The grid for Exercise 1

uy 4=%0 uy ;=90

ul.3=70 . '] u4’3=0
qs 95

u|,2=70 y . . [ u4,2=0
1 44

“l. | =70 J—-—o—o~———l dy = 0 Figul-e 10.23

q, 93 The grid for Exercise 2

(b} Solve the equations in part (a) for py, p3, p3, and pq.

2. (a) Determine the system of six equations in the six unknowns q1, g3, ..., g for
computing approximations for the harmonic function u{x, v) in the rectangle

R={(x,y):0=<x <3,0< y < 3) (see Figure 10.23). The boundary values
are

u(x,3) =90 and wx. M=% for O«<x<3,
u(0,y)=70 and 2(3,y)=0 for 0=y<3.

(b) Solve the equations in part (a) for gy, g2. . . ., gs.
3. (a) Show that ux, y) = a, sin(x) sinh(y) 4 by sinh{x} sin(y} is a solution of La
place’s equation.
(b} Show that u(x, y} = a, sin(rnx) sinh(ny) + b, sinh(nx) sin(xy) is a solution of
Laplace’s equation for each positive integern = 1,2, .. ..

4. Letu(x, y) = 2~y Determine the quantities u(x +h, y), u(x = h, y), u(x, y+h),
and u(x, y — h), substitute them into equation (7), and simplify.
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U4 34

ty 4 —- —— By s
3§ . . t %3
P P4
H]‘z JP . . 4 iy 2
F4 Py
Y31 Figure 10.24

“),

5. {(a)
(b)

{c)

(@)

The grid for Exercise 7

Suppose that u has the form u(x, y) = ax? + bxy + cy? + dx + ey + f. Find
a relationship among the coefficients which guarantees that ue, + uy, = 0.
Suppose that # has the form given in part (a). Find a relationship among the
coefficients which guarantees that u., + #yy =—1.

Find the coefficients of the polynomial u(x, y} given in part (a) that satisfy
the partial differential equation in part () and also the boundary conditions
#(x,0) =0and u(x, ) = 0.

Find the coefficients of the polynomial u(x, ¥) given in part {a) that satisfy
the partial differential equation in part (b) and also the boundary conditions
u(x.®) =0and u(x, ) =0.

6. Solveuyy+uyy = —duover R = {{(x,»):0<x <1,0 =< y < 1} with the boundary
values

u(x, y) =cos{2x) + sin(2y).

7. Determine the system of four equations in four unknowns p;, pa2, py, and p4 for
implementing the Laplace nine-point difference equation on the 4 x 4 grid shown in
Figure 10.24.

Algorithms and Programs

1. (a)

(b

Use Program 10.4 to compute approximations for the harmonic function u (x, y)
in the rectangle R = {(x, y) : 0 < x = 1.5,0 < y < 1.5); use # = 0.5. The
boundary values are

and u(x, 1.5) = x* — 13.5x2 + 5.0625 for 0 < x < 1.5,
and u(1.5,y) = y* ~ 13.5y? +5.0625 for 0 <y < L.5.

u{x,0) = %
(0, y) = y*

Use the surf command to plot your approximation from part (a} and compare
it with the exact solution u(x, v) = x* — 6x2y2 + y%.
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2. Modify Program 9.1] (Tridiagonal Systems) to solve a pentadiagonal system.

3. (a)

(b)
(c)
(d)

4. (a)

()
(c}
(d)

5. (a)

(b)
()
d)

6. {8)

Use a 5 x 5 grid similar to that in Exarople 10.5 and determine the system of
nine equations in the nine unknowns py, p2, p3, ..., po for computing approx-
imatjons for the harmonic function u{x, y} in the rectangle K = {{xr, y) : 0 <
x £ 4,0 < y = 4}. The boundary values are

ulx,00=10 and u(x,4)=120 for O<x < 4,
@ yv)=90 and wu(4,y)=40 for O<y=<4.

Use your modification of Program 9.11 to solve for py, p2. ..., pe.

Use Program 10.4 to solve for the approximations.

Use a 9 x 9 grid similar to that in Example 10.7 and Program 10.4 to solve for
the approximations.

Use a 5 x 5 grid similar to that in Example 10.6 and determine the system of
12 equations in the 12 unknowns 41, g2, . . ., q12 for computing approximations
for the harmonic function u(x, y) in the rectangle R = {(x,y) : 0 € x < 4,
0 < y < 4}. The boundary values are

u(x,4) =120 and
u(0, y) =90 and

uy(x, ) =0 for O<x <4
u(4,y)=40 for O=y<4

Use your modification of Program 9.11 to solve for ¢, g2, . .., q12.

Modify Program 10.4 to solve for the approximations.

Use a 9 x 9 grid similar to that in Example 10.8 and a modification of Pro-
gram 10.4 to solve for the approximations.

Using a 5 x 5 grid, derive the nine equations involving the nine unknowns p,
P2, P3, . ... py for computing approximations for the solution u(x, y) to Pois-
son’s equation with g(x, y) = 2 inthe rectangle R = f(x,y) : 0 < x = 1,
0 =< y < 1}. The boundary values are

ax,H=x¥ and ux.D=@x~D} for O<x<I,
u@y)=y ad a(ly)=@-1* for O<y<l

Use your modification of Program 9.11 to solve for py, pa, ..., po.

Modify Program 10.4 to solve for the approximations.

Use a 9 x 9 grid and your modification of Program 10.4 to solve for the approx-
imations.

Using 2 5 x 5 grid, derive the nine equations involving the nine unknowns p,,
P2: P3. - ... Py for computing approximations for the solution u(x, y) to Pois-
son’s equation with g(x,y) = y inthe rectangle R = {(x,y) : 0 < x = 1,
0 < v < 1}. The boundary values are

3 3

and u(x,D=x for O0=x=x<1
and u(l,y)=1 for O=<xy=l

ulx, ) =x
u(0,y) =0
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(b} Use your modification of Program 9.11 to solve for p1, p2, ..., ps.
(¢} Modify Program 10.4 to solve for the approximations.

(d) Useadx9 grid and your modification of Program 10.4 to solve for the approx-
imations.

Eigenvalues and Eigenvectors

The design of certain engineering systems involves the maximum stress theory of
Suailure. This theory is based on the assumption that the maximum principal stress
acting on a body determines its failure. The related mathematical result is the principal
axes theorem for a linear transformation ¥ = AX. In two dimensions there exists
hasis vectors /1 and {73 so that the effect of this transformation is to stretch space in
the directions parallel to Iy and Uz by the amount A1 and A5, respectively. Consider

the symmetric matrix
38 0.6].
0.6 22}

j T ] T 1 T 1
-3 0 3 6 9 12 -3 0 3 6 9 12

Figure1L.1 (a)PreimagesU; =[3 1]'and Uz = [-1 3] for the transformation ¥ = AX. (b) The
image vectors V| = AU = [12 4 and Vo = AU, =[-2 6],

558
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the principal dircctions are &/} = [3 1] and U = [~1 3], with corresponding
eigenvalues A = 4 and A; = 2, respectively. Images of these vectors are V| =
AU, = [12 4] =43 1J and V3 = AU, = [-2 6] = 2[-1 3]. This
transformation stretches the quarter-circle shown in Figure 11.1(a) into the quarter
ellipse shown in Figure 11.11(b).

Homogeneous Systems: The Eigenvalue Problem

Background

We will now review some ideas from linear algebra. Proofs of the theorems are either

left as exercises or can be found in any standard text on linear algebra (see Refer-
ence [132]).

In Chapter 3 we saw how to solve n linear equations in » unknowns. It was as-
sumed that the determinant of the matrix was nonzero and hence that the solution was
unique. In the case of a homogeneous system AX = 0, if det(A4) # 0, the unique
solution is the trivial solution X = 0. If det(A) = 0, there exist nontrivial solutions to

AX = 0. Suppose that det{A) = 0, and consider solutions to the homogeneous linear
system

apxy +apx; + -+ apx,=0
aznx| +azxy + - Faypxp=0

dn X1 + @p2X2 + -+ - + AppXxa= 0.

The sy_stem of equations (1) always has the trivial solution x; = 0,x3 =0, ..., x, = 0.
(Gaussian elimination can be used to obtain a solution by forming a set of relationships
between the variables.

Example 11.1. Find the nontrivial solutions to the homogeneous system

x1+2x2—-x3=0
2x14+ x2+x3=0
Sxy+4x3 +x3=0.

Use Gaussian elimination to eliminate x; and the result is

x1+20—- x3=0
—3x2+3x3=0
—6x3 + 6x3 =0,
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Since the third equation is a multiple of the second equation, this system reduces to two
equations in three ynknowns:

X1+ x2 =0
—x3 +x3 =0.

We can select one unknown and use it as a parameter. For instance, let x3 = f; then
the second equation implies that x; = ¢ and the first equation is used to compute x; = —/I.
Therefore, the solution can be expressed as the set of relations:

X = —! —t —1
xp = f o X= (=t 1],

X3 = 1 ! 1
where ¢ is any real number. n
Definition 11.1 (Linear Independence). The vectors Uy, Ua, ..., Uy, are said to

be linearly independent if the equation
(2) aUi+ s+ +clUn =0

implies thatc; = 0,c2 =0, ..., ¢ = 0. If the vectors are not linearly independent
they are said to be linearly dependent. In other words, the vectors are linearly depen-
dent if there exists a set of numbers {c1, €2, . . ., €.} not all zero, such that equation (2}
holds. A

Two vectors in B2 are linearly independent if and only if they are not parallel.
Three vectors in R are linearly independent if and only if they do not lie in the same
plane.

Theorem 11.1. The vectors Uy, Uz, ..., U, are linearly dependent if and only if at
least one of them is a linear combination of the others.

A desirable feature for a vector space is the ability to express each vector as a linear
combination of vectors chosen from a small subset of vectors. This motivates the next
definition.

Definition 11.2 (Basis). Supposethat § = {U/1,Uz...., Unm} is a set of m vectorsin
" The set § is called a basis for %" if for every vector X in R” there exists a unique
set of scalars {c1, ¢z, . . ., Cm} 50 that X can be expressed as the linear combination

(3) X=C101+C:1U2+--'+C,;1Um. A

Theorem 11.2. In ®", any set of n linearly independent vectors forms a basis of ®".
Each vector X in ®" is uniquely expressed as a linear combination of the basis vectors,

as shown il equation (3).
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Theorem 11.3. Let Ky, Ko, ..., K, be vectors in ",

(4) If m > n, then the vectors are linearly independent.
{5) If m = n, the vectors are linearly dependent if and only if det(K) = 0
where X = [K} K, ... Km].

Eigenvalues

Applications of mathematics sometimes encounter the following equations: What are
the singularities of A —~ AJ , where A is a parameter? What is the behavior of the
sequence of vectors {A/X 0}°° ? What are the geometric features of a linear trans-
formation? Solutions for prob]ems in many different disciplines, such as economics,
engineering, and physics, can involve ideas related to these equations. The theory
of eigenvalues and eigenvectors is powerful enough to help solve these otherwise in-
tractable problems.

Let A be a square matrix of dimension n x n and let X be a vector of dimension a,
The product ¥ = AX can be viewed as a linear transformation from n-dimensional
space into itself. We want to find scalars A for which there exists a nonzero vector X

such that
(6} AX =AiX;

that is, the linear transformation T(X) = AX maps X onto the multiple A X. When
this occurs, we call X an eigenvector that corresponds to the eigenvalue A, and together
they form the eigenpair A, X for A. In general, the scalar A and vector X can involve
complex numbers. For simplicity, most of our illustrations will involve real calcula-
tions. However, the techniques are easily extended to the complex case. The identity
matrix I can be used to express equation (6) as AX = LI X, which is then rewritlen in
the standard form for a linear system as

(N A-rDHX=0.

The significance of equation (7) is that the product of the matrix (A — AJ} and the
nonzere vector X is the zero vector! According to Theorem 3.5, this linear systent has
nontrivial solutions if and only if the matrix A — A7 is singular, that is,

() det(A — AI) =

This determinant can be written in the form

air—A  aiz -0 An
az| ap—A -+ am
1G] . . . =9,
dp1 an2 “rr dpn— A
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When the determinant in (9} is expanded, it becomes a polynomial of degree n, which
ts called the characteristic polynomial

p(d) = det{A — AT)

(10) Heant n—1 n=2
=D o AT A T A e,

There exist exactly » roots (not necessarily distinct) of a polynomial of degree n.
Each root A can be substituted into equation (7) to obtain an underdetermined system
of equations that has a corresponding nontrivial solution vector X. If A is real, a real
eigenvector X can be constructed. For emphasis, we state the following definitions.

Definition 11.3 (Eigenvalue). If A is an »n x n real matrix, then its n eigenvalues A |,
A2, ...y Ay are the real and complex roots of the characteristic polynomial

{1 p(A) =det{A - L1). A

Definition 11.4 (Eigenvector). 'If A is an eigenvalue of A and the nonzero vector V
has the property that

(12) AV = AV,

then V is called an eigenvector of A corresponding 10 the eigenvalue A. A

The characteristic polynomial (11) can be factored in the form
(13) PRy = (=1 = A = A2)™2 - (A — A)™,

where m; is called the multiplicity of the eigenvalue A ;. The sum of the multiplicities
of ail eigenvalues is #; that is,

n=m +m+--+m.
The next three results concern the existence of eigenvectors.

Theorem 11.4, (a} For each distinct eigenvalue A there exists at least one eigenvec-
tor V corresponding to A.
(b) If A has multiplicity r, then there exist at most r linearly independent eigenvec-

tors Vi, Va2, ..., V, that correspond to A,
Theorem 11.5. Suppose that A is a square matrix and Aj, Az, ..., A are distinct
eigenvalues of A, with associated eigenvectors Vi, Vo, ..., Vy, respectively; then

{V1, Va, ..., Vi} is a set of linearly independent vectors.

Theorem 11.6. If the eigenvalues of the n x n matrix A are all distinct, then there
exist n eigenvectors V;, for j = 1, 2,..., n.
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Theorem 114 is usu:fllly applied for hand computations in the following manner.
The eigenvalue A of multiplicity » = 1 is substitsted into the equation

(14) (A—ADV =0,

lelﬂ'{ Gaussian elimination can be performed to obtain the Gauss reduced form, which
will mw_slve n — k equations in n unknowns, where 1 < k < r. Hence th('r:: areL/'
free variables to choose. The free variables can be selected in a Jjudicious m;inn t\
produce k linearly independent sclution vectors ¥, V3, ..., V that correspénd 2 )0

Example 11.2.  Find the eigenpairs A ;, V; for the matrix

3 -1 0
A={-1 2 -1
0 -I 3

Also, show that the eigenvectors are linearly independent.
The characteristic equation det(A — AJ) = 0 is

3 -1 0
(15) 1 2-x ~l|=-A+82-190+12=0,
0 -1 3-a

which can be written as ~(x — 1)(% — 3)(A — 4) = 0. Theref; .
=y ore, tt
Ar=1,4=3,andA; = 4. e, the three eigenvalues are

Case (i): Substitute A; = 1 inte equation (14) and obtain

2x1 — x2 =0
—X1+x2— x3=0
—x3+2x3 =0,

S_mc.e t_he sum of the first equation plus two times the second equation plus the third equa-
tion is identically zero, the system can be reduced to two equations in three unknowns:

2):] — X2 =
—x3+2x3=0.

Choose x; = 2q. where a is an arbilrary constant; then the first and second equations are

used to COmputE X1 =a and X3 = a rCSPCCti Cl) ﬂl i iri =
> v . us lll
, ! ’. [+ ﬁrS[ £igenparir 1s )vT 1.
Cas&‘ (H)' Subs[iltute A.z = 3 int(:l equation (]4) -a.rld Obtajn

—Xx3 =0
—x1—x2—x3=0
-X2 =0,
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This is equivalent to the system of two equations

x1 +x3=0
X2 =0.
Choose x; = b, where b is an arbitrary constant, and compute x3 = —b. Hence the second

eigenpairis hp =3, V2 = [ 0 —b] =b[1 0 —1].
Case (iii): Substitute A3 = 4 into (14); the resuit is

—X] — X2 =0
—x]—2x3—x3=0
—x3 —x3=0.
This is equivalent to the two equations
x| + X2 =0
x2+x3=0.
Choose x3 = ¢, where c is a constant, then use the second equation to compute Xz = —c.

Then use the first equation to get x; = c. Thus the third eigenpair is A3 = 4, V3 =
[c —¢ ] =c[t -1 1.

To prove that the vectors are linearly independent, it suffices to apply Theorem 11.5.
However, it is beneficial to review techniques from linear algebra and use Theorem 11.3.

Form the determinant

a b e
det([Vi Va2 Vi])=|2a 0 —c|=—6abc.
a —& ¢

Since det([V1 Va V3]} # 0, Theorem 11.3 implies that the vectors V1, V2, and V3 are
linearly independent. u

Example 11.2 shows how hand computations are used to find eigenvalues when
the dimension » is small: (1) find the coefficients of the characteristic polynomial;
{2) find its roots; (3) find the nonzero solutions of the homogeneous linear system
(A— AV = 0. We will take the prevalent approach of studying the power and Jacobi
methods and the QR algorithm. The @R algorithm and its improvements are used in
professional software packages such as EISPACK and MATLAB ([178]).

Since V in (12) is multiplied on the right side of the marrix A, it is called a right

eigenvector corresponding to A. There also exists a left eigenvector ¥ such that
(16} Y'A=2\Y.
In general, the left eigenvector Y is not equal 1o the right eigenvector V. However,
if A is real and symmetric (A" == A), then
(AVY = VA" = V'A,
an i
(AVY = AV
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Therefore, the right eigenvector V is a left eigenvector when A is symmetric. In the
remainder of the book we consider only right eigenvectors.

An eigenvector V is unique only up to a constant multiple. Suppose that ¢ is a
scalar; then the following calculation shows that ¢V is an eigenvector:

(18) AleV) = c(AV) = c(AV) = A(cV).

To regain some semblance of uniqueness, we normalize the eigenvector in one of
the following ways. Use one of the vector norms

(19) X Noe = ]Tfjgn{lxké}
or
n 172
(20) iX|z = (Z} lxkiz)
k=1

and require that either || X ||, = lor [ X, = 1.

Diagonalizability
The eigenvalue situation is easiest to understand for a diagonal matrix D that has the
form

A 0 o 0
0 A -+ 0
2n D = diag(A1, A2, ..., Ap) == : : .
0 0 .- A,

Let E; =[00 .- 010 - 0] be the standard base vector, where the jth
component is 1 and all other components are 0. Then

(22) DE;=[00 ---024; 0--- 0] =4,E;,

which implies that the eigenpairs of D are A, E; for j =1, 2, ..., n. It is desirable
te invent a simple way of transforming the matrix A into diagonal form s0 that the
eigenvalues are left invariant. This is the motivation for the following definition.

Definition 11,5, Two n x n matrices A and B are said to be similar if there exists a
nonsingular matrix K so that

(23) B =K 'AK. A

Theorem 11.7. Suppose that A and B are similar matrices and that A is an eigen-
value of A with corresponding eigenvector V. Then A is also an eigenvalue of B, 1f
K~ 'AK = B, then ¥ = K~V is an eigenvector of B associated with the gigen-

value A.
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An n x n matrix A is called diagonalizable if it is similar to a diagonal matrix.
The next theorem illuminates the intimate role of eigenvectors in this process.

Theorem 11.8 (Diagonalization). The matrix A is similar to a diagonal matrix I if
and only if it has » linearly independent eigenvectors. If A is similar to I, then

o8 VT'AV = D = diag(h1, Ag, ... A,)
V=[Vi Vy. .. V]
where the n eigenpairsare A;, V;, for j = 1,2, ..., n,
Theorem 11.8 implies that every matrix A that has n distinct eigenvalues is diago-
nalizable.

Example 11.3.  Show that the following matrix is diagonalizable.

3 1 0
CA=]-1 2 —-1].
0 -1 3

In Example 11.2 we found the eigenvalues A| == 1, A2 = 3, and A3 = 4 and the matrix
ol eigenvectors

1 1
V=[V1 Va2 V3]= 2 0 —
1 -1 i
The inverse matrix V! is
1 1 1
S
1 _1 1
3 3 3

It is left to the reader to check the details in computing the product in (24);

8 1 &|[3 -1 0] [1 1 17 100
0 -t 2 —iy=]2 o —1|l={0 3 0
-4 Lo -1 3 I -1 1} |o o 4

Hence we have shown that 4 can be diagonalized; thatis, VAV = D = diag(1,3,.4). =

A more general result relating the structure of a matrix, to its cigenvalues is the
following theorem.

Theorem 11.9 (Schur). Suppose that A is an arbitrary n x n matrix. A nonsingular
matrix P exists with the property that T = P14 P, where T is an upper-triangular
matrix whose diagonal entries consist of the eigenvalues of A.
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Certain types of structural analysis in engineering require that a basis of " be
selected that consists of the eigenvectors of A. This choice makes it easier to visu-
alize how space is transformned by the mapping ¥ = T(X) = AX. Recall that the
eigenpair A;, V; has the property that T maps ¥; onto the multiple of X ;V;. This
characteristic is exploited in the following theorem.

Theorem 11.10.  Suppose that A is an n x 'n matrix that possesses n linearly inde-
pendent cigenpairs A;, V; for, j = 1, 2, ..., n; then any vector X in R™ has a unique
representation as a linear combination of the eigenvectors:

(25) X=cVi+cVa+- -+, Va.
The linear transformation T'(X) = AX maps X onio the vector

(26) Y=TX)=ciVi+cdaVa+ .- +c, ,V,.

Example 11.4. Suppose that the 3 x 3 matrix A has eigenvalues Ay = 2, Ay = —1.
and A3 = 4, which correspond to the eigenvectors V; = [1 2 —2]', Va=[-21 1]
and V3 = [I 3 ——4]!, respectively, If X = [—I 2 l]’, find the image of X under the
mapping T{X) = AX.

We must first express X as a linear combination of the eigenvectors. This is accom-
plished by solving the equation

12 1) =al 2 2] +e[-2 1 1] + 31 3 —4]
for ¢y, c2, and c3. Observe that this is equivalent to solving the linear system
cp =204+ ¢3=—1
2c;1+ ¢34+ 3e3= 2
—2c1+ ¢2— 4C‘3 = 1.
The solution is ¢; = 2, ¢z = 1, and ¢3 = —1. Using Definition 11.4, for eigenvectors,
T (X) is found by the computation
T{X)=AQ2V 4+ V2-V3)
=24V1+ AV2 - AV,
=202V ) — V1 -4V,
=[2 -5 7]. "

Virtues of Symmetry

There is no easy way to determine how many linearly independent eigenvectors a ma-
trix possesses without resorting to using the most effective algorithms in a professional
software package such as EISPACK or MATLAB. However, ii is known that a real
symmeiric matrix has n real eigenvectors and that for each eigenvaiue of multiplic-
ity m; there corresponds m ; linearly independent eigenvectors. Hence every real sym-
metric matrix is diagonalizable.
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Definition 11.6 (Orthogonal). A set of vectors {V), V3, ..., V,} is said to be
orthogonal provided that

@n ViVi=0 whenever j#k A

Definition 11.7 (Orthonormal). Suppose that {V|, V2. ..., ¥V} is a set of orthog-
onal vectors; then we say that they are orthonormal if they are all of unit norm, that

is,
(28) V;- Vi=0 whenever [ #k.

Vivi=1 foral j=1 2, ..., n A
Theorem 11.11. An orthonormal set of vectors is linearly independent.

Remark. The zero vector cannot belong to an orthonormal set of vectors.

Definition 11.8 (Orthogonal Matrix). Ann x n matrix 4 is said to be orthogonal
provided that A’ is the inverse of A; that is,

(29 A'A=1,
which is equivalent to
(30) A7l =4

Also, A is orthogonal if and only if the columns (and rows) of A form a set of or-
thonermal vectors. A

Theorem 11.12. If A is a real symmetric matrix, there exists an orthogonal matrix K
such that

(31) K'ARK = K7'AK =D,
where D is a diagonal matrix consisting of the eigenvalues of A.

Corollary 11.1. If A is an #n x » real symmetric matrix, there exist » linearly inde-
pendent eigenvectors for A, and they form an orthogonal set.

Corollary 11.2. The eigenvalues of a real symmetric matrix are all real numbers.

Theorem 11.13. Eigenvectors corresponding to distinct eigenvalues of a symmetric
matrix are orthogonal.

Theorem 11.14. A symmetric matrix A is positive definite if and only if ail the
eigenvalues of A are positive.
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Estimates for the Size of Eigenvalues

It is usefvl to find a bound for the magnitude of the eigenvalues of A. The following
results will give some insights.

Definition 11.9 (Matrix Norm). Let | X | be a vector norm. Then a corresponding
natural matrix norm is

32 A} = max {—»—”AX“

G2 iXi=1 1 41Xy}

For the norm || A || the following formula holds:

»

71
(33) | Alloe = max [Z |au-|] :
<i<n i=1

Theorem 11.15. If A is any eigenvalue of A, then
(34 (A < 11A].
for any natural matrix norm ||Af.

Theorem 11.16 {Gerschgorin’s Circle Theorem). Assume that A is an# xn matrix
and let C; denote the disk in the complex plane with center a;; and radius

n
(35) r;= Z lajx| for each j=1,2, ..., n;
k=1 k#
that is, C; consists of all complex numbers z == x + iy such that

(36) Ci={z:lz—ayl <rj}

If§ = U;’_l C, then all the eigenvalues of A lie in the set §. Moreover, the union of
any k of these disks that do not intersect the remaining » — k must contain precisely K
(counting multiplicities) of the eigenvalues.

Theorem 11.17 (Spectral Radius Theorem). Let A be a symmetnic matrix., The
spectral radius of A is || A]» and obeys the relationship

(37) Al = max{iAi], |22l ..., [Aa4]}.
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An Overview of Methods

For problems involving moderate-sized symmetric matrices, it is safe to use Jacobi’s
method. For problems involving large symmetric matrices (for n up to several hun-
dred), it is best to use Householder’s method to produce a tridiagonal form, followed
by the QR algorithm. Unlike real symmetric matrices, real unsymmetric matrices can
have complex eigenvalues and eigenvectors.

For matrices that possess a dominant eigenvalue, the power method can be used
to find the dominant eigenvector. Deflation techniques can be used thereafter to find
the first few subdominant eigenvectors. For real unsymmetric matrices, Householder’s
method is used to produce a Hessenberg matrix, followed by the LR or QR algorithm.

Exercises for Homogeneous Systems: The Eigenvalue Problem

1. For each of the following matrices find (i) the characteristic polynomial p(&), (ii) the
eigenvalues, and (iii) an eigenvector for each eigenvalue.

1 2 1 6 -2 3
@ A:,_3 2] (b A=[9 2] (© A:[ : %2]
- 111
12 1
@ A=] o0 1 2 © a=|0 %2 23
13 9 003 2
- 000 4

2. Determine the spectral radius of each of the matrices in Exercise 1.
3. Determine the || A||; and || A}, norms of each of the matrices in Exercise 1.

4. Determine which, if any, of the matrices in Exercise 1 are diagonalizable. For each
diagonalizable matrix in Exercise 1, find the matrices V and P from Theorem 11.8
and carry out the matrix product in (24).

5. (a) For any fixed @, show that

—sind  cosé

R _[ cos 8 sine]

is an orthogonal matrix.
Remark. The matrix R is called a rotation matrix.
(b} Determine all values of & for which all the eigenvalues of R are real.

§. In Section 3.2 the plane rotations R, (), R,(8), and R,(y) were introduced.
(a) For any fixed a, 8, and y, show that R, (a), Ry(8). and R_(y), respectively,
are orthogonal matrices.

(b} Determine all values of «, §, and y for which all the eigenvalues of R, (a),
R, (), and R (y), respectively, are real.
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7. LetA:[a+3 2]_

P a
(a} Show that the characteristic polynomial is p(A) = A% — (3+2a)A +a° — 3a ~ 4.
(b) Show that the cigenvaluesof Aare by =a +4andrr =a — 1.
(c) Show that the eigenvectors of A are V) = [2 1]' and Vy = [~1 2]’.

8. Assume that A, V form an eigenpair of the matrix A. If & is a positive integer, prove
that A%, V are an eigenpair of the matrix A*.

9. Suppose that V is an eigenvector of A that corresponds to the eigenvalue A = 3.
Prove that A = 9 is an eigenvalue of the matrix 42 correspondingto V.

10. Suppose that V is an eigenvector of A that corresponds to the eigenvalue A = 2,
Prove that A = % is an eigenvalue of the matrix 4~! correspending to V.

I
b

11. Suppose that V' is an eigenvector of A that corresponds to the eigenvalue A
Prove that A = 4 is an eigenvalue of the matrix 4 — I corresponding to V.

12. Let A be an n x 1 square matrix with characteristic polynomial p(A) given by

p(h) = det(A — A1)
= (DA e b oA e o)

(a) Show that the constant term of p(A) is ¢, = (—1)" det(A).
(b) Show that the coefficient of Al cr=—(a +apn+--+ Qnn ).

13. Assume that A is similar to a diagonal matrix; that is
VAV = D = diag(i;, Ao, ... . Ap).
If & is a positive integer, prove that

At = Vdiagr, A%, Ayl

Power Method

We now describe the power method for computing the dominant eigenpair. Its exten-
sion to the inverse power method is practical for finding any sigenvalue provided that a
good initial approximation is known. Some schemes for finding eigenvalues use other
methods that converge fast, but have limited precision. The inverse power method is
then invoked to refine the numerical values and gain full precision. To discuss the
situation, we will need the following definitions.

Definition 11.10. If A is an eigenvalue of A that is larger in absolute value than any
other eigenvalue. it is called the dominant eigenvalue. An eigenvector V| correspond-
ing to A is called a dominant eigenvector. A
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Definition 11.11. An eigenvector V is said to be normalized if the coordinate of

largest magnitude is equal to unity (i.e., the largest coordinate in the vector V is the

number 1). Y

17 .
It is easy to normalize an eigenvector [v1 vy ... u,,‘] by forming a new vector

V= (/c)fv vz ... v,,]’,wherec:vj and jv;| = maxisisnilval}. ‘

Suppose that the matrix A has a dominant eigenvalue A aqd that there is a unique
normalized eigenvector V' that corresponds to A. This eigenpair A,-V can be found by
the following iterative procedure called the power method. Start with the vector

() Xo=[11...1]
Cienerate the sequence { X} recursively, using
Y= AXy,
i 1
Ck+1

where ¢y is the coordinate of ¥ of largest magnitude (in the_case of a I:ie? choose
the coordinate that comes first). The sequences {X,} and {cx} will converge to V and

A, respectively:
i = d lim c; = A.
(3) kl_l*n;o Xy=V an Jm_c
Remark. If X is an eigenvector and X # W, then some other starting vector must be
chosen.

Example 11.5. Use the power method to find the dominant eigenvalue and eigenvector
for the matrix

o 11 -5
A=|-2 17 =7
—4 26 -—10

Start with Xo = [1 1 1] and use the formulas in (2) to generate the sequence of
vectors { X} and constants {c}. The first iteration produces

0 11 -5]]1 (6 %
-2 17 =7 1{=] 8|=12 % =c1X;.
—4 26 —-10] |1 12 1
The second iteration produces
o u s[4 I3 %
2 io|_16]5s
-4 26 -10] |1 R 1
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Table 11.1  Power Method Used in Example 11.3 to Find the Normalized Dominant
Eigenvector V = ![% % 1]’ and Corresponding Eigenvalue A = 4

k1 Kiet1

AXp = Y

000000 8.000000  12.000001 00000 0.666667 11 = 1 X,
o i{g'ssssag 2‘333333 ;7233333}’ ;.2;:2(3)(3?2{32237500 0.625000 1}' = c;X:
jg; — [1.875000 2750000 4.500000 = 4.500000(0.416667 0.611111 1y = c3§3
AX; = [1.722222 2.555556 4.222222) = 4.222222(0.407895 0.605263 ;]’ = c4x4
AX, = [1.657895 2473684 4.105263] = 4.105263{0.403846  0.602564 1]} = CSXS
AXs = [1628205 2.435897 4.051282] = 4.051282(0.401899 0.601222 1%’ = CGXE
AXg = [1.613924 2417722 4.025316] = 4.025316(0.400943 g.%n 1 = ?xf
AX7 = [1.606918 2.408805 4.012579] = 4.012579[0.400470 0. 13 1 = ok
AXg = [1.603448 2.404389 4.006270]' = 4.006270[0.400235 0.% % = es Xy
AXg = [1.601721 2.402191 4.003130] = 4.003130[0.400117 O. 8 1]’:cmxm
AX o = [1.600860 2401095 4.001564] = 4.001564[0.400059 0.6000 =cuXn

Iteration generates the sequence {X} (where X, is a normalized vector):

! 7 -5 3l 21 %_ﬂ

: Bl 9|12 38| 8| 78|3%| 158 b

2 16 1 5 11 e = A Ly R D

12 Il 3 5| E T8 |- 9 (38| 19 78 39
1 1 1 1 1 1
. ' .
The sequence of vectors converges to V. = [% % 1] , and the sequence of constanf.ss
converges to A = 4 (see Table 11.1). It can be proved that the rate of convergence 1
[

linzar.

Theorem 11.18 (Power Method), Assume that the » x » matrix A has n distinct

eigenvalues A1, Az, ..., A, and that they are ordered in decreasing magnitude; that is,
4} Al = [A2] = |dsl = - = Al
| ) (k) LT and
If X is chosen appropriately, then the sequences [X p = [Jt‘l X3 ... Xn ] } an
{cy} generated recursively by
(5) Y, =AX,;
and
X ! Y

6 k= ks
where

*) ® _ W)y
N Cktl = X] and x; = lr;ll_a;{lx, 1}
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will converge to the dominant eigenvector V1 and eigenvalue 41, respectively. That is,
(8) lim X, =V, and lim cx = Ay.
k— 00 k-r00

Froof Since A has n eigenvalues, there are n corresponding eigenvectors V ;, for
J = 1.2, ..., n, that are linearly independent, normalized, and form a basis for n-

dimensional space. Hence the starting vector X can be expressed as the linear combi-
nation

(" Xo=biVi+b6Vi+. - +5b,V,.

Assume that Xy = [x1 X2 ... x,,]’ was chosen in such a roanner that b, # 0. Also,
assume that the coordinates of X are scaled so that maxi<;j<n{|x;|} = 1. Because

Vv ,—}j= | are eigenvectors of A, the multiplication AX, followed by normalization,
produces

YU = AXO = A(blVl -+ bZVQ‘_ + -4 ann)
= blAVI +b2AV2 + - -+ bnAVn
(10} = b1V, T b2aaVa+ - 4 bphpVy

A A,
= Al (b1V1+bz (—2) Vot +b, (_n) Vn),
Al Al
A A A
X =—l—(b1V1+b2 (—%) Vot -+ by (—-) Vn).
cl A Ay

After k iterations we arrive at

and

{1
Yio1 = AXy
k-1 PN PR
=A ! (51V|+b2(—2) V2+-—-+bn(—") Vi
€pez - Cry 1 A
k-1 PR 5o \k-1
= ! blAV | + b —2) AVa+ ..+ b, («) AV,
C1C2 "+ Cp-} A Ay
a1 Ay \ K] 3o\ k-1
= 1l biaVi+ b (—2* MmVi+---+b, (—n-) AV,
C1C2 - Ch—1 Al Al
Ak )¢ A\ K
= ! hVi+b (—2) Vot 4+ by (—ﬂ) Val.
€12+« Cp—| A Al
and

Ak A\ A \ K
Xe= — | 01Vi+ 5| — Vot |2 Va.l.
C1cr - ¢ A Al
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Since we assumed that |A;|/lA1| < 1foreach j =2,3,...,n, we have

A\
(12) lim b,-(—f-) Vi=0 weach j=2,3 ..., n
k=00 A
Hence it follows that
: . b1
{13) im X; = lim ———V .
k—o00 k—oc C1C2 - Ck

We have required that both X and V| be normalized and their largest component be 1.
Hence the limiting vector on the left side of (13) will be normalized, with its largest
component being . Consequently, the limit of the scalar multiple of V' on the right
side of (13} exists and its value must be 1; that is,

bk
(14) lim —2L .

k—00 C1C2++*Ck

Therefore, the sequence of vectors { X} converges to the dominant eigenvector:
(15) lim Xk= V].
k—co

Replacing k with k — 1 in the terms of the sequence in (14) yields

b lk_l
i T g,
k=06 C1ey « + Ck—1
and dividing both sides of this result into (14) yields
A hak/icicz - 1
iim ™ = lim 18] /lercz -« ex) =T=1‘

koo ¢ k—oo bll’;—‘/(ch e Ciat)

Therefore, the sequence of constants {cx} converges to the dominant eigenvalue:

'[ 1 6) ﬁm Ck = A'] 1
k=00
and the proof of the theorem is complete. ©

Speed of Convergence

In the light of equation (12} we see that the coefficient of V; in X, goes to zero in
proportion to (A /Ap)¥ and that the speed of convergence of {X;} to V| is governed
by the terms (Az/ Lk Consequently, the rate of convergence is linear. Similarly, the
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Table 11.2 Comparison of the Rate of Convergence of the Power Method and Acceleration of
the Power Method Using Aitken’s AZ Technique

cp ¥y E}cfiz
c1 X1 = 12.000000{0.5000000 0.6666667 1]'; 4.3809524[0.4062500 0.6041667 1) = ?121
c2Xz =15.3333333{0.4375000 0.6250000 1]; 4.0833333[0.4015152 0.6010101 1] = ?222
c3X3; =4.5000000[0.4166667 0.6111111 1]'; 4.0202020[0.4003759 0.6002506 1] = ?323
Xy =4.2222222[0.4078947 0.6052632 1]'; 4.0050125[0.4000938 0.6000625 1} = 3424
csXs  =4.1052632[0.4038462 0.6025641 11'; 4.0012508[0.4000234 0.6000156 11’ = ?525
csXg =4.0512821[0.4018987 0.6012658 1]'; 4.0003125[0.4000059 0.6000039 17 = ?ﬁgﬁ
c1X7 =4.0253165[0.4009434 0.6006289 1}'; 4.0000781[0.4000015 0.6000010 1]’ = ?727
cgXg =4.0125786[0.4004702 0.6003135 17'; 4.0000195[0.4000004 0.6000002 1]’ = X
c9Xg =4.0062696{0.4002347 0.6001565 1]’; 4.0000049[0.4000001 0.600000F 1] = ?g?g
c10X 10 =4.0031299[0.4001173 0.6000782 1}'; 4.0000012[0.4000000 0.6000000 1] = EJOEFIO

convergence of the sequence of constants {c;} to A; is linear. The Aitken A? method
can be used for any linearly convergent sequence { py} to form a new sequence

i = (Pra1 — p)?
Pit2 = 2pert + pi |’

that converges faster. In Example 11.4 this Aitken A% methed can be applied to speed
up convergence of the sequence of constants {ck}, as well as the first two components of
the sequence of vectors {X ). A comparison of the results obtained with this technique
and the original sequences is shown in Table 11.2.

Shifted-inverse Power Method

We will now discuss the shifted inverse power method. It requires a good starting
approximation for an eigenvalue, and then iteration is used to obtain a precise soiution.
Other procedures such as the @M and Given’s method are used first to obtain the
starting approximations. Cases involving complex eigenvalues, multiple eigenvalues,
or the presence of two eigenvalues with the same magnitude or approximately the same
magnitude, will cause computational difficulties and require more advanced methods.
Qur illustrations will focus on the case where the eigenvalues are distinct. The shifted
inverse power method is based on the following three resuits (the proofs are left as
exercises).

Theorem 11.19 (Shifting Eigenvalues). Suppose that A, V is an eigenpair of A. If
a is any constant, then A — ¢, V is an eigenpair of the matrix A — o[,

Theorem 11.20 (Inverse Eigenvalues). Suppose that A, V is an eigenpair of A. If
A # 0, then 1/A, V is an eigenpair of the matrix A~!,
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| | |
T T I I I x

|
!
l] ?uj‘! 75, o A‘j-i'l A‘n

Figure 11.2 The location of « for the shifted-inverse
power method.

Theorem 11.21. Suppose that A, V is an eigenpair of A. If a # A, then 1 /(A —a), V
is an eigenpair of the matrix (A — aJ)™ 1.

Theorem 11.22 (Shifted-inverse Power Method). Assume that the n x n mattix
A has distinet eigenvalues A1, A2, ..., An and consider the eigenvalue A;. Then a
constant & can be chosen so that u; = 1/(A; — a) is the dominant eigenvalue of
{A — af)~!. Furthermore, if X¢ is chosen appropriately, then the sequences {X K=

[xi") xék) x,ﬁk)]f} and {c;} are generated recursively by
(17) Yi=(A-e) 'X;
and
18 X ! Y
=-—1p

(18) k=
where

—® k) _ )
(19) cr=x;  and x;7 = lr;lfén{lx, )

will converge to the dominant eigenpair i1, V ; of the matrix (A —al )~L. Finally. the
corresponding sigenvalue for the matrix A is given by the calculation

1
20 Ai=—+a.
20 / My
Remark. For practical implementations of Theorem 11.22, a linear system solver is
used to compute ¥y in each step by solving the linear system (A — «I)¥ = X;.

Proof. Without loss of generality, we may assume that \; < A2 < -+ < Ap. Se-
lect a number o (@ # A;) that is closer to A; than any of the other eigenvalues {se¢
Figure 11.2), that is,

(21) |A; —af < b —al for eacchi=1,2, ..., j—1, j+1, ..., n

According to Theorem 11.21, 1/(A; — @), V is an eigenpair of the matri.x
(A —al)~!. Relation (21) implies that 1/1A; — a} < 1/jA; — | for each i # j
so that g1 = 1/(A; — a) is the dominant eigenvalue of the matrix (A — aI)™1. The
shifted-inverse power method uses a medification of the power method to determine
the eigenpair 11, V;. Then the calculation A; = 1/u1 + o produces the desired
eigenvalue of the matrix A.
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Table 11.3 . Shifted-inverse Power Method for the Matrix (4 — 4.21)~ ! in
Example 11.6: Convergence to the Eigenvector V =[3 2 1] and u; = -5

(A-—al)1X; = Cr1 Xk

(A—aly~' Xy = —23.18181818 [0.4117647059 0.6078431373 1] = c1X
(A —al~'X) = —5.356506239 [0.4009983361 0.6006655574 11 = 2 X
(A —an™1X, = 5030252609 [0.4000902120 0.6000601413 1] = c3X;
(A—al)71X3 = —5.002733697 [0.4000081966 0.6000054644 1T = Xy
(A —al)~' X, = —5.000248382 [0.4000007451 0.6000004967 1]’ = csXs
(A —aD)71Xs = —5.000022579 [0.4000000677 0.6000000452 1] = ceXs
(A—al)™'Xg = —5.000002053 [0.4000000062 0.6000000041 1} = c7X7
(A —al)”'X; = —5.000000187 [0.4000000006 0.6000000004 1} = czXs
{4 —al)"'Xg = —5.000000017 [0.4000000001 0.6000000000 1F = cyXq

Example 11.6. Employ the shifted-inverse power method 1o find the eigenpairs of the
matrix

0 11 -5
A=|-2 17 -7
-4 26 -10

Use the fact that the eigenvalues of A are &) = 4, A2 = 2, and Az = 1, and select an
appropriate o and starting vector for each case.

Case (i}: For the eigenvalue &} = 4, we select @ = 4.2 and the starting vector
Xo=[1 1 1]’. First, form the matrix A — 4.21, compute the solution to

—42 11 -5 1
-2 128 -7 |¥Yo=Xo=|1].
-4 26 —142 1

and get the vector ¥¢ = [—9.545454545 —14.09090%09 —23.18181818]'. Then com:
pute c; = —23.18181818and X| = [0.4117647059 0.6078431373 l]'. Iteration gener-
ates the values given in Table 11.3. The sequence {c} converges to 1 = —5, which is the
dominant eigenvalue of (4 —4.21)~', and (X} convergesto Vi = [2 2 1]'. The eigen-
value &) of A is given by the computation 1} = 1/ +a = 1/(=35)+4.2 = —-0.2+4.2 =
4.

Case (ii): For the eigenvalue A, = 2, we select « = 2.1 and the starting vector
Xo=[1 1 1]’ Form the matrix A — 2.1/, compute the solution to

21 11 -5 I
-2 149 -7 |vo=x0=]1],
-4 26 -121 1

and obtain the vector ¥o = [11.05263158 21.57894737 42.63157895). Then ¢; =
42.63157895 and vector X = [0.2592592593 0.5061728395 1]'. Iteration produces the
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Table 11.4  Shifted-inverse Power Method for the Matrix (A —2.11)~! in
Example 11.6: Convergence to the Dominant Eigenvector V ={} 1 1] and

ny=-—10

(A-aD)"'X = Crp1 X jr1

(A—aD Xy = 42.63157895 [0,2592592593 0.5061728395 1} = X,
(A —af)~1X| = —9.350227420 [0.2494788047 0.4996525365 1) = c2X>
(A —al)” ¥y = —10.03657511 [0.2500273314 (.5000182209 1Y = c3X3
(A —al)~lX3 = —9.998082009 [0.2499985612 0.4999990408 11 = c1X,4
(A —al)"1X4 = —10.00010097 [0.2500000757 0.5000000505 1]’ = ¢5X5
(A —al"1Xs = —9.999994686 (0.2499999960 0.4999999973 11 = cpXe
(A — ey~ Xy = —10.00000028 [0.2500000002 0.5000000001 1} = ¢7X7

Table 11.5  Shifted-inverse Power Method for the Matrix (A — 0.875D ! in
Example 11.6: Convergence to the Dominant Eigenvector V = [% % 1]’ and

u =8

(A-eDlX, = Ci+1 Xk

(A —af) T Xy = ~30.40000000 [0.5052631579 0.4947368421 1) = ¢, X,
(A—afl)_le = B.404210526 [0.5002004008 0.4997995992 1)’ = Xy
(A-Aa’l)_le = 8.015390782 [0.5000080006 0.4999919994 1] = c3X4
(A-el)71Xy = 8000614449 [0.5000003200 0.4999996800 1]’ = c4X4
(A—aD)"'X, = 8000024576 [0.5000000128 0.4999999872 1] = csXs
(A-al)~!Xs = 8.000000983 [0.5000000005 0.4999999995 [] = cgXj
(A—al)"1Xg = 8000000039 [0.5000000000 0.5000000000 1} = c7X7

values given in Table 11.4. The dominant eigenvalue of (A —2,11"" is u; = —10, and the
cigenpair of the matrix Ais k2 = 1/(—-10)+2.1 = 0.1 +2 1 =2and V; = [-}4- 3 1]'.

Case (iii}: For the eigenvalue A3 = 1, we select o = 0.875 and the starting vector
Xg = [0 1 1] Iteration produces the values given in Table. 11.5. The dominant eigen-
value of (4 — 0.8751)~' is uy = 8, and the eigenpair of matrix A is A3 = 1/8+ 0.875 =
0.125+ 0.875 = land V3 = [4 1 1] The sequence {X} of vectors with the starting
vector [0 1 1]’ converged in seven iterations. (Computational difficulties were encoun-

tered when Xo = [1 | 1]’ was used, and convergence took significantly longer.) [

Program 11.1 (Power Method). To compute the dominant eigenvalue X and its
associated eigenvector V' for the n xn matrix A. It is assumed that the n eigenvalues
have the dominance property |Aj} = Aa| = Ja3] = --- = [A,] = 0.

function [lambda,V]=powerl(4,X,epsilon,maxl)
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%Input - A is an nxn matrix

A - X is the nx1 starting vector

% - epsilon is the tolerance

% - maxl is the maximum number of iterations

%0utput ~ lambda is the dominant eigenvalue
% V is the dominant eigenvector

%Initialize parameters

lambda=0;

cut=0;

err=1;

state=1;

vhile ({(cnt<=max1)&(state==1))
Y=A%X;
Y%Normalize Y
[m jl=max(abs(¥));
cl=m;
dc=abs (lambda-cl);
Y=({1/cl)*Y;
%Update X and lambda and check for convergence
dv=norm(X-Y);
err=max{dc,dv);
X=Y;
lambda=cl;
state=0;
if(err>epsiion)

state=1;

end
cnt=cnt+1;

apd

v=X;

Program 11.2 (Shifted-inverse Power Method). To compute the dominant eigen-
value A ; and its associated eigenvector V ; for the n x n matrix A. It is assumed that
the n eigenvalues have the property A; < Az < --- < A, and that @ is a real number
such that |A; — | < |A; — |, foreachi = ,2,...,.j—1j+1,....n

function [lambda,Vl=invpow(4,X,alpha,epsilon,maxi)

%Input - A is an nxn matrix

% - X is the nxl starting vector

% - alpha is the given shift

% - epsilon is the tolerance

% - max]l is the maximum number of iteraticns

#Output - lambda is the dominant eigenvalue
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% - V is the dominant eigenvector

YInitialize the matrix A-alphal and parameters
[ nl=size(A);
A=A-alphaseye(n);
lambda=0;
cnt=0;
err=1;
atate=1;
while ((cnt<=maxl)&(state==1))
%#Solve system AY=X
Y=A\X;
YNormalize Y
[m j}=max(abs(¥});
cl=m;
dc=abs (lambda-cl);
Y=(1/¢c1)*Y;
%Update X and lambda and check for comvergence
dv=norm{X-Y);
err=max(dc,dv);
X=Y;
lambda=c1i;
state=0;
if (err>epsilon)
state=1;
end
cnt=cnt+1;
end
lambda=alpha+1/c1;
v=X;

Exercises for Power Method
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any vector with the property that X'V = 1, prove that the matrix
B=4 -V X

has eigenvalues 0, Az, A3, . .., A, with associated eigenvectors V|, W2, W3, ..., W,
where V; and W; are related by the equation

Vi=(Q—-ADW; +(X'WjV, foreach j=2,3, ..., n

. Markov processes and eigenvalues. A Markov process can be described by a square

matrix A whose entries are all positive and the column sums all equal 1. For illus-
tration, let P = [x©@ y©]' record the number of people in a certajn city who use
brands X and Y, respectively. Each month people decide to keep using the same brand
or switch brands. The probability that a user of brand X will switch to brand ¥ is 0.3.
The probability that a user of brand ¥ will switch to brand X is 0.2. The transition
matrix for this process is

(k)
Per1 = APy = [33 3:3] [;m]-

if AP; = P; for some j, then P; = V is said to be the steady-state distribution
for the Markov process. Thus, if there is a steady-state distribution, then A = 1 must
be an eigenvalue of A. Additionally, the steady-state distribution V is an eigenvector
associated with . = 1 (1.e.,solve (A — DV =),
(a) For the example given above; verify that A = 1 is an eigenvalue of the transition

matrix A.
(b) Verify that the set of eigenvectors associated with A = 1 is {t[3/2 1]' A

R, 1 £ 0).
(c) Assume that the population of the city was 50,000. Use your results from

r

part (b) to verify that the steady-state distribution is [30,000 20,000]".

Algorithms and Programs

L. Let i, V be an eigenpair of A. If « is any constant, show that A —e, V is an eigenpair

of the matrix A — 1.

2. Let 1, V be an eigenpair of A. If A # 0, show that [/, V is an eigenpair of the

matrix A~

3. Let A, V be an eigenpair of A. If o 5 A, show that 1 /(% — a), V is an eigenpair of

the matrix (4 —af)~ L.

4. Deflation techniques. Suppose that A, A2, A3, ..., Ay are the eigenvalues of A with
associated eigenvectors V1, Va, V3, ..., ¥V, and that i, has multiplicity 1. 1f X is

In Problems 1 through 4 use:
(a) Program 11.1 to find the dominant eigenpair of the given matrices.
{b) Program 11.2 to find the other eigenpairs.

F 7 6 —3 —14 30 42
1.A=|-12 -20 24| 2.A=| 24 49 —66|.
| -6 -12 16 12 24 -32

M 25 25 30 05 * 25 —20 25 03

4_| 00 50 -20 20 44— | 05 50 -25 —0.5

4T -05 —-05 40 25/ . ~15 10 35 25|

|_—2.5 —-25% 50 35 20 30 -50 30
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Suppose that the probability that a user of brand X will switch to brand ¥ or Z 15 0.4
and 0.2, respectively. The probability that a user of brand ¥ will switch to brand X
or Z is 0.2 and 0.2, respectively. The probability that a user of brand Z will switch to
brand X or ¥ is 0.1 and 0.1, respectively, The transition matrix for this process is

113

04 02 017 xW®
04 06 0.1f|y%
02 02 08 |.®

Piy = APy =

(a) Verify that A = 1 is an eigenvalue of A.
(b) Determine the steady-state distribution for a population of 80,000.

. Suppose that the coffee industry consists of five brands By, 82, B3, Ba, and Bs. As-

sume that each customer purchases a 3-pourd can of coffee each month and 60 mil-
lion pounds of coffee is sold each month. Regardless of brand, each pound of coffee
represents a profit of one doliar. The coffee industry has empirically determined the
following transition matrix A for monthly coffee sales, where a;; represents the prob-
ability that a customer will purchase brand B; given that their previous purchase was
brand B;.

01 02 02 06 02
01 01 01 01 02
A=[01 03 04 01 02
03 03 01 01 02
04 01 02 01 0.2

An advertising agency guarantees the manufacturer of brand B that, for $40 million
a year, they can change the first column of A 10 [0.3 0.1 0.1 0.2 0.3]". Should the
manufacturer of brand B, hire the advertising agency?

. Write a program, based on the deflation technique in Exercise 4, to find all the eigen-

values of a given matrix. Your program should call Program 11.1 as a subroutine to
determine the dominant eigenvalue and eigenvector at each iteration.

Use your program from Problem 7 to find all the eigenvalues of the following matri-
ces.

i z -1
(ay A=11 0

4 —4 5

® A =gyl whereay =1 7 =7 andij=12...15
i P#]
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Jacobi’s Method

Jacobi’s method is an easily enderstood algorithm for finding all eigenpairs for a sym-
metric matrix. It is a reliabie method that prodiices uniformly accurate answers for the
results. For matrices of order up to 10, the algorithm is competitive with more sophis-
ticated ones. If speed is not a major consideration, it is quite acceptable for matrices
up to order 20.

A solution is guaranteed for all real symmetric matrices when Jacobi’s method is
used. This limitation is not severe since meany practical problems of applied math-
ematics and engineering involve symmetric matrices. From a theoretical viewpoint,
the method embodies techniques that are found in more sophisticated algorithms. For
instructive purposes, it is worthwhile to investigate the details of Jacobi’s method.

Plane Rotations

We start with some geometrical background about coordinate transformations. Let X
denote a vector in n-dimensional space and consider the linear transformation ¥ =
R X, where R is an n x n matrix:

—

1 ... 1} A T 1 N
0 --- cos ¢ sing --- Q| <rowp
R=|: :
0 -.. —sing cos¢p --- 0] «<rowgqg
0 - 0 0 ]
t 1
col p colg

Here all off-diagonal elements of R are zero except for the values + sin ¢, and alt
diagonal elemenis are 1 except for cos¢. The effect of the transformation ¥ = RX is
casy to grasp:

yji=Xj when j # p and j # g,
Yp =XpCOSP + X, 8inQ,
Yq = —xpsing + x4 cos .

The transformation is seen to be a rotation of n-dimensional space in the xpx4-plane
through the angle ¢. By selecting an appropriate angle ¢, we could make either y, =0
of y; = 0 in the image. The inverse transformation X = R'Y rotates space in the
same x,x,-plane through the angle —¢. Observe that R is an orthogonal matrix; that
is,

R'=R o RR=L
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Similarity and Orthogonal Transformations
Consider the eigenproblem

(1) AX =X,
Suppose that K is a nonsingular matrix and that B is defined by
2) B=K'AK.

Multiply both members of (2) on the right side by the quantity K ' X. This produces
3 BK'X =K '"AKK'X = K7'AX

=K x =rk"1x.
We define the change of variable
(4) Y=K1!'X o X=KY.
When (4) is used in (3), the new eigenproblem is
(5 BY =AY.

Comparing (1) and (5), we see that the similarity transformation (2) preserved the
eigenvalue A and that the eigenvectors are different, but are related by the change of
variable in (4).

Suppose that the matrix R is an orthogonal matrix (i.e., R~! = R’) and that D is
defined by
(6) D=RAR.
Multiply both terms in (6) on the right by R’X to obtain
7 DR'X =R ARR'X = RAX = R'\X = \R'X.

We define the change of variable

(8 Y=RX or X=RY.
Now use (8) in (7) to obtain a new eigenproblem,

% DY =Y.

As before, the eigenvalues of (1) and (9) are the same. However, for equation (9) the
change of variable (8) makes it easier to convert X to ¥ and Y back into X because

R'=R.
In addition, suppose that A is a symmetric matrix (i.e., A = A’). Then we find that
(10 D' =(RAR) = RARY =R'AR=D.

Hence D is a symmetric matrix. Therefore, we conclude that if A is a symmetric matrix
and R is an orthogonal matrix the transformation of A to D given by (6) preserves
symmetry as well as eigenvalues. The relationship between their eigenvectors is given
by the change of variable (8).
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Jacobi Series of Transformations

Start. with the real symmetric matrix A. Then construct the sequence of orthogonal
matrices Ry, Ry, ..., R, as follows:

Dyg=A,
(D) ; .
Dj=Rijﬁ1Rj for j=1,2,....

We will show how to construct the sequence {R ;} so that

(12) lim D; = D =diag(r1, Az, ..., Ay).

JFoo

In practice we will stop when the off-diagonal elements are close 1o zero, Then we will
have

(13) D, =~ D.

The construction produces

(14) D,=R,R,_,---R,AR\R: - Ru_1R,.
If we define
(15} R=R\R;---R,1R,,

then R"'AR = D, which implies that
(16) AR = RD = Rdiag(ri, Az, ..., Ay).

Let the columns of R be denoted by the vectors X1, X3,..., X,,. Then R can he
expressed as a row vector of column vectors:

(17} R=[X) X2 ... X,].
The columns of the products in (16) now take on the form
(18) [AX) AX: ... AX,]=[0MX) MX2 ... AuXa)

From (17) and (18) we see that the vector X ;, which is the jth column of R, is an
eigenvector that corresponds to the eigenvalue 2 ;.
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General Step

Each step in the Jacobi iteration will accomplish the limited objective of reduction of
the two off-diagonal elements a,, and agp to zero. Let R; denote the first orthogonal
matrix used. Suppose that

(19) Dy =R']AR1

reduces the elements a,q and agp 1o zero, where R has the form

1 -+~ 0 -+ 0 - 0
6 .- ¢ -+ 858 -~ Oj«rowp
20 R =
0 -« =5 - ¢ - 0 - [OW g
o ... 0 -0 - 1
1 1
col p colg

Here all off-diagonal elements of R are zero except for the element s located in
row p, column g and the element —s located in row g, column p. Also note that all
diagonal elements are I except for the element ¢, which appears at two locations, in
row p column p, and in row ¢, column g. The matrix is a plane rotation where we
have used the notation ¢ = cos ¢ and s = sin ¢.

We must verify that the transformation (19) will produce a change only to rows p
and g and columns p and g. Consider postmultiplication of A by R and the product
B = AR

(21)
@) - @ o Qg - dln 1 - 1] 0 0
Apl -+ Qpp - Gpg ' Gpn 0o - c 5 0
B =
g1 aqp N aqq e aq" 0o . —5 e 0
Gnl ¢ Gnp tcc Gag - Gun | |0 - 0 0 1

The row by column rule for multiplication applies, and we observe that there is no
change to columns 1 to p — 1 and p+ 1 to g — 1 and ¢ + 1 10 n. Hence only columns p
and g are altered,

b =aji when k # p and k # g,
(22) bjp=ca;p —saj, forj=12,....n,
qu=sajp +cajq forj=1,2,...,n.
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A similar argument shows that premultiplication of A by R} will only alter rows p
and g. Therefore, the transformation

(23) D) = R{AR;

will alter only columns p and ¢ and rows p and g of A. The elements &4 of D; are
computed with the formulas

dijp =cajp — sajq when j # p and j #q,

djg = sajp+caj, when j # p and j # g,
(24) dpp = Zapp + $agq — 2cstpg,

dag = sza!pp + czaqq + 2csapy,

dpg = - sz)apq + cilapp — agq),

and the other elements of D are found by symmetry.

Zeroing out dpg and dgp

The goal for sach step of Jacobi’s iteration is to make the two off-diagonal elements
dpq and dgp zero. The obvious strategy would be to observe the fact that

(25) c=cos¢p and s =sing,

where ¢ is the angle of rotation that produces the desired effect. However, some inge-
nious maneuvers with trigonometric identities are now required. The identity for cot ¢
is used with (25) to define

2

c —Sz

(26) 6 =cot2¢ = s

Suppose that ap; # 0 and we want to produce dp; = 0. Then using the last
equation in (24), we obtain
@7 0 = (¢2 = s)apy + cs(app — agq).
This can be rearranged to yield (¢ —52)/(cs) = (agq —dpp)/Apq, Which is used in (26,
to solve for 6:

g = a9~ %er

(28) Y
Pq
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Although we can use (28) with formulas (25) and (26) to compute ¢ and s, less
round-off error is propagated if we compute tan ¢ and use it in later computations. So
we define

29) t=tang = .
c

Now divide the numerator and denominator in (26) by ¢ to obitain

_1—52/6‘2_1—-!2
2sfc 2t '

which yields the equation
(30) 12 4+210 —1=0.

Since t = tan¢, the smaller root of (30) corresponds to the smaller angle of rotation
with || < /4. The special form of the quadratic formula for finding this root is

- ign(6)
31 t=—gx@ S8
31 O+ ) = e T
where sign(d) = 1 when @ > 0 and sign(f) = —1 when 6 < 0. Then c and s are

computed with the formulas

i
32) GEE
s =l

Summary of the General Step

We can now outline the calculations required to zero out the element d . First, select
row p and column g for which ay, # 0. Second, form the preliminary quantities

a —1
9 — qq pp ,
2‘1?‘2
_ __ sign(®)
(33) Tel+ @2+ DI
1
C= _-—(1‘2 T 1)1/2,
s =ct.
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Third, to construct D = D), use

dpg = 0;

dgp = 0;

dpp = czapp + szaiqq — 2csapq;

2 2 .
dyg = $"app + Cagq + 205apy;

for j=1:N
(34) if (j~=p) and (j~=4q)
dip = cajp — sa,q4;
dpj = djp;
djg = c¢ajg + sa;p;
dgj = djg;
end

end

Updating the Matrix of Eigenvectors

We need to keep track of the matrix product R R2--- R,. When we stop at the n/h
iteration, we will have computed

(35) Vu=RiRz - Ry,
where V, is an orthogonal matrix. We need only keep track of the current matrix V',

for j = 1,2, ..., n. Start by initializing ¥V = I, Use the vector variables XP and XQQ
to store columns p and g of A, respectively. Then for each step perform the calculation

for j=11:N
XPj = vjp;
XQ; = vjq:
36 end
(36) for j=1:N

Vjp = CXPj - SXQj;
vjg = sXP; + cXQy;
end
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Strategy for Eliminating 4 p,

The speed of convergence of Jacobi’s method is seen by considering the sum of the
squares of the off-diagonal elements:

n

37) Si= Y lapf
Jk=1
k)
n
(38) S2= Y ldpul®, where Di=RAR.
) k=i
k)

The reader can verify that the equations given in (34) can be used to prove that
39 S2 = S1 — 2lap|’.

At each step we let §; denote the sum of the squares of the off-diagonal elements
of D ;. Then the sequence {5;} decreases monotonically and is bounded below by zerc.
Jacobi’s original algorithm of 1846 selected, at each step, the off-diagonal element a,,
of largest magnitude to zero out and involved a search to compute the value A

(40) max{A} = max{|ap,i}.
P<q

This choice will guarantee that {§;} converges to zero. As a consequence, this proves
that {D;} converges to D and {V ;} converges to the matrix V of eigenvectors (see
Reference [681).

Jacobi's search can become time consuming since it requires an order of (n?-n)/2
comparisons in a loop. It is prohibitive for larger values of n. A better strategy is the
cyclic Jacobi method, where one annihilates elements in a strict order across the rows.
A tolerance value ¢ is selected; then a sweep is made throughout the matrix and, if an
element ap, is found to be larger than ¢, it is zeroed out. For one sweep through the
matrix the elements are checked in row 1, ajz, 213, . .., d1a; then row 2, a3, a2a, . . .
az,: and so on. It has been proved that the convergence rtate is quadratic for both the
original and cyclic Jacobi methods. An implementation of the cyclic Jacobi method
starts by observing that the sem of the squares of the diagonal elements increases with
each iteration; that is, if

n
0 To=)_layl
=1

and

n
= Zldjjl"
j=1
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then

Tn=To+ 2]apq|2.
Consequently, the sequence {D ;} converges to the diagonal matrix D. Notice that the
average size of a diagonal element can be computed with the formula (7p/n)!/%. The

magnitudes of the off-diagonal eiements are compared to €(Tp/ n)!2, where € is the
preassigned tolerance. Therefore, the element apq is zeroed out if

To 1/2
(42) Iapqi > € (—‘;‘l—) -

Another variation of the method, called the threshold J acobi method, is left for the
reader to investigate (see Reference [178]).

Example 11.7. Use Jacobi iteration to transform the following symmetric matrix into
diagonal form.

8 -1 3 -1
-1 6 2 0
3 29 1
-1 G 1 7

The computational details are left for the reader. The first rotation matrix that will zero
outayz; =3 1s

0.763020 0.000000 0.646375 0.000000
0.000000 0.000000 0.000000 0.000000
—0.646375 0.000000 0.763020 0.000000
0.000000 0.000000 0.000000 0.000000

R =

Caleulation reveals that Ay = R A 1Ry is

5.458619 ~2.055770 0.000000 —1.409395
4, = | 2055770 6.000000 0.879665  0.000000
2=\ 0000000 0.879665 11.541381  0.116645
—1.409395  0.000000 0.116645  7.000000

Next, the element ay2 = —2.055770is zeroed out and we get

© 3.655795 0.000000 0.579997 --1.059649
4. | 0-000000 7802824 0.661373  0.929268

3=1 0.579997 0.661373 11.541381  0.116645
| —1.059649 0929268 0.116645  7.000000

After 10 iterations we arrive at

73295870  0.002521  0.037859  0.000000
Av = | 0002521 £.405210 —0.004957  0.066758
10 = | 0037859 —0.004957 11.704123 —0.001430
 0.000000  0.066758 ~-0.001430  6.594797
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It will take six more iterations for the diagonal elements to get ciose to the diagonal matrix

D = diag(3.295699, 8,.407662, 11.704301, 6.592338).

However, the off-diagonal etements are not small enough, and it will take threz more it-
erations for them to be less than 10~% in magnitude. Then the eigenvectors are the columns

of the matrix V = R Rz-- - Rg, which is

0.528779 —0.573042 (.582298  0.230097
0.591967  0.472301 0.175776 —0.628975
—0.536039  0.282050 (.792487 —0.071235
0.287454  0.607455 0.044680  0.739169

V =

iteration is used to find all eigenpairs.

Program 11.3 (Jacobi Iteration for Eigenvalues and Eigenvectors). To computt:l
the full set of eigenpairs {2 ;, Vj};!=l of the n x » real symmetric matrix A. Jacobi

—

function [V,D]=jacobil(A,epsilon)

%Input - A is an nxn matrix

% - epsilon is the tolerance

%Output - V is the nxn matrix of eigenvectors

% - D is the diagonal nxn matrix of eigenvalues
%Initialize V,D,and parameters

D=4A;

[n,nl=size(A);

V=eye(n);

state=1;

“Calculate row p and column q of the off-diagonal element
%of greatest magnitude in 4
(ml p)=max(abs(D-diag(diag(D))));
[m2 ql=max(mi);
p=pla);
while(state==1)
%Zero out Dpq and Dgp
t=D(p,q)/(D(q,q)-D(p,p));
c=1/sqrt{t-2+1);
s=c*t )
R=[c s;-s ¢];
D{lp q),:)=R’>*D([p ql,:);
DC:,[p ql}=D(:, [p ql)=*R;
V(:,[p q1)=V(:,[p ql)*R;
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[m1 pl=max(abs(D-diag(diag(DP)}));
[m2 ql=max{mi);

=p(q); -
1% (abs(D(p,q)) <opsilonvsqrt (sun(diag(D) . ~2)/m)

state=0;
end

end
D=diag(diag(D));

Exercises for Jacobi’s Method

1. Mass-spring systems. Consider the undamped mass-spring system sh()\ivn in .Fig—
ure 11.3. The mathematical model describing the displacements from static equilib-

rium is
ki + k2 —k3 0 x1(t) m 0 0 xi:(t) 0
—kr k+ky | |(xm@|+] 0 m O x%(r) =10
0 —ka ka x3(2) 0 0 mayf]x3(®) 0

(a) Use the substitutions x;(r) = v sin{wt + 0) for j = 1,2, 3, where 6 is a con-
stant, and show that the solution to the mathematical model can be reformulated

as follows:
btk —k 0 v] v
ny my
—k  k+k -k | =o? | v
ms ma m»2
— k
0 _ﬁ 2 v3 v3
m3 ms

(b} Setd = w?; then the three solutions to part (a) are the eigenpairs A;, ¥ =
[v(j) v;“ U:(;")]’, for j = 1, 2, 3. Show that they are used to form the three
1

x,(0 (0

x['[t)
4 m 2 "‘2;1—-'\/’3/\:—12"3 Figure 11.3  An undamped mass-
spring system.
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fundamental solutions: A]gorithms and Progr;ams
vgj) sin{w;t + 8) v{j)
¥ o . ) 1. Use Program 11.3 to find the eigenpairs of the given matrix with a tolerance of ¢ =
j= vz sin(w;t +6) | = sin(w;? +6) | v;" |, 10~7. Compare your results with those obtained from the MATLAB command eig
v’ sin(w;t +6) vy by entering [eig(A) diag{D}] in the MATLAB command window.
[4 3 2 1
where w; =\/)—L}_', forj=1,2,3. 3 4 3 2
Remark. These three solutions are referred to as the three principal modes of (@ A= 2 3 4 3
vibration. 1 2 3 4
2. The homogeneous linear system of differential equations 2.25 _0’525 —las 27
(b) A= —~0.25 2.25 2,75 1.25
0w = x@+ x4 T =125 275 225 025
A0 = —201(0) + 4x2(0) | 275 125 -025 225
can be written in the matrix form: © A =I[a;), wherea;; = { Pty ; 7 andij=1,2,...,30.
. Ly t#=
X' = [ilgﬂ = [ ) l] [ﬁ;ég] = AX(D). i+ ) e ,
2 - cos(sin(/ - =
’ @ A=lay] whereay = [N P20 g 21,2, 40,
t+ij+y i

(a) Verify that 2, [1 1]' and 3, [1 2]' are eigenpairs of the matrix A.
(b) By direci substitution into the matrix form of the system, verify that both X () =
ez’[l 1]' and X(1) = e3’[1 2]’ are solutions of the system of differential equa-

2. Use the technique outlined in Exercise 1 and Program 11.3 to find the eigenpairs and
the three principal modes of vibration for the undamped mass-spring systems with the
following coefficients.

tions.
(¢} By direct substitution into the matrix form of the system, verify that X{(f) = (@) k=3 k=2k=1lm=Lm=1m=I1
clez'[l l]’ + cge3’[1 2]’ is the general solution of the system of differential b) k= %, ko = 41, k3 = %, my=4,m=4,my3=4
equations. © k& =02,k=04,/3=03m =25m=25,m =25
Remark. If the matrix A has » distinct eigenvalues, then it will have n linearly 3. Use the technique outlined in Exercise 2 and Program 11.3 to find the general solution
independent eigenvectors. In this case the general solution of a homogeneous of the given homogeneous system of differential equations.
system of differential equations can be written as a linear combination: that is, @ x =4x 430 +2a+ x4
X(t) =1V + e’ Va4 fcpett V. f
Xy == 3x1 4+ dxa + 3Ix3 + 2xa

xé = 2x) + 3x7 + 4x3 + 3x4
xf‘ = x1+2x3+ 3x3+4x4

(b} x| =5x1+4x2+3x3+ 2%+ x5

3. Use the technique (by hand) outlined in Exercise 2 to solve each of the following
initial value problems.

x| =4dx1 + 2 x1(M =1
(a) } ! 2 ith 10) x5 = 4x) + 5x3 + 4x3 + 3x4 + 2x5
x=3x1— x2 x200)=2 ;
x3 = 3x; +4x2 +5x3 + 4x4 + 3xs
) x; =2x1 — 12x2 . x;1(0)=2 x;=2x1 + 3x; +4x3 + S5x4 + 4x5
xy= x1— 5x x3(0) =2 x5 = xi+2x+ 3x3 +dxg + 5x5
x| =x3 x1(0) = 1 4. Modify Program 11.3 to implement the “cyclic” Jacobi method.
© x=x with x2(0) =2 5. Use your program from Problen? 4 on the symeﬁc matrices iI:l Problem 1. In par-
ticular, compare the number of iterations required by your cyclic program and Pro-

x3 = 8x) — 142 + Tx3 *3(0) =3 gram 11.3 to satisfy the given tolerance.
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Eigenvalues of Symmetric Matrices

Householder*s Method

Each transformation in Jacobi's methed produced two zero off-diagonal elements, but
subsequent iterations might make them nonzero, Hence many iterations are required to
make the off-diagonal entries sufficiently close 10 zero. We now develop a method that
produces several zero off-diagonal elements in each iteration, and they remain zero in
subsequent iterations, We start by developing an important step in the process.

Theorem 11.23 (Householder Reflection). If X and ¥ are vectors with the same
norm, there exists an orthogonal symmerric matrix P such that

(h Y=PX,
where

(V)] P=J—2WW
and

(3) R ok

) TIX Yy

Since P is both orthogonal and symmetric, it follows that
(4) Pl=p

Proof. Equation (3) is used and defines W to be the unit vector in the direction X - }:
hence

(5) WW=1

and

(6} Y=X+cW,

where ¢ = — |X — Y{;. Since X and Y have the same norm, the parallelogram rule

for vector addition can be used to see that Z = (X +¥)/2 = X +(¢/2) W is orthogonal
to vector W (see Figure 11.4). This implies that

WX +-W)=0.
Now we can use (5) to expand the preceding equation and get

T WX+ %W'W=W'X+§=o.
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A
'
X/ 1 /
z -]
y w Figure 114 The vectors W. X. ¥,
< and Z involved in the Householder
N reflection.

The crucial step is to use (7) and express ¢ in the form
(8) c=-2WX).
Now (8) can he used in (6) 10 see that
Y=X+cW=X-2WXW
Since the guantity W’X is a scatar, the last equation can be wrirten as
(%) Y=X--2WWX =(I -2WW)X.
Looking at (9), we see that P = J — 2WW'. The matrix P is symmetric becaus.
P =(I-2WW)=I-2AWWY
=1-2WW =P,
The following calculation shows that P is orthogonat:
PP =(1-2WW)(I-2WW)
=1 —4WW +4WWWW
=1 —AWW +4WW' =1,
and the proof is complete. .
It should be observed that the effect of the mapping ¥ = PX is to reflect X
through the line whose direction is Z, hence the name Householder reflection.

Corollary 11.3 (kth Householder Matrix). Let A be an n x » matrix, and X any
vector. If k is an integer with 1 < k < r — 2, we can construct a vector W and matnix
Py=1I- ZH’kW;C S0 that

[ X1 ’ ( X1
Xk Xk
(10} PX=Py|lx41 | =|—-5 =Y.
Xk+2 0
] Lo
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Proof  The key is to define the value § so that | X [I; = {|¥ ||, and then invoke Theo-
rem 11.23. The proper value for § must satisfy
(i1 ST =xp xi, -+ al
which is readily verified by computing the norms of X and ¥:

[ Xlly = x? + a3+ +x2
(12) =xi4xi4o 4 xl4 82

=¥l

The vector W is found by using equation (3) of Theorem 11.23:

1
W= 2 (X =)

1
= E[O v O (g1 +8) X422 .- .In],.

Less round-off error is propagated when the sign of S is chosen to be the same as the
sign of x;4: hence we compute

(13}

(14) § = sign(ueg ) OF, ) + X7, + -+ a2
The number R in (13) is chosen so that || W||, == 1 and must satisfy

R = (xe41 + 8)2 + xfyy + - + 57
(15) = 2xct1S+ 87 Hxfiy Fxio b

= 2xp41 5 + 252

Therefore, the matrix Py is given by the formuia
(16) P.=1-2WW,
and the proof is complete. ®

Householder Transformation

Suppose that A is a symmetric n x n matrix. Then a sequence of n — 2 transformations
of the form PAP will reduce A to a symmetric tridiagonal rnatrix. Let us visualize
the process when n = 5. The first transfermation is defined to be Py AP, where P,
is constructed by applying Corollary 11.3, with the vector X being the first column of
the matrix A. The general form of P is

{an Py =

SO0 o -
WU O
Mo YT ©
T T ©
TTwWWT ©
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where the letter p stands for some element in Py{. As a result, the transformation
P AP, does not affect the element aj; of A:

agp v 0 0 O
W w w o w ow
(18) PiIAP =10 w w w w|=A4,
0 w w w w
0 w w w w

The element denoted u; is changed because of premultiplication by P, and v; is
changed because of postmultiplication by P; since A, is symmetric, we have 1y = v1.
The changes to the elements denoted w have been affected by both premultiplication
and postmultiplication. Also, since X is the first column of A, equation (10) implies
thatu; = —S.

The second Householder transformation is applied to the matrix A defined in (18}
and is denoted P; A P3, where P is constructed by applying Corollary 11.3, with the
vector X being the second column of the matrix Aj. The form of P, is

100 00
010000
(19) P;=1090 p p pl.
00 p pep
00 ppep

where p stands for some element in P;. The 2 x 2 identity block in the upper-left
corner ensures that the partial tridiagonalization achieved in the first step will not be
altered by the second transformation P2 A P. The outcome of this transformation is

a; vy 0 0 0
13| w1 vz o 0
(20) PrAy Py = 0 2 wz w o w| = A
0 0 w w w
0O 0 w w w

The elements u; and v2 were affected by premultiplication and postmultiplication
by P3. Additional changes have been introduced to the other elements w by the trans-
formation.

The third Householder transformation, P34, P3, is applied to the matrix A; de-
fined in (20), where the corollary is used with X being the third column of A;. The
form of Piis

1 6 6 0 0
0100 0
1) P;=|0 01 0 O
000 p p
0 00 p p
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Again, the 3 x 3 identity block ensures that P3A3 P3 does not affect the elements
of A,, which lie in the upper 3 x 3 corner, and we obtain

an (1] 0 0 0
Uy wy [yl 0 0
(22) P3A;P3=| 0 wuy wy v 0[=A43
0 0 u; w w
0 0 0 w w

Thus it has taken three transformations to reduce A to tridiagonal form.
For efficiency, the transformation P A P is not performed in matrix form. The next
result shows that it is more efficiently carried out via some clever vector manipulations.

Theorem 1124 (Computation of One Heouseholder Transformation). If P is a
Householder matrix, the transformation P A P is accomplished as follows. Let

{23) V=AW

and compute

(24) c=WV

and

(25) Q=V-cW.

Then

(26) PAP=A-2WQ —-2QW'.

Proof  First, form the product
AP = Al —2WW)=A - 2AWW'.
Using equation (23), this is written as
27 AP =A-2VW.
Now use (27) and write
{(28) PAP = (I -2WW')(A-2¥VW),

‘When this quantity is expanded, the term 2Q2WW’'VW') is divided into two portions
and (28) can be rewritten as

(29) PAP=A—2W(WA) +2W(W'VW) - 2VW +2W(W' V)W’
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Under the assumption that A is symmetric, we can use the identity (W'4) = (WA =
V. The tricky part is to observe that (W'V ) is a scalar quantity; hence it can commute
freely about in any term. Another scalar identity, W'V = (W'VY’, is used to obtain
the relation W'VW' = (WV)W = W (W'V) = W(W'V) = (WV)W) =
(W'V WY. These results are used in the terms of (29) in parentheses to get

(30} PAP =A-2WV +2W(WVWY —2VW L 2WVWW'.

Now the distributive law is used in (30) and we obtain

3o PAP=A-2W({V' —(WVW))-2(V-WVW)W'.

Finalty, the definition for @ given in (25) is used in (31) and the cutcome is equa-
tion (26}, and the proof is complete. °

Reduction to Tridiagonal Form
Suppose that A is a symmetric # x n matrix. Start with

(32) Ap = A.

Construct the sequence P, P3, ..., P, of Householder matrices, so that

33 Ar=P APy for k=12, ..., n-2,

where Ay has zeros below the subdiagonal in columns 1, 2, ..., k&, Then A, 215 a

symmetric tridiagonal matrix that is similar to A. This process is called Householder’s
method.

Example 11.8. Use Householder’s method to reduce the following matrix to symmetric
tridiagonal form:

Ap =

- NN R
|
— = 2

1
1
1
2

The details are left for the reader. The constants § == 3 and R = 301/2 = 5.477226 arc
used to construct the vector

W= L{0 521]= [0.000000 0.912871 0.365148 0.1822574].

V30

Then matrix multiplication ¥V = AW is used to form

i
Vi=_-—J[0-12129
Jﬁa[ ]

= [0.000000 —2.190890 2.190890 1.643168].
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The constant ¢ = W’V is then found to be
c=-—09.

Then the vector @ = V — cW = ¥V + 0.9W is formed:

, 1
Q' = —[0.000000 —7.500000 13.800000 9.900000
= [0.000000 —1.369306 2.519524 1.807484].
The computation A1 = 4y — 2W @' — 2 W’ produces

4.0 -3.0 0.0 0.0
=30 20 -26 -18
00 -26 -068 —1.24
00 -—-1.8 —-1.24 0.68

A =

The final step uses the constants § = -3.1622777, R = 6.0368737,¢ = —1.2649111 and
the vectors

W' = [0.000000 0.000000 —0.954514 —0.298168],
V' = [0.000000 0.000000 1.018797 0.980843],
Q' = [0.000000 ¢.000000 —0.188578 0.603687].

The tridiagonal matrix Ay = A —-2WQ' - 20W'is

4.0 —3.0 0.0 0.0

oo |30 2.0 3.162278 0.0

2= ] 0.0 3.162278 -14 02" "
0.0 0.0 -02 14

Program 11.4 (Reduction to Tridiagonal Form). Toreducethe n x n symmetric
matrix A to tridiagional form by using » — 2 Householder transformations.

function T=house (4)

%Input - A is an nxo symmetric matrix
%0utput - T is a tridiagonal matrix
(n,n)=size(4);
for k=1:n-2

%#Construct W

s=norm(A{k+1:n,k));

if (ACk+1,k)<0)

s8=-8;
end
r=sqrt (2*s*x (A(k+1,k)+3));

Sec. 11.4 EIGENVALUES OF SYMMETRIC MATRICES 601

W(1:k)=zeros(1,k);
Wik+1)=(A(k+1,k)+s) /z;
W(k+2:n)=A(k+2:n,k)’/1;
%Construct V
V{(1:k)=zeros(1,k);
Vik+1:n)=A(k+1l:n,k+1:n)*W(k+l:n)’;
%#Construct Q
c=W(k+l:n)*V(k+1:n)’;
Q{1:k)=zeros(1,k};
Q{k+1:n)=V(k+l:n)-c*W(k+1i:n);
%Form Ak
A(k+2:n,k)=zeros(n-k-1,1);
A(k,k+2:n)=zeros(1l,n-k-1);
Alk+1,k)=-3;
Ak, k+1)=-5;
A(k+1:n,k+1:n)=A(k+1l:n,k+1:n) ...
-2%W(k+1:n) **Q(k+1:n)-2*%Q(k+1:n) * ¥Wk+1:n);
end
T=A;

The @ R Method

Suppose that A is a real symmetric matrix. In the preceding section we saw how
Householder’s method is used to construct & similar tridiagonal matrix. The QR
method is used to find all eigenvalues of a tridiagonal matrix. Plane rotations similar
to those that were introduced in Jacobi’s method are used to construct an orthogonal

matrix @, = @ and an upper-triangular matrix Uy = U so that Ay = A has the
factorization

(34) A= QU1

Then form the product

(35) ' A4 =00,

Since @, is orthogonal, we can use (34) to see that

(36) QA =00V, =V,

Therefore, Az can be computed with the formula

(37 A2 = 014, 0.

Since Q) = QI“I, it follows that A is similar to A; and has the same eigenvalues. In
general, construct the orthogonal matrix @, and upper-triangular matrix I/, so that

(38) A= QU
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Then define
(39) Ay +1=U; Q@ = Qi Ar Ci-

Again, we have Q) = Qk‘l , which implies that Az and A are similar. An 1m_poxtant
co;sequence is that Ay is similar to A and hence has the same structure. Specifically,
we can conclude that if A is tridiagonal then Ay is also tridiagonal for all k. Now

suppose that A is written as

dy e
e1 dy e
ey ds
(40) A= dn-y g2
€n-2 dn-1 €n—1
L en1  dn |

. ) . ion
We can find a plane rotation P, that reduces to zero the element of A in locati

{n,n — 1), that is,

di e
ey dr ez
e d3
41) P,1A= D de2 gz a2
en—2 DPn-1 Gn-1
0 pn

Continuing in a similar fashion, we can construct a plane rotation P,_ that wnlll
reduce to zero the element of P,_14 located in position (n — 1,n — 2). After n —

steps we arrive at

L

PLog1 N
0 p2 ¢
4] 0 P3 . =4 =U
P 1A= .. -
@ PP Gn-3  Tn-3
Pn—2 {4n-2 Tn-2
0 Pr—1 Gn-1
0 Q Pn

Since each plane rotation is represented by an orthogonal matrix, equation (42) implies

that

43)

Q=P, P, - Py
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Direct multiplication of U by @ will produce all zero elements below the lower
second diagonal. The tridiagonal form of A; implies that it also has zeros above the
upper second diagonal. Investigation will reveal that the terms r ; are used only to
compute these zero elements. Consequently, the numbers {r 71 do not need to be stored
or used in the computer.

For each plane rotation P; it is assumed that we store the coefficients ¢ ;and s;
that define it. Then we do not need to compute and store explicitly; instead we
can use the sequences {c;} and {s;} together with the correct formulas to unravel the
product

(44) A;=UQ=UP,_ P _,...P..

Acceleration Shifts

As outlined above the @ R method will work, but convergence is slow even for ma-
trices of small dimension. We can add a shifting technique that speeds up the rate of
convergence. Recall that if A ; is an eigenvalue of A then A ; — & is an eigenvalue of
the matrix B = A — 5;1. This idea is incorporated in the modified step

(45) A -5 = UiL,:
then form
(46) A1 =U:0; fori=1, 2, ..., kj,

where {s;] is a sequence whose sum is Ajsthatis, A; = sy 452+ ---+ Sk

At cach stage the correct amount of shift is found by using the four elements in the
lower-right comner of the matrix. Start by finding A; and compute the eigenvalues of
the 2 x 2 matrix '

dp—1 €n—1
47 .
“47) [en—l dn ]
They are x and x; and are the roots of the quadratic equation
(48) %% = (dney + du)X + dp_1dy — €n_1en-1 =0.

The value s; in equation (45) is chosen to be the root of (48) that is closest to dy.

Then QR iterating with shifting is repeated until we have ¢,_; = 0. This will
produce the first eigenvalue A} = s; +s52+ - - - + 5k, . A similar process is repeated with
the upper n — 1 rows to obtain e,_ ~ 0, and the next eigenvalue is A;. Successive iter-
ation is applied to smaller submatrices until we obtain e = 0 and the eigenvalue A, _,
Finally, the quadratic formula is used to find the last two eigenvalues. The details can
be gleaned from the program.



6864 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Example 11.9. Find the eigenvalues of the matrix

4 2 21
2 -3 1 1
M=1t, 13
111 2

In Examnple 11.8, a tridiagonal matrix A; was constructed that is similar to M. We start
our diagonalization process with this matrix:

4 -3 0 0
A= -3 2 3.16228 ¢
T 0 316228 —14 -0.2
0o 0 -0.2 1.4
The four elements in the lower right corner are ds = —1.4, 44 == 1.4, and e3 = —0.2 and

are used to form the quadratic equation

22— (144 14x 4+ (=1.4)(1.4) — (~0.2)(=0.2) = x2 —2 = 0.

Calculation produces the roots x; = —1.41421 and x» = 1.41421. The root closest to dy
is chosen as the first shift s; = 1.41421, and the first shifted matrix is
2.58579 -3 0 0
) -3 0.58579 1.74806 0
Ar—al=| 1.74806 —2.81421 —1.61421
0 0 —1.61421 -0.01421

Next, the factorization A) — 5,1 == @,U) is computed:

—{.65288 --0.38859 —0.55535 0.33814
0.75746 —0.33494 -0.47867 0.29145

o = 0 0.85838 —0.43818 0.26610
0 0 0.52006 0.85413
—3.96059 240235  2.39531 0
0 3.68400 —3.47483 -0.17168
“1 o 0 —0.38457  0.08024
)] 0 0 —0.06550
Then the matrix product is computed in the reverse order to obtain
4.40547 2.79049 G 0
A= U _ 1279049 —4.21663 —0.33011 0
2=U10s =, —0.33011 021024 —0.03406
0 0 —0.03406 -—0.05595
The second shift is s» = —0.06024, the second shifted matrix is 43 — 520 = .U, and
4.55257 —-2.65725 0 0
T, | =2.65725 —4.26047 0.01911 ©
1=U20;=| 0.01911 0.29171 0.00003
0 0 0.00003 0.00027
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The third shift is 53 = 0.00027, the third shifted matrix is A3z - 531 = Q3U3, and

462640 253033 0 0
253033 —4.33489 —0.00111 0
Ai=UsQy = | —0.00111 029150 ©
0 0 0 0

The first eigenvalue, rounded to 5 decimal places is given in the calculation
Al =51 +52 453 = 1.41421 — 0.06023 + 0.00027 = 1.35425.

Next Ay is placed in the last dtagonal position of A4 and the process is repeated, but
changes are made only in the upper 3 x 3 corner of the matrix

4.62640  2.53033 0 0
A, = | 253033 —4.33489 —0.00111 ©
“=lo —0.00111 029150 0

0 0 0 1.35425

In a similar manner, one more shift reduces the entry in the second row and third
column to zero (to ten decimal places):

54 = 0.29150, Aa —sqd = Q4 4, As=U40,.
Hence the second eigenvalue is
Ay = Ar + 51 = 1.35425 + 0.29150 = 1.64575.

Finally, A; is placed on the diagonal of As in the third row and column to obtain

426081 -2.65724 0 0
As = —2.65724 -4.55232 0 0
0 0 1.64575 ©
0 0 0 1.35425

The final computation requires finding the eigenvalues of the 2 x 2 matrix in the upper-left
corner of As. The characteristic equation is

x2 — (—4.26081 + 4.55232)x + (4.26081)(—4.55232) — (2.65724)(2.65724) = 0,
which reduces to
x4+ 0.29151x — 26.45749 = 0.

The roots are x| = 5.00000and x; = —5.29]50, and the iast two eigenvalues are computed
with the calculations

Az = X + x) = 1.64575 + 5.0000 = 6.64575
and
A4 = A2 + x3 = 1.64575 — 529150 = —3.64575. =
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Program 11.5 can be used to approximate all the eigenvalues of a symmetric tridi-
agonal matrix. The program follows directly from the previous discussion, but with
two notable exceptions. First, the MATLAB command eig is used to find the roots
of the characteristic equation (48) of each 9 x 2 submatrix (47). Second, the QR
factorization of the matrix A; — s;I (45) is executed using the MATLAB command
[Q,R1=gr (B), which produces an orthogonal matrix Q and an upper-triangular matrix
R, such that B=0*R (readers will be asked to write their own Q R factorization program).

Program 11.5 (The Q R Method with Shifts). To approximate the eigenvalues of

a symmetric tridiagonal matrix A using the O R method with shifis.

function D=qr2(A,epsilon)

YInput - A is & symmebric tridiagonal nxn matrix
% - epsilon is the tolerance
%Output - D is the nx1 vector of eigenvalues

%Initialize parameters
[n,n]l=size(A};
m=n;
D=zeros(n,1);
B=A;
while {(m>1)
while (abs(B(m,m-1))>=epsilon)

YCalculate shift
S=eig(B(m-1:m,m-1:m));
[j,k]=min{[abs (B(m,m}*[1 1] =31

%QR factorization of B
[3,U]l=qr(B-S(k)*eye(m)) ;

%Calculate next B
B=U*Q+8 (k) *eye{m) ;
end
YPlace mth eigenvalue in A(m,m)
A(1l:m,1:m)=B;
%Repeat process on the m-1 x m—1 submatrix of A
m=m—1;
B=A(1:m,1:m);
end
D=diag(A);
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Exercises for Eigenvalues of Symmetric Matrices

1. In the proof of Theorem 11.23, carefully explain why Z is perpendicularto W.
2. If X is any vector and P = I — 2X X', show that P is a symmetric matrix.

3. Let X be any vector and set P = I — 2X X",
(a) Find the quantity P'P.
(b} What additional condition is necessary in order that P be an orthogonal matrix?

Algorithms and Programs

In Problems 1 through 6 use:
(‘a) Program 11.4 to reduce the given matrix to tridiagonal form.
(b) Program 11.5 to find the eigenvalues of the given matrix.

3 21 4 3 2 1 275 —025 —0.75 1.25
L1232 , {3432 3 {025 275 125 ~0.75
1 5 3 2 3 4 3 "l —075 125 275 —025
123 4 125 —075 —-0.25 275

44 26 1.2 --04 038
4, 0.8 1.2 08 -40 -238
-16 04 —-40 12 20

36 44 08 -16 -28
-28 08 -28 20 1.8

i+j i=j

. . andi,j=1,2,...,30.
ij P#£] d

5. 4= [a,-j], wherea,-j = {

6. A = [a;;], where a;; = cos(sin(i + j)) i=j di i —
i i {i+ij+j oy andi, j=1,2,...,40.
7. Write a program to carry out the O R method on a symmetric matrix.
8. Mod:ify Program 11.5 to call your program from Problem 7 as a subroutine. Use this
modified program to find the eigenvalues of the matrices in Problems ! through 6.



Appendix:
An Introduction to MATLAB

This appendix introduces the reader to programming with the software package MAT-
LAR. It is assumed that the reader has had previous experience with a high-level pro-
gramming language and is familiar with the techniques of writing loops, branching
using logical relations, calling subroutines, and editing. These techniques are directly
applicable in the windows-type environment of MATLAB.

MATLAB is a mathematical software package based on matrices. The package
consists of an extensive library of numerical routines, easily accessed two- and three-
dimensional graphics, and a high-level programming format. The ability to quickly
implement and modify programs makes MATLAB an appropriate format for exploring
and executing the algorithms in this textbook.

The reader should work through the following tutorial introduction t0 MATLAR
(MATLAB commands are in typewriter type). The examples illustrate typical inptet
and output from the MATLAB Command Window. To find additional information
about commands, options, and examples, the reader is urged to make use of the on-line
help facility and the Reference and User’s guicles that accompany the software.

Arithmetic Operations

+ Addition

- Subfraction
* Multiplication
/ Division

- Power

pi, e, 1 Constants

603
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Ex. >>(2+3+pi)/2
ans =
6.7124

Built-in Functions

Below is a short list of some of the functions available in MATLAB. The following ex-
ample illustrates how functions and arithmetic operations are combined. Descriptions
of other available functions may be found by using the on-line help facility.

abs (#) cos(#) exp (#) log(#) loglQ(#) cosh{(#)

sin(#) tan(#) sqre(#)  floor(#) acos(#) tanh (#)
Ex. >>3*cos(sqrt(4.7))

ans =

-1.6869

The default format shows approximately five significant decimal figures. Entering the
command format long will display approximately 15 significant decimal figures.
Ex. >>format long
3+cos(sqrt(4.7))
ans =
-1.68686892236893

Assignment Statements

Variable names are assigned to expressions by using an equal sign.
Ex. >>a=3-flcor(exp(2.9))
a=

-15

A semicolon placed at the end of an expression suppresses the computer echo (output).
Ex. >>b=sin(a); -
>>2%h=2

ans=
0.8457

Note: b was niot displayed.

Defining Functions

.In MATLAB r.he‘ user can define a function by constructing an M-file (a file ending
in -m) in the M-file Editor/Debugger. Once defined, a user-defined function is called
in the same manner as built-in functions.
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Ex. Place the function fun(x) = 1 + x — x?/4 in the M-file fun.m. In the
Editor/Debugger one would enter the foltowing:
function y=fun(x)
y=1+x-x.72/4;
We will explain the use of . ~” shortly. Different letters conld be used for the variables
and a different name could be used for the function, but the same format would have
1o be followed. Once this function has been saved as an M-file named fun.m, it can be
called in the MATLAB Command Window in the same manner as any function.
>>cos(fun(3))
ans=
-0.1782
A useful and efficient way to evaluate functions is to use the feval command. This
command requires that the function be called as a string,
Ex. >>feval(’fun?’,4)
ans=
1

Matrices

All variables in MATLAB are treated as matrices or arrays. Matrices can be entered
directly:

Ex. >>A=[1 2 3;4 5 6;7 8 9]

A=
123
4 €
7&9

Semicolons are used to separate the rows of a matrix. Note that, the entries of the
matrix must be separated by a single space. Alternatively, a matrix can be entered
row by row.

Ex. >>A={1 2 3
456
7 8 9]
A=
123
456
789
Matrites can be generated using built-in functions.
Ex. >>Z=zeros(3,5); creates a 3 x 5 matrix of zeros
>>X=ones(3,5); creates a 3 X 5 matrix of ones
>>Y=0:0.5:2 creates the displayed 1 x 5 matrix

Y=
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0 ©.5000 1.0000 1.5000 2.0000

>>cos(Y) creates a | x 5 matrix by taking the
cosine of each entry of Y
ans=
1.0000 0.8776 0.5403 0.0707 -0.4161

The components of matrices can be manipulated in several ways.

Ex. >>A(2,3) select a single entry of A
ans=
6
>>4(1:2,2:3) select a submatrix of A
ans=
23
&6
>»A([1 31,11 3 another way to select a submatrix of A
ans=
13
79
>>A(2,2)=tan(7.8); assigna new value to an entry of A

Additiqnal commands for matrices can be found by using the on-line help facility or
consulting the documentation accompanying the software.

Matrix Operations

+ Addition

- Subtraction
Multiplication
Power

Conjugate Transpose

Ex. >B=[1 2;3 4];

>>C=B’ C is the transpose of B
C=
13
24
>>3%(B+C) "3 3(BC)?
ans=

13080 29568
295668 66840
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Array Operations

One of the most useful characteristics of the MATLAB package is the number of func-
tions that can operate on the individual elements of a matrix. This was demonstrated
earlier when the cosine of the entries of a 1 x 5 matrix was taken. The matrix oper-
ations of addition, subtraction, and scalar multiplication already operate elementwise,
but the matrix operations of multiplication, division, and power do not. These three op-
erations can be made to operate elementwise by preceding thern with a period: .*, ./,
and . ". It is important to understand how and when to use these operations. Array op-
erations are crucial to the efficient construction and execution of MATLAR programs
and graphics.

Ex. >>A={1 2;3 4];

>>472 produces the malrix product AA
ans=
7 10
16 22
>>A.72 squares each entry of A
ans=
14
9 16
>>cos(A./2) divides each entry of A by 2, then tukes
the cosine of each entry
ans=
0.8776 0.5403
0.0707 -0.4161
Graphics

MATLAB can produce two- and three-dimensional plots of curves and surfaces. Op-
tions and additional features of graphics in MATLAB can be found in the on-line fa-
cility and the documentation accompanying the softwarc.

The plot command is used to generate graphs of two-dimensional functions. The
following example will create the plot of the graphs of y = cos(x) and y = cos?(x)
over the interval [0, ).

Ex. »>»x=0:0.1:pi;

»>y=cos(x);

»>z=cos(x}."2;

>>plot{x,y,x,z,’0’)
The first line specifies the domain with a step size of 0.1. The next two lines define the
two functions. Note that, the first three lines all end in 2 semicolon. The semicolon is
hecessary to suppress the echoing of the matrices x, y, and z on the command screen.
The feurth line contains the plot command that produces the graph. The first two terms
in the plot command. x and ¥. plet the function y = cos(x). The third and fourth
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terms, x and z, produce the plot of y = cos?(x). The last term, *o’, results in o's
being plotted at each point (x;, zx) where z; == cos®(xy). ' .

In the third line the use of the array operation “*. *” is critical. First the cosine of
each entry in the matrix x is taken, and then each entry in the matrix cos (x) is squared

using the . ~ command.
The graphics command £plot is a useful alternative to the plot command. The

form of the command is fplet (*name’, [a,b] ,n). This command creates a plot of
the function name .m by sampling » points in the interval [a, b]. The default number
for n is 25.
Ex. >>fplot(‘tanh’, [-2,2]) plots y = tanh(x) over [-2, 2]
The plot and plot3 commands are used to graph parametric curves in two:‘- and thll'ee—
dimensional space, respectively. These commands are particularly useful in the visu-
alization of the solutions of differential equations in two and three dimensions
Ex. Theplotofthe ellipse ¢(2) = (2cos{t), 3sin(t)), where 0 < t < 2, is produced
with the following commands:
>>1=0:0.2:2%pi;
>>plot(2+cos(t),3*sin(t))
Ex. The plot of the curve c(f}) = (2 cos(s), 2,1/, where 0.1 <t < 4, is pro-
duced with the following commands:
>>t=0.1:0.1:4%pi;
»>plot3(2*cos(t),t.72,1./t)
Three-dimensional surface plots are obtained by specifying a rectangular subset of the
domain of a function with the meshgrid command and then using the mesh or surf
commands to obtain a graph. These graphs are helpful in visualizing the solutions of
partial differential equations.
Ex. >»x=-pi:C.1:pi;
>>y=x;
>>[x,y]=meshgrid(x,y);
>>z=sin(cos(x+y));
>>mesh(z)

Loops and Conditionals

Relational Operators

== Equal to

"= Not equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
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Logical Operators

- Not {Complement)

& And (True if both operands are true)

I Or (True if either or both operands are true)
Boolean Values

1 True

0 False

The for, if, and while statements in MATLAB operate in a manner analogous to their
counterparts in other programming languages. These statements have the following
basic form:
for (loop-variable = loop-expression)
executable-statements
end

if (logical-expression)
executable-statements
else (logical- expression)
executable-statements
end

while (while-expression)
executable-statements
end
The following example shows how to use nested loops to generate a matrix. The
following file was saved as a M-file named nest.m. Typing nest in the MATLAB
Command Window produces the matrix 4. Note, when viewed from the upper-left
corner, that the entries of the matrix A are the entries in Pascal’s triangle.

Ex. for i=1:5
A(L,1)=1;A(1,1)=1;
end
for i=2:5
for j=2:5
A(1,3)=AC1,j-1)+A(i-1,3);
end
end
A
The break command is used to exit from a loop.
Ex. for k=1:100
x=sqrt(k);
if ((k>10)&(x-floor(x)==0))
break
end

APPENDIX: AN INTRODUCTION TO MATLAB 615

end
k
The disp command can be used to display text or a matrix.
Ex. n=10;
k=0;
while k<=n
x=k/3;
disp([x x~2 x~31)
k=k+1;
end

Programs

An efficient way to construct programs is to use user-defined functions. These func-
tions are saved as M-files. These programs allow the user to specify the input and
output parameters. They are easily called as subroutines in other programs. The fol-
lowing example aliows one to visualize the effects of moding out Pascal’s triangle with
a prime number. Type the following function in the MATLAB Editor/Debugger and
then save it as an M-file named pasc.m.

Ex. function P=pasc(n,m)
%Input - n is the number of rows
% - m is the prime number
%0utput - P is Pascal’s triangle

for j=1:n
P(j,1)=1;P(1,j)=1;
end
for k=2:n
for j=2:n
P{k,j)=rem(P(k,j-1) ,m)+rem(P(k-1,j),m};
end
end

Now in the MATL.AB Command Window enter P=pasc {5, 3) to see the first five rows
of Pascal’s triangle mod 3. Or try P=pasc (175, 3) ; (note the semicolon) and then type
spy (P) (generates a sparse matrix for large values of n).

Conclusion

Al this point the reader should be able to create and modify programs based on the
algorithms in this textbook. Additional information on commands and information
regarding the use of MATL.AB on your particular platform can be found in the on-line
help facility or in the documentation accompanying the software.
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Answers to Selected Exercises

Section 1.1 Review of Calculus
L @ L =2 (e} = {557 [, limaco €0 = 0

I e=1-v2

4. (@) M| =-5/4, My=5
5 (8) c=0

6.a)c=1

7.c=4/3

9. () x%cos(x}
10. (@) c =X f13/3
11. (a) 2 (b) i
15. 13:/3, apply the Mean Value Theorem for Integrals
16. Let the n roots of P(x) be xg, xi, ..., xy—1. VYerify that the hypotheses of the
Generalized Roile’s Theorem are satisfied. Therefore, there exists ¢ € (a, b)
such that PP~ ey = 0.
Section 1.2 Binary Numbers

1. (a) The computer's answer is nat O because 0.1 is not an exact binary fraction.
(b) O (exactly)

631
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2. (a) 21 (¢) 254

3. (a) 0.84375  {c) 0.6640625

4. (a) 1.4140625

5. (a) V2 — 14140625 = 0.000151062. ..

6. (a) 1011 lewo (€) 1011110104,

7. (@) 001 lwo  (€) 0.1011 l1yo

8. (a) 0.000 g (¢) 0.000wo

9. (a) 0.006250000. ..

11. Usec = %andr: %Iogn:tS: T—ﬁg:%

13. (@ 1 = 0.10ilwe x27! = 0.101lw, x27!
I = 01100y x 272 0.0110lwe x 271
£ 0.10001 Iy, x 270
E o~ 0100lme x 270 = 0.100lwo x2°
bo% 0.001we x 272 = 0.0010] Ly x 270
s 0.101 11 x 270

14. (8) 10 = 101jpree (€) 421 = 120121 yppee

15. {8) 1 =0.lgree  (b) 3 = 0. Tiprec

16. (a) 10 = 20, () 721 = 103414y,

17. (b) 3 = 025

Section 1.3 Error Analysis

1. {a) x = 2.71828182, ¥ = 2.7182, {x — ¥) = 0.00008182,
(x — ') /x = 0.00003010, four significant digits

11 I 1 292,807
4 433 455(2h - 477(39 T 1,146,880
p - = 0.0000000178. (p ~ 7)/p = 0.0000000699

3. (@) pi~ pr= 1414+ 0.09125 = 1.505, py p2 = (1.414)

4, The error involves loss of significance.
( 0.70711385222 - 0.70710678119 _ 0.00000707103
) 0.00001 0.000001

. (&) In({x +2)/x)orln(l 4 !/x) (c) cos(2x)

=0,
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6. (a) P(2.72)= (272 = 3272 +3(2.72) = 1 = 20.12 ~ 2219+ 8.16 — 1
-2.07~8.16~1=6.09—1=5.09
QQRID =(272=-3)2.724+ 3272 -1 = (—0.28)2.72+ 3)2.72 — 1
= (07616 +3)2.72 — 1 = (2.238)2.72 — 1 = 6.087 — 1
= 5.087
R(2.72) = (272 - 1)} = (1.72)° == 5.088
7. (a) 0.498  (b) 0.499

9. (a)

1 A2
. — _ 3 4
=7 cos(h) =24 h+2h + O
e B3 4
c:os(h)=]+h+—+—:-z-+0(h )

b
(b) 3

1
1-h
Section 2.1  Iteration for Solving x = g(x)

L. (a) g € C[0. 1], g maps [0, 1] onto [3/4, 1] € [0, 1], and [g'(x) = | — x/2 =

x/2<1/2 = 1 on |0, 1. Therefore, the hypotheses of Theorem 2.2 arc satisfied
and g has a unique fixed point on [0, 1].

.(a) g(= 4+8-2=2g)=-d+16-8=4

-

h} po=19 Eg=20.1 Ro == 0.05
- p1=1795 E; =0.205 Ry =0.1025
~ O'UOONO- P2 = 1.5689875 F; =0.4310125 Ry = 0.21550625
73 = 1.04508911 E3 =10.95491089 R3 = 0477455444

(e) The sequence in part (b) does not converge to P = 2. The sequence in part (c)
converges to P = 4.,

P =2.2'2)

« P = 2nm where n is any integer, g'(/} = 1; Theorem 2.3 gives no information
regarding convergence.

@) g3)=053)+15=3
(c) Proof by mathematical induction. If n = I, then |P — p|| = P — pgi/2-.
by part (b). Induction hypothesis: Assume that |P — pg| = !P ~ Pu:;’2k . Show
statement is true forn = &k + 1:

[P = pit+il =[P~ px /2
= (P — pal/2)/2
=P — poif2¢t1.

3, iteration wiil no: converge to P = 2.

= 0.2553074428 = p,

(by part (b))

(induction hypothesis}
{0.09125) =10.1290

B
707103 IPkT:—Jm: 5 — Pk

=
[Pe+1i il |

2

10.

(a)
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Section 2.2 Bracketing Methods for Locating a Root

1, Ip=(0.1140.12)/2=0.115 A(0.115) = 254,403
I =(0.114+0.115)/2 =0.1125 A(0.1125) = 246,072
L = {0.112540.115)/2 = 0.11375 A(0.11375) = 250,198

3. There are many choices for intervals [a, b] on which f (@) and f (b) have opposite
sign. The following answers are one such choice.

(@) f(1) < Qand F(2) > 0, so there is a root in {1, 2]; also f(—1) < O and
F(—2) = 0, so there is aroot in [—2, —1].
(¢} f(3) <0and f(4) > 0, so there is a root in {3, 4].

4. cp = —1.8300782, c; = —1.8409252, c; = —1.8413854, ¢3 = —1.8414048

6. cp = 3.6979549, ¢} = 3.6935108, ¢r = 3.6934424, c3 = 3.6934414

1. Find N such that 7-2 < 5 x 1072,

14. The bisection method will never converge (assuming that ¢, #2}tox = 2.

Section 2.3 Initial Approximation and Convergence Criteria

1. There is a root near x = --0.7. The interval [—1, 0] could be used.
3. There is a root near x = 1. The interval [—2, 2] could be used.

5. There is one root near x = 1.4. The interval [1, 2] could be used. There is a
second roct near x = 3. The interval [2, 4] could be used.

Section 2.4 Newton-Raphson and Secant Methods

2
- = P =2
L (a) pr = g(pr-1) = T
() po = —1.5, p; = 0.125, p; = 2.6458, p3 = 1.1651
3. pe=gpi-)=3p 1+ 3.
(b) po=2.1, py =2.075, p» = 2.0561, p; = 2.0421, py = 2.0316
5. (@) pr = g(pr—1) = pe—1 +cos{pi—1)

7. (@ g(pe—t) = pi_\/(pr-1— 1)

®) po= 020 (¢) po=200
p1 = —0.05 p1 = 2105263158
p2 = —0.002380953 pz = 22.10250034
p3 = —0.000003655 pa = 23.14988809
pa = —0.000000000 P4 = 24.19503505
Jim i =00 e = o

8. po = 2.6, py = 2.5, p; = 2.41935484, p3 = 2.41436464
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14. No, because f'(x) is not continuous at the root p = 0. You could also try com-
puting terms with g{px—1) = —2p;_ and see that the sequence diverges.

2—a (l _ (x2 —a)Z)_l _ x(x% + 3a)
> =

22, (a) g(x)=x—

: 2(2x)? 3x24a
15x + x3
g0) = 5432
p1 = 2.2352941176, py = 2.2360679775, p3 = 2.2360679775
24 4x +2x% + x°
b ' =
B ¢0) = T

p1 = —2.0130081301, p3 = ~2.0000007211, p; = —2.0000000000

Section 2.5 Aitken’s, Steffensen’s, and Muller’s Methods

2. (a) A2Pm = A{Apy) = A(Pn+l - Pn) = (pny2 — Pn+1) — (P‘n+l — Pu)
=pui2 = 2Ppr1 + P =20+ 22+ 1 = 2@+ D2+ 1)
+2nf+ =4

6. pn=1/(4" +47")

n Pn gn Aitken’s
0| 05 —12.26437542
1| 0.23529412 | —0.00158492
2| €.06225681 | —0.00002390
31 0.01562119 | —0.00000037
4 | 0.00390619

5| 0.00097656

7. g(x) = (6+x)1/2

n Pn qn Altken's

25 3.00024351
2.91547595 | 3.00000667
2.98587943 | 3.00000018
2.99764565 | 3.00000001
2.99960758
2.99993460

LV O PR N R )
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9. Solution of cos(x) — 1 = 0. ji j=i ij i=j
6. @ au=3", . ., = {7 ... . ., = ay
n| pn Steffensen’s Jojiti j#FI i—ij+j i#]
ol 05 Section 3.2 Properties of Vectors and Matrices
1| 0.24465808
2 | 012171517 1. AB = [_i; _;i], BA = [_is 10]
3 | 0.00755300 - -2 =20
4 | 0.00377648 2 -5
5 | 0.00188824 3. @) (ABC=ABC) =] o 5
6] 3 5. (a) 33 {¢) The determinant does nbt exist because the matrix is not square.
8. (ABYB'A™!Y = A(BB DA™l = (ADA™! = AA™! = I. Similarly,
11. The sum of the infinite series is § = 99. (B 'A"'%(AB) = I. Therefore, (AB}"! = B~1A~1,
10. (a) MN by M(N—-1)
" 5n Tn R
1| 099 98.9999988 4. XX' =[6], XX=|]-I 1 =z
2| 19701 99.0000017 2 -2 4
3| 2940399 | 98.9999988
4 | 3.90099501 | 98.9999992 Section 3.3 Upper-triangular Linear Systems
e 1 x1=2,x =~2,x3 = I, x4 = 3, and det A = 120
5. x] = 3,x2 =2, x3=1,x4=-1, and det A = =24
13. The sum of the infinite series is § = 4. Section 3.4 Gaussian Elimination and Pivoting
15. Mulier’s method for f(x) = -x=-2 Li=-3xn=2x=I1
5. y=15—13x+2x?
; i fipn) 10 x1=1L,xp=3x3=2, x4=-2
010 -2.0 15. (a) Sclution for Hilbert matrix A:
; }3 :(‘)gzg x] =25, x3 = —300, x3 = 1050, x4 = —1400, x5 = 630
3| 152495614 | 0.02131598 (b) Solution for the other matrix A:
4 | 1.52135609 | —0.00014040 x) = 28.02304, x; = —348.5887, x3 = 1239.781
5| 1.52137971 | —0.00000001 x4 = —1666.785, x5 = 753.5564
Section 3.5 Triangular Factorization
Section 3.1 Introduction to Vectors and Matrices L(@Y=[-4123], X =[-321]
! = ! — 3\
1. ()@@ (1.4) (b)y (5,-12) (c) (9 —12) (dy 5 (e) (—26,72) (b) ¥ [20 39 9]’ _X [5 7 ]
@ —38 @ 21465 -5 2 -1 i 0o G|[-5 2 -1
g .| 10 3[=|-~02 1 0|l 0 04 238
2. 8 = arccos(—16/21) = 2.437045 radians 31 6 ~06 535 1 0 0 10
3. (a) Assume that X, ¥ # 0. X - ¥ = 0iff cos(f) = 0iff 6 = 2n + DT iff X 5.@Y=[8-6122], X =[3-112]

and ¥ are orthogonal. b)) V=[286121], X =[3121]



638 ANSWERS TO SELECTED EXERCISES

6. The triangular factorization A = LU

0

Z 1
LU = 1
-1

-1.7

is

g o0]{1 I 0 4
0 ojfo -3 5 -8
1 0Jf6 0 —4 -10
5116 O 0 -75

Section 3.6 Iterative Methods for Linear Systems

1. (a) Jacobi iteration
Py =(3.75, 1.8)
P =(4.2,1.05)
Py = {4.0125, 0.96)
Iteration will converge to (4, 1).

3. (a) Jacobi iteration

(b) Gauss-Seidel fteration
P =(3.75,1.05)
Py = (4.0125,0.9975)
Py = (3.999375, 1.000125)
Iteration will converge to (4, 1).

(b) Gauss-Seidel iteration

P=(-1,-1) Py =(~1,-4
Py =(—4,-4) Py =(-13, —40)
Py = (—13,-13) Py = (-121, -361)

The iteration diverges away The iteration diverges away

from the sclution P = (0.5, 0.5).
5. (a) Jacobi iteration
Py =1{2,1.375,0.75)
Py = (2.125, 0.96875, 0.90625)
Py = (2.0125, 0.95703125, 1.0390625)
Iteration will converge to P = (2, 1, 1).
(b) Gauss-Seidel iteration
Py = (2,0.875,1.02125)
Py = (1.96875, 1.01171875, 0.989257813)
P3 = (2.00449219, 0.99753418, 1.0017395)
Iteration will convergeto P = (2, 1, 1).
9. (15): 1X|; = Zf:l |xk| = 0iff x| =0fork=0,1,..., Nif X =0
(16): leX 1y = 3L, lexil = 4Ly lelixel = lel Loy bl = el I1X 1l

Section 3.7 Iteration for Nonlinear Systems

.{a) x=0,y=0
2@ x=4y=-2

() x=0,y=2nm
) x=0,y=02n+ 1)a/2

from the solution P = (0.5, 0.5).
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1—x y/4 -0.1 0.5
5. YY) = . . 1,200 =
JG.3) [(1 -0 2= y)/,z] J(.1,20) [—0.0;5 0.0]
Fixed-point iteration Seidel iteration

k Pr 9k Pk 73
0 i.1 2.0 1.1 2.0
1 1.12 1.9975 1.12 1.9964
2 1.1165508 1.9963984 1.1160016 1.9966327
00 1.11565151 1.9966032 1.1165151 1.9966032

7. 0=x%—y -02,0=y-x-03

Py Solution of the linear system: J(Pr)dP =—F(Pp) Py +dP

1.2 24 ~1.01[-0.00756307 0.04 1.1924377

1.2 —L0  24]| 0.0218487]" | -0.06 1,221849 |

1.192437 2.384874 —1.07 [—-0.0001278 _ 0.0000572 1.192309
1.221849 —1.0 2.443697 ~0.0002476 | — ~ [ 0.0004774 1.221601
(@) Therefore, (p1, q1) = (1.192437, 1.221849) and
(P2, q2) = (1.192309, 1.221601).

P, Solution of the linear system: J(Py)dP = —F(P,} P, +dP
—0.2 —04 —1.0][-0.0004762 _ 0.04 —0.290476.
—0.2 -1.0 -04]| 0.0761905|" ~ |—0.06 —0.123809:

—0.2904762 —0.5800524 —1.0([0.0044128] 0.0081859 =0.286063:
—0.1238005 ~1.0 —0.2476190{10.0056223 [ ~ |0.0058050 —0.118187.

(b) Therefore, (p1, g1) = (—0.2904762, —0.1238095) and
(p2, g2} = (—0.2860634, —0.1181872).

8. (b) The values of the Jacobian determinant at the solution points are | J (1, 1)| =

12.

0 and |J(—1, —1)] = 0. Newton’s method depends on being able to solve a
linear system where the matrix is J(p,, g») and (p,, qn) is near a solution. For
this example, the system equations are ill conditioned and thus hard to solve with
precision. In fact, for some values near a solution we have J(xg, vo) = 0, for
example, J(1.0001, 1.0001) = 0.

(a) Note: As with derivatives, we have ;;(cf (x,y))= c% f(x.y). F(X) was
definedas F(X) = [fi(x1...., %) -+ fm(x1, ..., x4)]'; thus, by scalar multipli-
cation, cF(X) = [cfi(x1, ..., xa) - cfmlxts ..., 2n)]s JEF (X)) = Ltk
where jiz = a(cj}('xl, veer X)) == cgi—kf,-(xl, .-+, Xp). Therefore, by the def-
inition of scalar multiplication, we have J(cF(X)) = ¢ J(F x).
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Section 4.1 Taylor Series and Calculation of Functions

1. (a) Ps(x) =x—x3/31+x°/51
Prx)=x —x3 30+ x5 /51 = X7
Pox) = x =233+ /51 —x 71+ 20 /9
(b) |Eo(x)| = | sin(e)xB/101 < (1)(1)'%/10! = 0.0000002755
© Ps(x)=2""2(1+ (x —m/4) — (x = w/4)*/2 = (x — 2/4)3/6
+(x — 7/ 24 + (x — /4 /120)
3. Atxg = 0 the derivatives of f(x) are undefined. But at xg = } the derivatives are
defined.
5 P30 =1+0x—x2240x3=1~x%/2
8. fQ=2 D=4 D=-5fOD =
Pi(x) =24 (x —2)/4 — (x — 2)2/64 + (x — 2)3/512
(b} Ps3(1) = 1.732421875; compare with 3/2 = 1.732050808

(© f9x) = —15(2 + x)~7/%/16; the minimum of | f* (x)| on the interval
1 < x < 3 occurs when x = | and |ff‘)(x)| [F® (1 = 37772(15/16) =~

0.020046. Therefore, |E3(x)| < > 020346)(” = 0.00083529

14, (d) P2(0.5) = 1.21875000
P4(0.5) = 1.22607422
Pg(0.5) = 1.22660828
(1.5)1/% = 1.22474487

13. (d) P3(0.5) = 0.41666667
Ps(0.5y = 0.40468750
Py(0.5) = 0.40553230
In(1.5) = 0.40546511

Section 4.2 Introduction to Interpolation

1. (a) Usex = 4 and get b3 = —0.02, b = 0.02, b; = -0.12, by = 1.18. Hence
P4 =1.18.
(b) Use x = 4 and get d = —0.06, 4| = ~0.04, dy = —0.36. Hence P/(4) —
—0.36.
(c) Use x = 4 and get iy = —0.005, i3 = 0.01333333, i = —0.04666667,
i1 = 1.47333333, igp = 5.89333333. Hence I{4) = 5.89333333. Similarly, use
x = 1and get /(1) = 1.58833333.
fl4 P(x)Ydx = I(4) — I(1) = 5.89333333 — 1.58833333 = 4.305

(d) Use x = 5.5 and get b3 = —0.02, by = —0.01, by == —0.255, by == 0.2575.
Hence P(5.5) = 0.2575.
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Section 4.3 Lagrange Approximation
1. (v) Pl(x)——I(x— /( l 04+0=x+0=x

-1 x4+ D -0
= =1 A LA ALty
) Pl =1- 0)( -1 1+ D —0)
= =050~ D +05@)x+D=0x>+x+0=x
(x)(x Dix —2) x+ D) —-2)
© B0 =-1= T ToOmEDn
gEH DO —D 024 0x+0=x3

, (32D
d Px)=1(x -2/ -+ 8x - 1)/C-1=Tx—6

W&~ )~ 1)
P =0 8 =312 -2
© P) =0+ "hn oM S H

5. (¢} f@(e) = 120(c—1) forall ¢; thus E3(x) = 5(x + D {(x)(x =3)(x =) (c— |)
10. [F@D(e)f < | - sin(1)| == 0.84147098 = M
(@) h2M>/8 = h%(0.84147098)/8 < 5x10~7

12. (a) z =3 —2x + 4y

Section 4.4 Newton Polynomials
I. PIx)=4—(x-1)
Prx)=4—(x-1})+04(x — D{x —-3)
Pi(x) = Pa(x) + 0.01(x — 1)(x — (x — 4)
Py(x) = P3(x) — 0.002(x — 1)(x — 3)(x — )(x — 4.5)
P(2.5) = 2.5, P2(2.5) = 2.2, P3(2.5) = 2.21125, Pg(2.2) = 2.21575
5 fx)=32)
Pax) =154 15x+D+075(x+ D{x)+ 025 + Dx)x = 1)
+0.0625(x + 1)(x){x — 1) (x —2)
P1(1.5) = 5.25, P»(1.5) = 8.0625, P3(1.5) = 8.53125, P4(1.5) = 8.47265625
7. flx)=36/x
Py(x) =36 —-18(x—-1)+0.6(x — 1)(x —2) = 0.15(x — D{x — 2){x — 3
+0.03(x — D(x — 2H{x ~3x — &)
Pi1(2.5) = 0.9, P»(2.5) = L.35, P3(2.5) = 1.40625, P4(2.5) = 1.423125

Section 4.5 Chebyshev Polynomials

9. (@) ln(x + 2) = 0.69549038 + 0.49905042x — 0.14334605x2 + 0.04909073x>
(b) [ F ) (23(aN) < | — 6]/(23(4) = 0.03125000
11. (a) cos(x) &~ 1 — 0.46952087x2
®) |3 x)|/(22(3D) = sin(1)|/(22(31)) = 0.03506129
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13. The error bound for Taylor’s polynomial is

(8) in(1
L= ()} < [ sin(1)| — 0.00002087.
8! 8t
The error bound for the minimax approximation is
SO _ |sin(D)
= 0.00000016.
278y — 27(8!)
Section 4.6 Padé Approximations
1 1 1
1. 1= PO, I'Fql = Pt 54—9’1 —0,‘11 —_E,Pl = E

e’ ~ Ry, l(x)- 2+x)/2~x)

2 1
3-1=P0: +2q1/15= p|.——+f11/3 0?1——3 pr=-—

5. 1=po,.1+q1 =p1, 54-41 +q=p.

1

=+ q—l +42=0
First solve the system
+L+ 20

2
1 1 l 1
Thcnql __'z_!qz““ﬁs p! ¢P2 12
1 2
7. (@) 1 =po. 5 +q1 = p1. T3 +a=p.
17
S5+ F=0
First solve the system
&2 Ve
2835 ° 315 15
Then 41 = _.4_ 1 .I_ =1
7 9!‘]2 63aP! 91P2 = a5

Section 5.1 Least-squares Line
L. (a) 10A+0B= 7
0A+5B =

y = 0.70x + 2.60, E3(f) = 0.2449
2. (a) 40A + 0B =58
0A+5B=312
y = L45x + 6.24, E3(f) 7 0.8958

5 5
3@ Y aw / Y} =869/55=1.58
k=1 k=1

y = 1.58x, Ea(f) ~ 0.1720
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11. (@) y = 1.6866x>

L Ex(f) =13

y =0.5902x3, Eo(f) =~ 0.29.  This is the best fit.
Section 5.2 Curve Fitting
1. (a) 1644 +20C = 186
208 =-34
204 + 4C= 26

y =0.875x2 — 1.70x +2.125 = 7/8x2 — 17/10x + 17/8

3. (a) 15A+ 5B = —0.8647
SA+5B= 4219

15 6.

y = 3.8665¢=0-3084x E.(f) 2 0.10

Using linearization

Minimizing least squares

1000

@ 1000
1 +4,3018¢~ 10802
5000
{b)

1+ 4.2131¢—1.0455%
5000

1+ 8.99910.81138¢

14 8.9987¢ 081157

18. (a) 14A 4+ 15B+8C =82
1544+ 19B 4+ 9C =93
§A4+ 9B 450 =49

A=24,B=12,C=38yieldsz =2.4x + 1.2y + 3.8.

Section 5.3 Interpolation by Spline Functions

4 hg=1 do=-2
hi=3 d=1 ) =18
hy=3 do= —2/3 w2 = —10
Solve the system 2 mi +m2 =21 togetm) = 3“1# and mp = — 24
3Im; + zmz =-15 1ot
Then mo = ~ 382 and m3 = 88 The cubic spline is
3 30 2 \
Sglx) = ﬁ( x+3) — (x+-3) ‘“(I+3'+2 -3=xx=
s - _(x+2+ i —-2<x<l
1(x) = 909(1 +2)' + ( +2) 101 (x +2) =x=
779 1 2
S200) = e (x — 1P - —(x - 12+ —=(x— 1 l<x<4
2{x) 272707 ) TThG N+ 303(1 )+3 =x=

643

-2
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5. hp=1 dp=-2

hi=3 dy=1 u =18

hh=3 da=-2/3 uz=-10

Solve the systel to getmy = 35 and mo2 = — F.
0lVe e sy m[3m1+12m2=“10 O get 39 and m» iy

Set mg = 0 = mj3. The cubic spline is

a1 , 215
SQ(X)—':B—7(X+3) ——8—7(x+3)+2 -3<x=<-2
190 . 4, 92 )
S](X)—'-ﬁ'j(X'i‘Z) +E(x+2) —'8—7(14'2) —2<x=<l1
67 67 76
= — —1 3_ 20 — 14 — -
Sa2(x) ‘783(x ) 87(x 1+ 87(1 D+3 1<x=<4

5. ho=1 dog=-2
=3 d=1 up =18
hy=3 dy=-2/3 uy=-10
By + 3my = 18
Omy + 18my = —10

Then my = Y& and m3 = —4%3 The cubic spline is

53

Solve the system togetm; = 52 and my = ""%-

37 3 187 , 841
So(x) = EE(I+3) +m(x+3) '—'2"5'5(I+3)+2 _‘3:‘:]»5_2

37 263
Si(x) = _Eﬁ(x +2°+ 752

5 2 125
FE D+ TG =D 43 1<x<4

17
(x+2)2-~ﬁ(x+2) —-2=x=1
37
$aln) =~ (e = 1 -
Section 5.4 Fourier Series and Trigonometric Polynomials
L fy=14 (sin(x) 4 S0Qs) o sinlo)  sinlo) 4 )
3 f) =5+ 3% ( =071 cos(jix) — 2 (i‘—')i) sin(jx)
‘ - 4 =1 "j J e j=1 i s f
5 foy=42 (sin(x) — o0 o sn) s g )

12 f(x) =6+ % T2, () cos (43%)
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Section 6.1 Approximating The Derivative

1. f(x) = sin(x}

Approximate f'(x), Error in the Bound for the

h formula (3) approximation truncation error
0.1 0.695546112 0.001160597 0.001274737
0.01 0.696695100 0.000011609 0.000012747
0.001 0.696706600 0.000000109 0.000000127

3. f(x) =sin(x)

Approximate f/(x}, Error in the Bound for the
h formula (10) approximation truncation error
0.1 0.696704390 0.000002320 0.000002322
0.01 0.696706710 —0.000000001 0.000000000

5. f(x)y=x3(a) f/(2)~ 12.0025000 (b) f'(2) = 12.0000000
(¢) For part (a): O(h*) = —(0.05* ¥ (c)/6 = —0.0025000. For part (b):
0 (h*) = —(0.05)* £ (c)/30 = —0.0000000

7. flx,y)=xy/(x+Y)
(@) falx,y) = (/Cx+ yN% fx(2,3) =036

Approximation t0 Error in the

h Fe(2,3) approximation
0.1 0.360144060 =0.000144060
0.01 0.360001400 —0.000001400
0.001 0.360000000 0.000000000

Fy ¥y =(x/(x + )% £,(2,3) = 0.16

Approximation to Error in the

h fr(2,3) approximation
0.1 0.160064030 —0.000064030
0.01 0.160000600 —0.000000600
0.001 0.160000000 0.000000000

10. (a) Formula (3) gives /'(1.2) &~ —13.5840 and E(1.2) = 11.3024. Formula (1)
gives I'(1.2) &~ —13.6824 and E (1.2) =~ 11.2975.
(b) Using differentiation rules from calculus, we obtain / (1.2) = —13.6793 and
E(1.2) == 11.2976.
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12.

App. f'(x), Error in the Equation (19), total error bound

h equation (17) | approximation |round-off} + {trunc.|
0.1 --0.93050 —0.00154 0.00005 + 0.00161 =0.00166
0.0t -0.93200 —(.00004 0.00050 + 0.00002 =0.00052
0.001 | —0.93000 —0.00204 0.00500 + 0.00000 =0.00500

15. f(x) = cos(x),f(x} = —sin(x)
Use the bound | & (x)| < sin(1.4) = 0.98545.

App. f'(x), Error in the Equation (24, total error bound

h equation {22) | approximation Jround-off] + |trunc.|
0.1 —-0.93206 0.00002 0.00008 4 0.00000 = 0.00008
0.01 -0.93208 0.00004 0.00075 + 0.00000 =0.00075
0.001 | —0.92917 —0.00287 0.00750 + 0.00000 = 0.00750

Section 6.2 Numerical Differentiation Formaulas

1. f(x) =In(x)

(a) f"(5) ~ —0.040001600

©) f"(5) =~ —0.039999833
The answer in part (b) is most accurate.

3. f(x) =ln(x)
@ (5 ~00000 (B f(5)~ —0.0400
@ f"(5 = -0.0400 = —1/512

(c) f"(5) =~ 0.0133

The answer in part (b) is most accurate.

5 (@) f(x)=x2 £"(1) ~ 2.0000
M) F(x)=x%, £7(1) = 12.0002

9. (a)

0.0
0.1
0.2
0.3

Fx)

0.141345
0.041515
—-0.058275

—0.158025

M) f"(5) ~ —0.040007900
@ f7(5) = —0.04000000 = —1/5%
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Section 7.1 Introduction to Quadrature

1. (a) f(x) =sin(wx) trapezoidal rule 0.0
Simpson’s rule 0.666667
Simpson’s § rule 0.649519
Boole’s rule 0.636165
(©) f(x) =sin(/x)  trapezoidal rule 0.420735
Simpson’s rule 0.573336
Simpson’s % rule 0.583143
Boole’s rule 0.593376
2. (a) f(x)=sin(mx) Composite trapezoidal rule 0.603553
Composite Simpson rule 0.638071
Boole’s rule 0.636165
(b) f(x) = sin(/x) Composite trapezoidal rule 0.577889
Composite Simpson rule 0.592124
Boole’s rule 0.593376

Section 7.2 Composite Trapezoidal and Simpson’s Rule
1

(a) F(x) = arctan(x), F(1) ~ F(—1) = x/2 = 157079632679
(i M =10,k = 0.2, T(f, k) = 1.56746305691, E7(f, h) = 0.00333326989
(ii): M =5,k = 0.2, 5(f, k) = 1.57079538809, Es(f, k) = 0.00000093870
(©) F(x)=2/x, F(4)~ F(}) =3

() M =10,k = 0.375, T(f, h) = 3.04191993765,
Er(f. h) = —0.04191993765

(H): M = 5,h = 0.375, S(f, h) = 3.00762208163, Es(f, h) = —0.00762208163

. (@) f;l vT+9x% dx = 1.54786565460019

(i): M = 10, T{f, 1/10) = 1.55260945
(fi): M =5, 5(f, 1/10) = 1.54786419

. (@) 27 fy X*V/1+ 9x% dx = 3.5631218520124

() M = 10, T(f, 1/10) = 3.64244664
(i): M =5, S(f, 1/10) = 3.56372816

647

. (8) Use the bound | f®(x)| = | — cos(x)| < | cos(0)| = 1, and obtain

(/3 — 0A2)/12 < 5 x 10~ ?; then substitute & = /(3M) and get w3/162 x
108 < M2, Solve and get 4374.89 < M; since M must be an integer, M = 4375
and 2 = 0.000239359.

. (a) Use the bound | f® (x)| = | cos(x}| < | cos(0)| = 1, and obtain

((r/3—0)A*) /180 < 5x 10~; then substitute & = 7 /(6M) and get 7> /34,992 x
107 = M*; since M rust be an integer, M = 18 and & = 0.029088821.
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10.
M h T h) |Er(f h) = Ok?)
1102 0.1990008 0.0006660
2|01 £.1995004 0.0001 664
4 | 005 | 0.1996252 0.0000416
8 | 0025 | 0.1996564 0.0000104
16 | 0.0125 | 0.1996642 0.0000026

Section 7.3  Recursive Rules and Romberg integration

1. (&) . .
RGO | R | kD)
0 | -0.00171772 .l
1} 0.02377300 | 0.03226990 |
2 | 0.60402717 ' 0.79744521 | 0.84845691
(c) T
J R(I, ) F R | R(J.2)
0 I 2.88 !
1 2.10564024 | 1.84752031
2 ] 178167637 | 167368841 1.66209962

10. (ii) For fo' v dx, Romberg imegration converges slowly because the higher

derivatives of the integrand f(x) = /x are not bounded near x = 0.

Section 7.5 Gauss-Legendre Integration (Optional)
I J76:5dr =64 (b} G(f,2) = 58.6666667

3. flsin()/rde = 0.9460831 (b G(f,2) = 0.9460411

T Pen | | -]
£35 )

The truncation error term far the Gauss-Legendre rule will be less than the trun-

cation error term for Simpson’s rule.

8. If the fourth derivative does not change too much, then

Section 8.1 Minimization of a Function

@ =40 82 — llx +5; fix) = 12x" — 16x — 11;

local minima at x = 161

) fx) =e*/x% f/(x) = e (x — 2)/x7; local minimaat x = 2
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7. (@) flx.y)= B4y —3x-3y+5
el =3x2 =3, fulx, y) =3y" =3
Critical points: (1, 1), (1, =1), (=1, 1), (=1. =D)
Local minimum at (1, 1}
) fix,y)y= x2y +xy° —3xy
fulr, 9y =2xy + 2 = 3y, fyle. ) = 2% + 2xy = 3x
Critical points: (0, 03, {0, 3), (3. 0},(1, 1)
Local minimum at (I, 1)

11. “Reflecting” the wiangle through the side BG implies that the terminal poinis
of of the vectors W, M. and R all lie on the same line segment. Thus, by the
definition of scalar muliiplication and vector addition, we have R — W = 2(M —
WyorR=2M - W.

Section 9.1 Intreduction to Differential Eguations

b) L= 5. (b) L =60

v~ 2/3 s not continuous when 1 = 0,

1. () £ =1 3

10. (¢) No, because fy {7, ¥) =
and limy—g fi(r, y) = o<.

13. y(t) = t? — cos(t) + 3

15. y(r) = ffe~>"7ds

17, (b} v(1) = yge DO00I2968  (0) 2808 years  (d) 69237 seconds

Section 9.2 Euler’s Method

1. (a)
B oy =00 wih=02)
a0 1 1
8.1, 0.90000
22! 081100 0,80000
031 (.73390
0.4 (L6691 0.64800
3 (a)
b =00 wh=02)
00| 1 | 1
D.1 1.00000 !
0.2 0.99000 - 1.00000
0.3 0.97020
0.4 0.94109 0.96000
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6. Piy1 = Pp + (0.02P — 0.00004PH)10fork = 1,2,...,8.
k Yk (4yr — yu)/3
P 1 1.732422
Actual population | Euler rounded at | Euler with more 1/2 1.682121 1665354
Year | 5 atn, P(t) each step digits carried 174 1.672269 1.668985
1900 | ©.0 76.1 76.1 76.1 1/8 1.670076 1.669345
1910 | 10.0 92.4 £9.0 89.0035
1920 { 20.0 106.5 103.6 103.6356 1/16 1669558 1669385
1930 | 30.0 123.1 120.0 120.0666 1/32 1.669432 1.669390
1940 | 40.0 132.6 138.2 138.3135 1/64 1.669401 1.669391
1950 | 50.0 152.3 158.2 158.3239
1960 | 60.0 180.7 179.8 179.9621 , .
1970 | 70.0 204.9 202.8 203.0000 8. y = fir,y) = 1.5y, fy(r.1) =0.5y7%>. £,(0,0) does not exist.
1980 | 80.0 226.5 226.9 271164 The L.V.P. is not well-posed on any rectangle that contains {0, 0).

9. No. For any M, Euler’s method produces 0 < y; < y2 < --- < yy. The Section 9.4 Taylor Series Method

mathematical solution is ¥(¢} = tan(r) and y(3) < Q. 1. (a)
| Yy (h=01) v (h =0.2)
Section 9.3 Heun’s Method 1] 1 1
0.1 0.90516
1. (a) 02| 082127 0.82127
0.3 0.74918
e wG=00| n®=02 04| 068968 0.68968
0 1 1
0.1 0.90550 3. (a)
0.2 0.82193 {.82400 N
1 h=01] w(h=02)
0.3 0.75014 k| W
04 0.69093 0.69488 0 1 1
0.1 0.99501
0.2 (.98020 0.98020
0.3 0.96000
3. @ 04| 092312 0.92313
| wth=01)] y(h=02} |
0 1 1 6. Richardson improvement for the Taylor so]_ution ¥y = (t— y)/2over [0, 31 with
0.1 0.99500 y(0} == 1. The table entries are approximations to v(3).
0.2 0.98107 0.98000
0.3 0.95596 h Yk {(16yn — y21)/15
0.4 0.92308 0.92277 l 6701860
1/2 1.6694308 1.6693805
1/4 1.6693928 1.6693903
1/8 1.6693906 1.6693905

7. Richardson improvement for solving y* = (¢ — y)/2 over [0, 3] with »(®) = 1.
The table entries are approximations to y(3).
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Section 9.5 Runge-Kutta Methods

1. (a)

| wth=01) | yp=h=02
0 1 1
0.1 0.90516
0.2 0.82127 0.82127
0.3 0.74918
0.4 0.63968 0.68969

- 3. (a)
| =01 | y=(=02)
0 1 |
0.1 0.99501
0.2 0.98020 0.98020
0.3 0.95600
0.4 0.92312 0.92312

Section 9.6 Predictor-Corrector Methods
1. y4 = 0.82126825, y5 = (1.78369923
3. yq = 0.74832050, y5s = 0.66139979
4. yq = 0.98247692, y5s = 0.97350099
T oya=1.1542232, ys =1.2225213

Section 9.7 Systems of Differential Equations
1. (@ (x1, y1) = (-2.5500000, 2.6700000)
(x2, y2) = (—2.4040733, 2.5483015)
(b) (x), y1) = (—2.5521092, 2.6742492)
5 M =y
¥ = 1.5x + 2.5y + 22.5¢%
(©) xt =205, x; =2.17
(d) x; = 2.0875384
Section 9.8 Boundary Value Problems
2. No; g(ry = ~1/t2 < O forall s € [0.5, 4.5].

Section 9.9 Finite-difference Method
1. (a) Ay = 0.3, x =7.2857149
Ry =025 x1 = 6.0771913, x; = 7.2827443
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2. (@) h; =05, x) =0.85414295
hy =025, xy = 0.93524622, x, = 0.83762911

Section 10.1 Hyperbolic Equations

4,
lj X3 X3 X4 X5
0.0 | 0.587785 | 0.951057 | 0.951057 | 0.587785
0.1 0475528 { 0.769421 | 0.769421 | 0.475528
0.2 | 0.181636 | 0.293893 | 0.293803 | 0.181636
5.

i X3 X3 EZ] X5

0.0 | 0.500 | 1.000 | 1.500 | 0.750
0.1 0.50C¢ | 1.000 | 0.875 ( 0.800
0.2 | 0.500 [ 0.375 | 0.300 | 0.125

Section 10.2 Parabolic Equations

3.
x1=00] =02 | x3=04 | x4=06| x5=08 [ x4 =10
0.0 0.587785 | 0.951057 | 0.951057 | 0.587785 | 0.0
0.0 0.475528 | 0.769421 | 0.769421 | 0.475528 { 0.0
0.0 .384710 | 0.622475 | 0.622475 | (.384710 ( 0.0

Section 10.3 Elliptic Equations

1L (@) —4pi+ p2+ pz = —80
P —4p2 + pa=-10
I —4p3+ ps=-160

P2+ p3—4ps=-90
(b)) p1 =41.25, p» == 23.75, p3 = 61.25, p4 = 43.75
5. (@) Uy +uyy =2a-+2c=0,ifa=-c

6. Determine if u (x, v} = cos(2x) +sin(2y) is a solution, since it is also defined on
the interior of R; that is, u,x + 4,y = —4cos(2x) — 4sin(2y) = —4(cos(2x) +
sin(2y)) = —4u.

Section 11.1 Homogeneous Systems: The Eigenvalue Problem

1. (@) |A — Af| =% —3A —4 = O implies that ; = —1 and A2 = 4. Substituting
each eigenvalue into |A — AI| = 0 and solving gives V| = [—1 1]’ and Vo =
[2/3 l]’,respectively.
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19. If » = 2 is an eigenvalue of A comresponding to the vector V, then AV = 2V.
Premultiply both sides by A™!: A71AV = A~"(2V) or V = 24~'V. Thus

AW = v,

Section 11.2 Power Method

L{(A—a)V=AV-alV =AV—aV =AV—-aV = (A —a) V.Thus (A — a),

V is an eigenpairof A — al.
—-02 03

5. (a) |[A-1I|= { 0.2 —0 3‘ =0
-0.2 03 0]. . -0.2 0.
(b) l: 02 —03 O:I is equivalent to [ 0 0 g g], thus —0.2x+0.3y = 0.

Let y = ¢, then x = 3/2. Thus the ¢igenvectors associated with 1 = 1 are

{f[3/2 1] :t e R, 2 £0).

(¢) The eigenvector from part (b) implies that in the long run the 50,000 members
of the population will be divided 3 to 2 in their preference for brands X and ¥,

respectively; that is, [30.000 20,000]’.
Section 11.3  Jacobi’s Method

3. (a) The eigenpairs of A = [g __ﬂ

general solution is X (r) = cye™[2 1]’ + cze™#[~1/3 1]'. Sett = 0 to solve
for ) and cy; thatis, [1 2]’ = ¢1[2 1] +ca[~1/3 1] Thus ¢; = 0.7143 and

cp = 1.2857.

Section 11.4 Eigenvalues of Symmetric Matrices

1. Fror_n (3) we have W = ﬁ:—l;“z and, from Figure 114, Z = %(X + ¥,
Taking the dot product,

X-Y 1 (X—Y)-(X+Y)
_ . X+ Y= - 7
x—vi; 2 XtV =3
_ X X4X . Y-Y.-X-Y-¥ _ |XIP- ¥ _
21X — ¥, TO2X-YN2

since X and ¥ have the same norm.
2, P=I-=-2XXY=T-2XXY=1-2XVYX'=I-2XX'=P

are 5, [2 1]',and 2, [—1/3 1]. Thus the

.

Index

A
Accelerating Convergence
Aitken’s process, 90, 99 (#10-#14)
Newton-Raphson, 71, 82, 88 (#23),
176
Steffensen’s methed, 90, 95
Adam-Bashforth-Moulton method, 474,
482
Adaptive Quadrature, 382, 387
Aitken’s process, 90, 99 (#10-#14)
Approximate significant digits, 25
Approximation of data
least-squares curves, 211, 257
least-squares line, 255, 258
least-squares polynomial, 271, 274
Approximation of functions
Chebyshev polynomial, 230, 233,
238, 240
Lagrange polynomial, 207, 211, 213,
217,238
least squares, 255, 257, 271
Newton polynomial, 220, 224, 227
Padé approximation, 243, 246
rational functions, 243
splines, 280, 281, 285, 293
Taylor polymomials, 8, 26, 31, 189

Augmented matrix, 126, 129

B

Back substitution, 121, 123, 136

Backward difference, 334

Basis, 557

Binary numbers, 13, 17, 19

Binomial series, 197 (#14)

Bisection method, 53, 54, 59

Bolzano's method, 53

Boole’s rule, 344, 372, 375, 380 (#3, #4),
389 (#3)

Boundary value problems, 497, 503, 505,
510

Bracketing methods, 51, 53

C
Central difference, 313, 314, 329, 340 (#7,
#8)
Characteristic polynomial, 559
Chebyshav nodes, 232
Chebyshev polynomial
interpolation, 230, 233, 238, 240
minimization, 233
nodes, 234
Chopped number, 27

Note: Numbers in parentheses refer to problem numbers in exercises.
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C"a, b], 3
Composite Simpson’s rule, 350, 354, 359,
363
Composite trapezoidal rule, 350, 354, 358,
363
Computer accuracy, 21
Continuous function, 3
Convergence
acceleration, 82, 87 (#21—#23), 90,
92,95
criteria, 62, 66
global (local), 62
linear, 76, 77, 90
Newton-Raphson, 77, 82, 87 (#21,
#23)
order of, 32, 75
quadratic, 76, 77, 82, 87 (#21, #23)
sequence, 3
series, 8, 99 (#10—#14)
speed, 75
Corrector formula, 475, 477
Crank-Nicholson method, 531, 535
Cube-root algorithm, 86 (#11)
Cubic spline
clamped, 284, 285, 293
natural, 284, 285

D
D’ Alembert’s solution, 519
Deflation of eigenvalues, 578
Derivative
definition, 5, 311
formulas, 204, 313, 322, 329, 333,
505, 517, 527, 538
higher, 329, 333, 505
partial, 325 (#7), 517, 527, 538
polynomials, 204, 334, 336
Determinant, 113, 114, 123, 151
Difference
backward, 334
central, 313, 314, 329, 340 (#7, #8)
divided, 223
finite-difference method, 505, 510,
514,517, 527, 539
forward, 334, 341 (#13)
table, 224
Difierence equation, 505, 517, 527, 531,
539
Differential equation

Adams-Bashforth-Moulton method,
474, 482
boundary value problems, 497, 503,
505, 510
Crank-Nicholson method, 531, 535
Dirichlet method for Laplace’s equa-
tion, 549
Euler’s method, 433, 437, 440
existence-uniqueness, 430
finite-difference method, 505, 510,
514, 517, 527, 539
forward-difference method, 528, 533
Hamming’s method, 484
Heun’s method, 443, 445, 448, 465
higher-order equations, 490
initial value problem, 428, 430, 487,
498
Milne-Simpson method, 477, 483
modified Euler method, 465
partial differential equations, 514,
516, 526, 538
predictor, 474, 477
Runge-Kutta method, 458, 461, 466,
468, 488, 502
Runge-Kutta-Fehlberg method, 466,
469
shooting method, 498, 503
stability of solutions, 478, 481
Taylor methods, 451, 452, 455
Digit
binary, 14, 17, 19
decimal, 14, 19, 22
Dirichlet method for Laplace’s equation,
549
Distance between points, 103, 162
Divided differences, 223
Division
by zero, 74, 77
synthetic, 10, 200
Dot product, 103
Double precision, 22
Double root, 75, 77, 87 (#21)

E
Eigenvalues
characteristic polynomial, 559
definition, 559
dominant, 568
Householder's method, 594

INDEX

inverse power method, 573, 575, 576
Jacobi’s method, 581
power method, 568, 570, 573, 576
QR method, 601, 606
Eigenvectors
definition, 559
dominant, 568
Elementary row operations, 126
Elementary transformations, 125

"Elliptic equations, 538

Endpoint constraints for splines, 284
Epidemic model, 442 (#9)
Equivalent linear systems, 125
Error
absolute, 24
bound, 189, 194, 213
computer, 21, 27, 135
data, 36, 203, 316
differential equations, 437, 445, 452,
462, 475, 477, 519
differentiation, 313, 314, 316, 318
integration, 344, 358, 359, 377
interpolating polynomial, 189, 213,
238

loss of significance, 28

propagation, 32

relative, 24, 66

root mean square, 253

round-off, 27

sequence, 3

stable (unstable), 33

subtractive cancellation, 28

truncation, 26, 313, 314
Euclidean norm, 103, 162, 163
Euler formulas, 299

‘Euler’s method, 433, 437, 440

global error, 437
modified, 465
systems, 488
Even functicn, 300
Exponential fit, 263
Extrapolated value, 199
Extrema, 400, 404
Extreme Value Theorem, 4

F
False position method, 56, 60
Final global error, 437, 445, 452, 462
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Finite difference method, 505, 510, 514,
517, 527, 539
Fixed-point iteration, 42, 49, 173
error bound, 46
Floating-point number, 21, 22
accuracy, 21
Forward difference, 334, 341 (#13)
Forward difference method, 527, 528, 533
Forward substitution, 125 (#2)
Fourier series, 299
discrete, 304
Fractions, binary, 17
Fundamental theorem of calculus, 6

G
Gauss-Legendre integration, 389, 392, 394
Gauss-Seidel iteration, 159, 161, 164
Gaussian elimination, 125, 128, 143, 150
back substitution, 121, 123
computational complexity, 147
1.U factorization, 141, 143, 150
multipliers, 127, 129
pivoting, 127, 131
tridiagonal systems, 140 (#1), 166
(#3), 284, 506, 599
Generalized Rolle’s thecrem, 6, 198 (#20)
Geometric series, 16, 51
Gerschgorin’s circle theorem, 566
Golden ratio search, 401, 412
Gradient, 412, 420
Graphical analysis
fixed-point iteration, 47
Newton’s method, 70, 78, 79
secant method, 80

H
Halley’s method, 87 (#22)
Hamming’s method, 484
Heat equation, 515
Helmholtz’s equation, 538, 548
Heun’s method, 443, 445, 448, 465
Higher derivatives, 329, 333
Hilbert matrix, 139 (#15)
Hooke's law, 262 (#1)
Homer's method, 10, 200
Householder’s method, 594
Hypertbolic equations, 515

I
Dl-conditioning



658 INDEX

least-squares data fitting, 134
matrices, 133, 139 (#15)
Initial value problem, 428, 430, 487, 498
Integration
adaptive quadrature, 382, 387
Boole's rule, 344, 372, 375, 380 (#3,
#4), 389 (#3)
composite rules, 350, 354, 338, 363
cubic splines, 296 (#12)
Gauss-Legendre  integration, 389,
392, 394
midpoint rule, 366 (#12), 381 (#11)
Newton-Cotes, 344
Romberg integration, 373, 375, 377,
378, 381 (¥11)
Simpsen’s rule, 344, 353 (#9), 354,
359, 363, 370, 380 (#6), 387
Trapezoidal rule, 344, 354, 358, 363,
368, 377
Intermediate Value Theorem, 3
interpolaticn
Chebyshev polynomials, 230, 233,
238, 240
cubic splines, 281, 285-287, 293
error, polynornials, 8, 31, 189, 211,
213, 238
extrapolation, 199
integration, 296 (#12), 344
Lagrange polynomials, 207, 211, 213,
217,238
least squares, 255, 271
linear, 207, 219 (#12), 255, 277 (#17),
280
Newton polynomials, 220, 224, 227
Padé approximations, 243, 246
piecewise linear, 280
polynomial wiggle, 273
rational functions, 243
Runge phenomenon, 236
Taylor polyncmials, 8, 26, 31, 189,
313, 329
trigonometric polynomials, 297, 303,
306
Iteration methods
bisection, 53, 54, 59
fixed point, 42, 49, 173, 544
Gauss-Seidel, 159, 161, 164
Jacobi iteration, 156, 161, 163
Muller, 92, 97

Newton, 70, 82, 84, 88 (#23), 176,
179

partial differential equations, 546

regula falsi, 56, 60

secant, 30, 84, 87 (#20)

Steffensen, 92, 95

J
Jacobi iteration for linear systems, 156,
161, 163
Jacobi’s method for eigenvalues, 581, 590
Jacobian matrix, 170, 176

L
Lagrange polynomials, 207, 211, 213, 236
Laplace’s equation, 538, 549
Least-squares data fitting
data linearization, 266
linear fit, 255, 258, 260 (#1), 277
(#17)
nonlinear fit, 257, 266, 271
plane, 277 (#17, #18)
polynomial fit, 271, 274
root-mean-square error, 253
trigonometric polynomials, 297, 303,
306

Length of a curve, 364 (#2)
Length of a vector, 103, 162, 163
Limit
function, 2
sequence, 3
series, 8
Linear approxiraation, 219 (#12), 255, 258,
277 (#17), 280
Linear combination, 103, 499
Linear convergence, 76, 77, 90
Linear independence, 557
Linear least-squares fit, 255, 258, 260 (#7),
277 (#17)
Linear system, 114, 121, 128. 143, 152,
156, 163
Linear systems of equations
back substitution, 121, 123, 136
forward substitution, 125 (#2)
Gaussian elimination, 125, 128, 143,
150
LU factorization, 141, 143, 150
tridiagonal systems, 140 (#1), 166
(#3), 284, 506, 599

INDEX

Linear systems, theory
matrix form, 111, 114, 127, 141
nonsingular, 114

Lipschitz condition, 430

Location of roots, 68

Logistic rule of population growth, 276

(#6, #7)

Loss of significance, 28

Lower triangular determinant, 123

LU factorization, 141, 143, 150

M

Machine numbers, 20

Maclaurin series, 243

Mantissa, 20, 22

Markov process, 579 (#3)

Matrix
addition, 107
augmented, 126, 129
determinant, 113, 114, 123, 151
diagonalization, 563
eigenvalue, 559
eigenvector, 559
equality, 106
Hilbert, 139 (#15)
identity, 112
ill-conditioned, 133, 139 (#15)
inverse, 112, 114
lower triangular, 120, 125 (#2), 143
LU factorization, 141, 143, 150
multiplication, 110, 112, 143, 150
nonsingular, 112
norm, 566
orthogonal, 563, 594
permutation, 148, 150

singular, 113

strictly diagonally dominant, 160,
162, 163

symmetric, 109 (#6), 565, 581, 590,
594

transpose, 104, 108 (#5), 270
triangular, 120, 125 (#2)
tridiagonal, 140 (#1), 166 (#3), 284,
506, 599
Mean of data, 260 (#4, #3, #0)
Mean value theorems
derivative, 5, 45
integrals, 6
intermediate, 3
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weighted integral, 7
Midpoint rule, 366 (#12), 381 (#11)
Milne-Simpson method, 477, 483
Minimax approximation, Chebyshev, 231,
233, 238
Minirnum
golden ratio search, 401, 412
gradient method, 412, 420
Nelder-Mead, 405, 414
Modified Euler method, 465
Muller’s methed, 92, 97
Multiple root, 75, 82, 87 (#21, #23)
Multistep methods
Adams-Bashforth-Moulton  method,
474, 482
Hamming’s method, 484
Milne-Simpson method, 477, 483

N
Natural cubic splines, 284, 285
Near-minimax approximation, 231, 233.
238
Nelder-Mead, 405, 414
Nested Multiplication, 10, 221
Neumann boundary conditions, 541, 545
Newton divided differences, 223
Newton polynomial, 220, 224, 227
Newton systems, 176, 179
Newton's method
multiple roots, 75, 82, 87 (#21, #23)
order of convergence, 77
Newton-Cotes formulas, 344
Newton-Raphson formula, 82, 84, 88
(#23), 176, 179
Nodes, 203, 207, 211, 213, 234, 344, 389
Norm
Euclidean, 103, 162, 163
matrix, 566
Normal equattons, 255
Numerica] differentiation, 313, 314, 320,
329, 333
backward differences, 334
central differences, 313, 314, 329,
340 (#7, #8)
error formula, 313, 314, 314, 318
forward differences, 334, 341 (#13)
higher derivatives, 329, 333
Richardson extrapolation, 320
Numerical integration
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adaptive quadrature, 382, 387

Boole's rule, 344, 372, 375, 380 (#3,
#4), 389 (#3)

composite rules, 350, 354, 358, 363

cubic splines, 296 (#12)

Gauss-Legendre  integration, 389,
392, 354

midpoint rule, 366 (#12), 381 (#11)

Newton-Cotes, 344

Romberg integration, 373, 375, 377,
378, 381 (#11)

Simpson’s rule, 344, 353 (#9), 354,
359, 363, 370, 380 (#6), 387

Trapezoidal rule, 344, 354, 358, 363,
368, 377

(0]
o™, 29, 32, 214, 313, 314, 329, 333,
373, 377, 437, 445, 452, 461,
475, 477, 508, 517, 527, 538
QOdd function, 301
Optimization
golden ratio search, 401, 412
gradient method. 412, 420
Nelder-Mead, 405, 414
Optimum step size
differential equations, 466, 476, 479
differentiation, 316, 317
integration, 358, 382
interpolation, 213, 234
Order
of approximation, 29, 32, 214, 313,
329, 333, 373, 377
of convergence, 32, 75
Orthogonal polynomials, Chebyshev, 238

P
Padé approximation, 243, 246
Parabolic equation, 526
Partial derivative, 517, 527, 538
Partial differential equations, 514, 516,
526, 538
elliptic equations, 538
hyperbolic equations, 516
parabolic equations, 526
Partial pivoting, 133
Periodic function, 298
Piecewise
continuous, 298

cubic, 281
linear, 280
Pivoting
element, 127
row, 127
strategies, 131, 133
Plane rotations, 115, 581
Poisson’s equation, 538, 548
Polynomials
calculus, 204
characteristic, 559
Chebyshev, 230, 233, 238, 240
derivative, 204, 334, 336
interpolaticn, 204, 207, 210, 211,
217,224, 227,238
Lagrange, 207, 211, 213, 236
Newton, 220, 224, 227
Taylor, 8, 26, 31, 189, 313, 329
trigonometric, 297, 303, 306
wiggle, 273
Power method, 568, 570, 573, 576
Predator-prey model, 495 (#13)
Predictor-corrector method, 474
Projectile motion, 73, 442 (#8), 450 (#6}
Propagation of error, 32

Q
R method, 606
Quadratic convergence, 76, 77, 82, 87
(#21, #23)
Quadratic formula, 39 (#12)
Quadrature
adaptive quadrature, 382, 387
Boole's rule, 344, 372, 375, 380 (#3,
#4), 389 (#3)
composite rules, 350, 354, 358, 363
cubic spiines, 296 (#12)
Gauss-Legendre  integration, 389,
392, 394
midpoint rule, 366 (#12), 381 (#11)
Newton-Cotes, 344
Romberg integration, 373, 375, 377,
378, 381 (#11)
Simpson’s rule, 344, 353 (#9), 354,
359, 363, 370, 380 (#6), 387
Trapezoidal rule, 344, 354, 358, 363,
368, 377

INDEX

R
Radicactive decay, 432 (#17)
Rational function, 243
Regula falsi method, 56, 60
Relative error, 24, 66
Residual, 167 (#5), 253
Richardson
differential equations, 449 (#7), 456
(#6), 471 (#7)
namerical differentiation, 320, 322
nurnerical integration, 375
Rolle’s theorem, 5, 6, 198 (#20), 212, 219
(#13)
Romberg integration, 373, 375, 377, 378,
381 (#11D)
Root
location, 68
multiple, 75, 82, 87 (#21, #23)
of equation, 53, 75
simple, 75, 77, 87 (#22)
synthetic division, 10, 200
Root finding
bisection, 53, 54, 59
Muller, 92, 97
multiple roots, 75, 82, 87 {(#21, #23)
Newton, 82, 84, 88 (#23), 176, 179
guadratic function, 39 (#12)
regula falsi, 36, 60
secant, 80, 84, 87 (#2(0)
Steffensen, 92, 95
Root-mean-square error, 253
Rotation, 115, 581
Rounding error, 27
differentiation, 313, 314, 316, 318
floating point number, 21
Row operations, 127
Runge phenomenon, 236
Runge-Kutta methods, 458, 461, 466, 468,
488, 502
Fehlberg method, 466, 469
Richardson extrapolation, 471 (#7)
systems, 488

S
Scaled partial pivoting, 133
Schur, 563
Scientific notation, 19
Secant method, 80, 84, 87 (#20)
Seidel iteration, 174, 179
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Sequence, 3, 41
convergent, 3
error, 3
geometric, 16, 51
Sequenttal integration
Boole, 372, 375
Simpson, 370, 375
trapezoidal, 369, 375, 377
Series
binomial, 196 {#10)
convergence, 8, 99 (#10-#14), 189,
194
geometric, 16, 51
Maclaurin, 243
Taylor, 8, 26, 31, 189, 313, 329
Shooting method, 498, 503
Significant digits, 25
Similanty transformation, 582
Simple root, 75, 77, 87 (#22)
Simpson’s rule, 344, 353 (#9), 354, 359,
363, 370, 387
three-eighths rule, 344, 353 (#9), 380
(#6)
Single precision, 22
Single-step methods, 474
Slope methods, 70, 80, 84
SOR method, 545
Spectral radius theorem, 566
Splines
clamped, 284, 285, 293
end constraints, 284
integrating, 296 (#12)
linear, 280
natural, 284, 285
Square-root algorithm, 72
Stability of differential equations, 478, 481
Steepest descent, 412, 420
Steffensen’s method, 92, 95
Step size
differential equations, 466, 476, 479
differentiation, 316, 318
integration, 358, 382
interpolation, 213, 234
Stopping criteria, 58, 62 (#13)
Successive over-relaxation, 545
Surface area, 364 (#3)
Synthetic division, 10, 200
Systems
differential, 487
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linear, 114, 121, 123, 128, 136, 143,
150, 156, 163
nonlinear, 167, 174

T
Taylor series, 8, 26, 31, 189, 313, 329
Taylor’'s method, 451, 452, 455
Termination criterion

bisection method, 58

Newton’s method, 84

regula falsi method, 58, 60

Romberg integration, 378

Runge-Kutta method, 469

_ secant method, 84
Transformation, elementary, 125
Trapezoidal rule, 344, 354, 358, 363, 369,
377

Triangular factorization, 141, 143, 149
Trigonometric polynomials, 297, 303, 306
Truncation etror, 26, 313, 314

U
Unimodal function, 402
Unstable error, 33
Upper-triangularization, 136, 150

v
Vectors
dot product, 103
Euclidean norm, 103, 162, 163

W
Wave equation, 516, 519
Weights, for integration rules, 344, 393
Wiggle, 273

Z
Zeros
of Chebyshev pelynomials, 232
of functions, 53, 75
root finding, 40, 51, 70, 90, 167, 174



