Applied mathematics

Faculty of	Mechanical and Power Engineering
Name in English	Applied mathematics
Name in Polish	Matematyka stosowana
Main field of study	Power Engineering
Specialization	-
Level of studies	II level
Form of studies	full-time
Kind of subject	obligatory
Subject code	W09ENG-SM2331
Group of courses	NO

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	50	50			
Form of crediting	Egzamin	Zaliczenie			
For group of courses mark final course with (X)					
Number of ECTS points	2	2			
including number of ECTS points for practical (P) classes		2			
including number of ECTS points for direct teacher-student contact (BU) classes	1,44	1,28			

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

Basic knowledge from algebra and vector analysis Basic knowledge from summing methods	1.	Basic knowledge from differential and integral calculus
2 Desig knowledge from numerical methods	2.	Basic knowledge from algebra and vector analysis
3. Basic knowledge from numerical methods	3.	Basic knowledge from numerical methods

SUBJECT OBJECTIVES

C1	Presentation of selected ordinary and partial differential equations necessary to understand the mathematical
CI	description of physical phenomena occurring in devices and technical processes.
<u></u>	Familiarization with the techniques of solving selected ordinary and partial differential equations with the use of
	analytical and numerical methods.

SUBJECT LEARNING OUTCOMES

relating to	knowledge:
	Student understands how the physical aspect of processes occurring in technology is described
PEO_WOI	mathematically in the form of algebraic and differential equations.
	When dealing with a mathematical problem (e.g. an algebraic or differential equation), student distinguishes
PE0_W02	between exact and approximate solutions and understands the relationships between them.
relating to skills:	
	Student can indicate equations (algebraic or differential) describing physical phenomena in the studied
PE0_001	technical processes.
PEU_U02	Student is able to select a correct tools to solve an identified mathematical problem.

	Student is able to solve ordinary or partial differential equations using appropriate analytical and numerical
PE0_005	methods, assess their accuracy and interpret the physical and technical meaning of the obtained results.
relating to s	social competences:
PEU_K01	-

PROGRAMME CONTENT

	Form of classes - lecture	Number of hours
Wy1- Wy4	Ordinary differential equations of the first order. Analytical methods of solving them. Selected numerical methods used to solve first order ordinary differential equations - examples of application.	8
Wy5- Wy7	Ordinary linear differential equations of the second order. Analytical methods of solving them. Selected numerical methods used to solve ordinary differential equations of the second order - examples of application.	6
Wy8	Second order partial differential equations. Canonical form. Fourier series.	2
Wy9- Wy10	Parabolic equations. Analytical methods of solving them. Selected numerical methods used to solve parabolic equations - examples of application.	4
Wy11- Wy12	Elliptic equations. Analytical methods of solving them. Selected numerical methods used to solve elliptic equations - examples of application.	4
Wy13-14	Hyperbolic equations. Analytical methods of solving them. Selected numerical methods used to solve hyperbolic equations - examples of application.	4
Wy15	An example of solving ordinary and partial differential equations using the functions available in the Matlab software.	2
Suma godz	zin	30

	classes	Number of hours
Cw1-Cw4	Ordinary differential equations of the first order - methods of solving them and examples of their application.	8
Cw5-Cw7	Linear ordinary differential equations of the second order - methods of solving them and examples of their application.	6
Cw8	Canonical form - solving tasks. Fourier series - examples of application.	2
Cw9-	Parabolic equations - examples of application.	4
Cw10		
Cw11-	Elliptic equations - examples of application.	4
Cw12		
Cw13-	Hyperbolic equations - examples of application.	4
Cw14		
Cw15	Written test	2
Suma godz	in	30

TEACHING TOOLS USED	
N1	Lecture with the use of multimedia (presentation - slides).
N2	Calculation exercises supported by software.
N3	Consultation

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F– forming (during semester), C– concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
P1	PEU_W01- PEU_W02	Written exam
P2	PEU_U01- PEU_U03	Written test

PRIMARY AND SECONDARY LITERATURE

Prima	Primary literature	
1	M. Abell, J. Braselton: Differential Equations with Mathematica, Elsevier 2004	
2	J. Mathews, K. Fink: Numerical Methods Using MATLAB, Pearson Education 2004	
3	W. Cheney, D. Kincaid: Numerical Mathematics and Computing, Thomson Brooks 2008	
Secor	Secondary literature	
1	G. Dahlquist, A. Bjorck: Numerical Methods in Scientific Computing, SIAM 2007	

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Imię i nazwisko:	Paweł Regucki
E-mail:	pawel.regucki@pwr.edu.pl