Mechatronics and control systems

Faculty of	Mechanical and Power Engineering	
Name in English	Mechatronics and control systems	
Name in Polish	Mechatronika i systemy sterowania	
Main field of study	Power Engineering	
Specialization	-	
Level of studies	II level	
Form of studies	full-time	
Kind of subject	obligatory	
Subject code	W09ENG-SM2333	
Group of courses	NO	

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	50		50		
Form of crediting	Zaliczenie		Zaliczenie		
For group of courses mark final course with (X)					
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes			2		
including number of ECTS points for direct teacher-student contact (BU) classes	1,28		1,36		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1.	Basic competences in mathematics and p	hysics as acquired on the 1st level	studies
-			

2. Basic knowledge of electric circuit theory and electromagnetism as acquired on the 1st level studies.

SUBJECT OBJECTIVES

	C1 Acquisition of the basic knowledge regarding the following parts of a mechatronic system:
C1	C1.1 Sensors of physical quantities
	C1.2 Actuators
	C1.3 Control systems and devices – microcontrollers, PLC controllers.
	C2 Acquisistion of the basic qualifications regarding:
C2	C2.1 The design methodology of the structure of a mechatronic system
	C2.2 The parametrization of the components deployed in a mechatronic system
	C2.3 Design and software implementation of the control algorithm for a control system.
	C3 Social competence enhancement
C3	C3.1 Acquiring and enhancing of the social competences regarding teamwork and co-operation during
	implementation of projects.

SUBJECT LEARNING OUTCOMES

relating to	relating to knowledge:	
PEU_W01	the student is able to define a model of a mechatronic system	
PEU_W02	PEU_W02 the student has the basic knowledge regarding sensors	
PEU_W03 the student knows the fundamentals of microcontroller programming		

PEU_W04	the student knows the fundamentals of PLC programming		
PEU_W05	the student is familiar with the internal structure & operation of a microcontroller		
relating to	skills:		
PEU_U01	the student is able to define and evaluate the technical parameters of a mechatronic system		
PEU_U02	the student is able to design & assemble a simple test circuit with a microcontroller		
PEU_U03	the student is able to specify and select sensors and actuators for a particular mechatronic system		
PEU_U04	the student is capable of writing of simple control programs for a PLC controller used in a particular		
PE0_004	technological process		
PEU_U05	the student is able to design and build a simple mechatronic system using a PLC controller together with		
PE0_003	sensors and actuators		
relating to social competences:			
PEU_K01	1 the student is able to search for technical information by his own hand		
PEU_K02	the student is prepared to mutual co-operation during teamwork		

PROGRAMME CONTENT

	Form of classes - lecture	Number of hours
Wy1	Introduction, Basic ideas, relations between mechatronics and other scientific disciplines	2
Wy2	Programmable control systems – an introduction. Process algorithms, Turing machine, von Neumann computer architecture.	
		2
Wy3	Microcontrollers – an introduction, basic ideas, internal architecture	2
Wy4	Microcontrollers – programming methods	2
Wy5	Microcontrollers – interfacing to I/O devices	2
Wy6	Microcontrollers – examples of applications, mobile robots.	2
Wy7	Sensors of fundamental physical quantities (pressure, temperature, displacement)	2
Wy8	Encoders, position sensors, examples of applications.	2
Wy9	Elements of motion transfer systems (gears, clutches, lead screw drives)	2
Wy10	Examples of mechatronic components application – CNC machines	2
Wy11	Mechatronics in biomedical applications – a pneumatic blood pressure wave sensor	2
Wy12	PLC controllers – an introduction, basic ideas.	2
Wy13	PLC controllers – a survey of market solutions and system architectures	2
Wy14	PLC controllers – programming methods, language-based coding of algorithm, exemplary programs	2
Wy15	PLC controllers – large control systems, SCADA software.	2
Total Ho	urs	30

laboratory		
La1	Presentation of the course, introduction, safety rules training	2
La2	Microcontrollers – development system with a mictrocontroller (an introduction)	2
La3	C language compiler for microcontrollers – an introduction	2
La4	Interfacing of LED diodes and microswitches with I/O ports of microcontroller	2
La5	Stepping motor service routines using I/O port of a microcontroller.	2
La6	LED display control using microcontroller	2
La7	An alphanumeric LCD display control with a microcontroller	2
La8	Built-in peripheral devices: A/D converter and serial port service routines.	2
La9	Programmable Logic Controllers (PLC) – an introduction. Interfacing of I/O signals to a PLC.	2
La10	PLC – ladder diagram programming (an introduction)	2
La11	PLC – timers and counters service routines	2

La12	PLC – programming of PLC operator panel and extension modules	2
La13	PLC – programming of modular production systems (MPS)	2
La14	PLC – implementation of an individual project, advanced programming methods	2
La15	5 Additional activities, final assessment.	
Total Hours		30

TEACHING TOOLS USED		
N1	Lecture:	General lecture, multimedia presentation
N2	Laboratory:	Lab report preparation, self-study accompanied by lab instruction sheets
N3	Consultations	with the tutor

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F– forming (during semester), C– concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
	PEU_W01,PEU_W07, PEU_U01,PEU_U07, PEU_K01,PEU_K02	Written examination
		Lab reports assessment, micro-tests during lab sessions
P1=F1 (lecture), P2=F2 (laboratory)		

PRIMARY AND SECONDARY LITERATURE

Prima	Primary literature		
1	Cetinkunt S., Mechatronics with Experiments, Wiley 2015		
2	Michael B. Histand, David G. Alciatore, Introduction to mechatronics and measurement systems, McGraw-Hill		
Z	Education, 2007		
3	Jędrusyna A., Tomczuk K., Mechatronics and Control Systems Handbook. Wyd. PWr 2010.		
Seco	ndary literaturę		
1	Dorf. R.C, Modern control systems, 12th Ed., Prentice-Hall 2011		
12			

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Imię i nazwisko:	Artur Jędrusyna
E-mail:	artur.jedrusyna@pwr.edu.pl