LEARNING OUTCOMES FOR THE FIELD OF STUDY

(Assumed educational effects)

Faculty: Mechanical and Power Engineering Field of study: Power Engineering (ENG)

Level of study: II (post-graduate)

The area of study:

Field of study Power Engineering belongs to the domain of technical sciences and is related to such majors as *Mechanical Engineering and Machine Building, Environmental Engineering, Electrical Engineering, Process Engineering and Chemical Technology.*

An applicant for the admission to the Master's degree in Power Engineering must have undergraduate degree and possess competencies to continue education at post-graduate level in this field of study. The candidate should have in particular the following abilities:

- knowledge of physics and mathematics that enables understanding of the fundamentals of physical phenomena used in the power engineering sector and to formulate and solve simple design tasks in the field of power engineering,
- knowledge and skills in the field of mechanics, electronics, electrical engineering, materials science, metrology, fluid mechanics, thermodynamics and the basics of machine design, enabling the measurement, analysis and design of simple components and power systems,
- ability to use, to formulate and solve engineering tasks, experimental and design methods,
- knowledge and skills in methodology and design techniques, enabling the formulation of a simple engineering problem and develop the solution using appropriate information tools,
- skills of interpretation, presentation and documentation of the experiment results, and the presentation and documentation of the project tasks.

The candidate who on completion of first stage of study and other forms of education did not receive the above-mention competences, may take a second stage of study at the field of Power Engineering, if the deficiency of competences can be achieved by the completion of classes in dimension not more than 30 ECTS credits.

The reference to the learning outcomes for second stage of study in the area corresponding to an area of technical sciences

In view of the fact that a person who studies a second stage of study in Power Engineering gained on completion of first stage of study necessary competence to take it or - in the absence of some of the skills required - can be supplemented as a result of activities in dimension not more than 30 ECTS credits, description learning outcomes for the second stage of study does not necessarily refer to all the learning outcomes listed in the description of the qualifications of the second stage of study in the field of education corresponding to an area of technical sciences (second stage of study description includes the combined effects of education achieved at the undergraduate and postgraduate education).

Description of learning outcomes for the study of a second stage of study in Power Engineering does not apply to the following learning outcomes listed in the description of the qualifications of the second stage of study in the field of education corresponding to an area of technical sciences: T2A_W10.

A graduate of the second stage of study must have the competences defined by learning outcomes listed below. This does not mean, however, that all of these effects must be achieved from the implementation of the second stage of study, the part can be achieved at the undergraduate level, and - to a limited extent - as a result of non-formal and informal learning.

Explanation of symbols:

K – learning outcomes for the field of study

S – learning outcomes for specialization

W – category of knowledge

U – category of skill

K (after the underscore) – category of social competencies

T – the area of study in the field of technical sciences

2 – post-graduate studies,

A – general profile

Learning	DESCRIPTION OF THE MAIN LEARNING	Reference to
outcome for	OUTCOMES	learning
post-graduate		outcomes for
studies in the	After completion of the post-graduate studies in the	the area of
field of study:	field of Power Engineering, the graduate:	technical
ENG		sciences (T)
	KNOWLEDGE	
K2ENG_W01	has ordered knowledge of probabilistics useful to	T2A_W01
	formulate and solve power engineering problems	
K2ENG_W02	has ordered knowledge of numerical methods suitable to	T2A_W01
	solve simple engineering problems	
K2ENG_W03	has ordered knowledge of quantum physics needed to	T2A_W01
	understand the processes used in the power engineering	T2A_W03
	and cryogenics	
K2ENG_W04	has knowledge of the development trends and the most	T2A_W05
	important achievements of the latest technologies used in	T2A_W08
	the power industry, the development trends and problems	
	in their implementation	
K2ENG_W05	knows the basic tools for the formulation of mathematical	T2A_W07
	models describing the properties of power systems, their	
	identification and optimization	
K2ENG_W06	has knowledge necessary to understand the social,	T2A_W08
	economic, legal and other non-technical considerations	T2A_W09
	engineering activities, including the management and	T2A_W11
	conduct of business, including in the area of individual	
	entrepreneurship	
K2ENG_W07	knows methods of planning of energy systems at the local	T2A_W03
	and regional scale; knows diagnostic systems and	T2A_W09
	network control systems; knows the technical and	
	economic issues associated with the production and	
	distribution of electricity	

	-	
	achieves results in the category KNOWLEDGE for one of the following specializations:	
	• Renewable Sources of Energy (OZE) - Appendix 4	
	SKILLS	
K2ENG_U01	can obtain information from the literature and other	T2A_U01
_	sources; can suggest improvements to existing solutions;	T2A_U16
	can design energy systems	T2A_U19
K2ENG_U02	is able to communicate using a variety of techniques in a	T2A_U02
	professional environment in the range of field study; can	T2A_U04
	predict the directions of self-study in connection with	
	realization of the thesis	
K2ENG_U03	is able to obtain information from various sources, can	T2A_U03
	make a preliminary economic analysis, is able to prepare	T2A_U05
	a study on the results of their own research	
K2ENG_U04	has language skills in the fields of science and scientific	T2A_U06
	disciplines relevant to the Power engineering in	
	accordance with the requirements for level B2 +	
K2ENG_U05	European Framework of Reference for Languages is able to - in formulating and solving engineering tasks -	T2A_U09
KZENG_UU3	integrate knowledge of power engineering and probability	T2A_U10
K2ENG_U06	is able to - in formulating and solving engineering tasks -	T2A_U08
RZENG_COO	integrate knowledge of power engineering and numerical	T2A_U10
	methods	1211_010
K2ENG_U07	is able to plan and carry out computer modeling of energy	T2A_U08
_	installations	T2A_U09
		T2A_U11
		T2A_U17
		T2A_U18
K2ENG_U08	is able to plan energy systems on a local scale, and to	T2A_U10
	identify diagnostic systems and network control systems,	T2A_U13
	and the technical and economic issues associated with the	T2A_U15
MAENIC HOO	production and distribution of electricity	TO 4 1100
K2ENG_U09	has language skills in the discipline of Power engineering	T2A_U02
	according to the requirements for level A1 or A2	
	European Framework of Reference for Languages achieves results in the category SKILLS for one of the	
	_ ·	
	following specializations:	
	• Renewable Sources of Energy (OZE) - Appendix 4 SOCIAL COMPETENCIES	
K2ENG_K01		T1 A V01
KZĽINU_KUI	understands the need to improve professional, personal and social skills; identifies and resolves dilemmas	T1A_K01 T1A_K05
	associated with his profession	117-1303
K2ENG_K02	is aware of the importance of non-technical aspects and	T1A_K02
1122110_1102	impacts of social engineering and the role of university	T1A_K02
	graduates	
K2ENG_K03	is able to work in a group and assume different roles	T2A_K03
K2ENG_K04	can properly identify priorities for implementation of self-	T2A_K04
	defined or appointed tasks	
K2ENG_K05	is able to think and act in entrepreneurial manner	T2A_K06
		

LEARNING OUTCOMES FOR SPECIALIZATION

Faculty: Mechanical and Power Engineering Field of study: Power Engineering (ENG)

Level of study: II (post-graduate)

Specialization: RENEWABLE SOURCES OF ENERGY (OZE)

Learning	DESCRIPTION OF THE MAIN LEARNING	Reference to					
outcome for	OUTCOMES	learning					
post-graduate		outcomes for					
studies in	After completion of the post-graduate studies in the	the area of					
specialization:	field of Power Engineering and specialization	technical					
OZE	Renewable Sources of Energy, the graduate:	sciences (T)					
KNOWLEDGE							
S2OZE_W01	has ordered and theoretically founded detailed	T2A_W01					
	knowledge related to matters relating to physical	T2A_W03					
	phenomena and processes used in the renewable energy	T2A_W04					
	sector as well as the most important new developments	T2A_W05					
	and trends in the field of renewable energy sources						
S2OZE_W02	has ordered and detailed knowledge of production	T2A_W02					
	technology, methods of preparation, purification of	T2A_W06					
	hydrogen for professional power engineering	T2A_W07					
S2OZE_W03	has detailed knowledge of issues related to hydropower	T2A_W02					
	plants, hydropower plant construction, also has the	T2A_W07					
	knowledge necessary to understand the ecological	T2A_W08					
	conditions of engineering						
S2OZE_W04	has an in-depth, ordered knowledge of the legal	T2A_W04					
	requirements and methodology for periodic measuring	T2A_W08					
	and monitoring pollutant emissions						
S2OZE_W05	has theoretically founded a detailed knowledge of the	T2A_W02					
	systems implementing thermodynamic cycle (for	T2A_W04					
	heating) and methods of use of waste and low-						
	parameters heat sources						
S2OZE_W06	has theoretically founded detailed knowledge of issues	T2A_W04					
	related to wind energy	T2A_W06					
		T2A_W07					
S2OZE_W07	has ordered knowledge of geothermal energy	T2A_W03					
S2OZE_W08	has theoretically founded detailed knowledge in the field	T2A_W03					
	of energy production from biomass	T2A_W04					
S2OZE_W09	has an expanded knowledge of solar energy conversion	T2A_W02					
	into heat and solar systems.						
	SKILLS						
S2OZE_U01	is able to obtain information from literature, databases and	T2A_U01					
	other sources, is able to prepare (also in the group) a	T2A_U12					
	computational design dossier of simple energy system	T2A_U14					
	based on renewable energy sources, taking into account the						
	preliminary economic analysis; can do a critical						

		I
	evaluation, draws conclusions and formulates and fully justify opinions	
S2OZE_U02	is able to prepare and give a presentation on a topic	T2A_U01
	related to energy from renewable sources and lead a	T2A_U04
	discussion regarding the above presentation, as well as	T2A_U05
	to assess the discussion	
S2OZE_U03	is able to plan and carry out experiments related to the	T2A_U08
	production of hydrogen and to interpret the results and	
	draw conclusions	
S2OZE_U04	is able to specify the required parameters for various	T2A_U01
	types of hydropower stations	T2A_U07
		T2A_U09
		T2A_U15
S2OZE_U05	can formulate design specifications of components of	T2A_U01
	the hydropower station system	T2A_U07
		T2A_U09
		T2A_U15
S2OZE_U06	can formulate measuring specifications of components	T2A_U17
	of systems for measurement and monitoring of pollution	T2A_U18
S2OZE_U07	is able to design systems performing thermodynamic	T2A_U08
	cycle (for heating) and using the waste and low-	T2A_U09
	parameters heat sources; provides the thermodynamic,	
	energy, technical and economic analysis for local	
	technical conditions	
S2OZE_U08	can formulate design specifications of components of wind	T2A_U01
	power system	T2A_U07
		T2A_U09
		T2A_U15
S2OZE_U09	can formulate design specifications of components of	T2A_U01
	geothermal power plant	T2A_U07
		T2A_U09
		T2A_U15
S2OZE_U10	is able to identify and formulate specifications of complex	T2A_U07
	engineering tasks related to the use of biomass in power	T2A_U15
	engineering	T2A_U17
S2OZE_U11	is able to prepare and present an oral presentation on the	T2A_U04
	use of biomass for power engineering	
S2OZE_U12	can formulate design specifications of a system using	T2A_U19
	solar radiation for heating	
	1	I

MATRIX OF CORRELATION BETWEEN EDUCATIONAL OUTCOMES/ EFFECTS IN THE FIELD OF TECHNICAL SCIENCES AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY

2nd level, main field of study *Power Engineering* (ENG), general academic profile

Legend: CCK – Refrigerating, Heating and Air-Conditioning, ENJ – Nuclear Power Engineering, ENA – Power Engineering and Air Protection, OZE – Renewable Sources of Energy (pl), RSE – Renewable Sources of Energy (English)

Symbol of the	Description of the educational	Reference to edu	ıcational outcom	es for 1 st level, n	nain field of study	y ENG	
educational outcome in the	outcomes/ effects in the field of technical sciences	Main field of		S	pecialization effe	ects	
field of technical sciences		study effects	ССК	ENJ	ENA	OZE	RSE
		K	NOWLEDGE				
T2A_W01	has expanded and broadened knowledge of mathematics, physics and chemistry and other areas related to the studied discipline necessary to formulate and solve complex tasks in the field of the studied discipline	K2ENG_W01 K2ENG_W02 K2ENG_W03	S2CCK_W01 S2CCK_W10	S2ENJ_W01 S2ENJ_W02 S2ENJ_W03	S2ENA_W08 S2ENA_W09	S2OZE_W01	S2RSE_W01 S2RSE_W04
T2A_W02	has detailed knowledge in the field of study related to the studied discipline		S2CCK_W02 S2CCK_W03 S2CCK_W05 S2CCK_W08 S2CCK_W09 S2CCK_W10		S2ENA_W01 S2ENA_W02 S2ENA_W05	S2OZE_W02 S2OZE_W03 S2OZE_W05 S2OZE_W09	S2RSE_W02 S2RSE_W03 S2RSE_W05 S2RSE_W09
T2A_W03	has organized, general knowledge and theoretical grounding including key issues related to the studied discipline	K2ENG_W03 K2ENG_W07	S2CCK_W08	S2ENJ_W08 S2ENJ_W09	S2ENA_W01 S2ENA_W06	S2OZE_W01 S2OZE_W07 S2OZE_W08	S2RSE_W01 S2RSE_W04 S2RSE_W07 S2RSE_W08
T2A_W04	has detailed knowledge and		S2CCK_W01	S2ENJ_W02	S2ENA_W07	S2OZE_W01	S2RSE_W01

	theoretical grounding connected		S2CCK_W02	S2ENJ_W03	S2ENA_W08	S2OZE_W04	S2RSE_W04
	with the chosen issues in the field		S2CCK_W04	S2ENJ_W05		S2OZE_W05	S2RSE_W05
	of the studied discipline		S2CCK_W06	S2ENJ_W06		S2OZE_W06	S2RSE_W06
			S2OZE_W06	S2ENJ_W07		S2OZE_W08	S2RSE_W08
			S2CCK_W09				
			S2CCK_W12				
T2A_W05	has knowledge of trends in	K2ENG_W04	S2CCK_W03	S2ENJ_W02	S2ENA_W03	S2OZE_W01	S2RSE_W01
	development and the most crucial		S2CCK_W05	S2ENJ_W03	S2ENA_W04		S2RSE_W04
	and newest achievements in		S2CCK_W11	S2ENJ_W06	S2ENA_W09		
	scientific disciplines and fields of		S2CCK_W12		S2ENA_W10		
	study related to the studied						
	discipline and other related scientific disciplines						
T2A_W06	has fundamental knowledge of the		S2CCK_W08	S2ENJ_W06	S2ENA_W05	S2OZE_W02	S2RSE_W02
	lifecycle of devices, objects and					S2OZE_W06	S2RSE_W06
	technical systems						
		WATENIA WAS	GAGGIL MIGA	GOENIL IIIO	COENT TIO	G207F 11/02	GARGE WAS
T2A_W07	knows fundamental methods,	K2ENG_W05	S2CCK_W02	S2ENJ_W01	S2ENA_W01	S2OZE_W02	S2RSE_W02
	techniques, tools and materials used		S2CCK_W06		S2ENA_W02	S2OZE_W03	S2RSE_W03
	for solving simple engineering tasks in the field of the studied				S2ENA_W03	S2OZE_W06	S2RSE_W06
	discipline				S2ENA_W04		
	discipline				S2ENA_W05		
					S2ENA_W06		
					S2ENA_W07		
					S2ENA_W08		
					S2ENA_W09		
TEGA XXIOO	1 6 1 11 11	TOTAL TITLE	GAGGIL MAGA	COENT MAG	S2ENA_W10	G207E 11/2	GADGE WAS
T2A_W08	has fundamental knowledge	K2ENG_W04	S2CCK_W03	S2ENJ_W02	S2ENA_W02	S2OZE_W03	S2RSE_W03
	necessary to understand social,	K2ENG_W06	S2CCK_W04		S2ENA_W09	S2OZE_W04	
	economical ,legal and other non- technical factors of engineering		S2CCK_W07		S2ENA_W10		
	activities as well as taking them		S2CCK_W10				
	into consideration in engineering						
	into consideration in engineering						

	practice						
T2A_W09	has fundamental knowledge of	K2ENG_W06	S2CCK_W01				
	management, including quality	K2ENG_W07	S2CCK_W06				
	management and running a		S2CCK_W10				
	business		_				
T2A_W10	knows and understands basic						
	concepts and rules related to						
	industrial property protection and						
	copyright laws and knows the						
	necessity of these laws and rules in						
	managing intellectual property						
	resources; is able to use patent						
	information resources						
T2A_W11	knows general rules related to	K2ENG_W06					
	establishing and developing						
	individual entrepreneurial activity,						
	using knowledge of scientific						
	disciplines and fields of study						
	related to the studied discipline						
	4)		SKILLS				
		skills (not relate		ngineering educ	cation)		GAD GD 7101
T2A_U01	is able to obtain information from	K2ENG_U01	S2CCK_U02			S2OZE_U01	S2RSE_U01
	literature, databases and other		S2CCK_U03			S2OZE_U02	S2RSE_U02
	properly selected sources, either in		S2CCK_U04			S2OZE_U04	S2RSE_U04
	English or another foreign language		S2CCK_U09			S2OZE_U05	S2RSE_U05
	regarded as a language for					S2OZE_U08	S2RSE_U06
	international communication in the					S2OZE_U09	S2RSE_U08
	studied discipline; is able to						S2RSE_U09
	integrate obtained information,						_
	interpret and critically evaluate it,						
	draw conclusions, formulate and						
TO A TIOO	justify opinions in full	MAENIC TIOS	GAGGIT TIO				
T2A_U02	is able to communicate in their	K2ENG_U02	S2CCK_U04				
	professional environment and other	K2ENG_U09	S2CCK_U09				

		1					
	environments using various						
	techniques, either in English or						
	another foreign language regarded						
	as a language for international						
	communication in the studied						
	discipline						
T2A_U03	is able to prepare a scientific study	K2ENG_U03	S2CCK_U04				
	in Polish language and also a short		S2CCK_U07				
	scientific report, with the results of		S2CCK_U09				
	own research, in a foreign						
	language regarded as a basic one in						
	the scientific disciplines and fields						
	of study related to the studied						
	discipline						
T2A_U04	is able to prepare and give an oral	K2ENG_U02	S2CCK_U04	S2ENJ_U08		S2OZE_U02	S2RSE_U02
	presentation concerning detailed		S2CCK_U05			S2OZE_U11	S2RSE_U06
	issues in the field of the studied		S2CCK_U09				S2RSE_U11
	discipline both in Polish and a		_				_
	foreign language						
T2A_U05	is able to establish directions of	K2ENG_U03	S2CCK_U07			S2OZE_U02	S2RSE_U02
	further education and follow the						S2RSE_U06
	process of self-learning						
T2A_U06	has language skills in scientific	K2ENG_U04					
	disciplines and fields of study						
	related to the studied discipline						
	according to CEFR requirements						
	for B2+ level						
		2) fundame	ental engineering	skills			
T2A_U07	is able to use information and		S2CCK_U05	S2ENJ_U08	S2ENA_U01	S2OZE_U04	S2RSE_U04
	communication technologies		S2CCK_U08			S2OZE_U05	S2RSE_U08
	necessary to perform tasks typical					S2OZE_U08	S2RSE_U09
	of engineering activities					S2OZE_U09	S2RSE_U10
						S2OZE_U10	
		1	1			5202E_010	

T2A_U08	is able to plan and run experiments	K2ENG_U06	S2CCK_U01	S2ENJ_U04	S2ENA_U03	S2OZE_U03	S2RSE_U03
_	including measurements and	K2ENG_U07	S2CCK_U06	S2ENJ_U06	_	S2OZE_U07	S2RSE_U07
	computer simulations, interpret	_	S2CCK_U07	S2ENJ_U07		_	_
FD4 - 7700	results and draw conclusions	MATNIC MAS	GAGGII IIOA	COENT TIO	GOENIA TIOS	G20FF 1104	GAD GE TIO
T2A_U09	is able to use analytical, simulation	K2ENG_U05	S2CCK_U02	S2ENJ_U01	S2ENA_U05	S2OZE_U04	S2RSE_U04
	and experimental methods to	K2ENG_U07	S2CCK_U03	S2ENJ_U02	S2ENA_U06	S2OZE_U05	S2RSE_U07
	formulate and solve engineering		S2CCK_U08	S2ENJ_U03	S2ENA_U07	S2OZE_U07	S2RSE_U08
	tasks as well as simple research problems		S2CCK_U11	S2ENJ_U05	S2ENA_U08	S2OZE_U08 S2OZE_U09	S2RSE_U09
T2A_U10	is able - while formulating and	K2ENG_U05	S2CCK_U03				
	solving engineering tasks- to	K2ENG_U06	S2CCK_U11				
	integrate knowledge of scientific	K2ENG_U08	_				
	disciplines and fields of studies						
	appropriate for the specialization						
	and apply the system approach						
	which also takes into account non-						
	technical aspects						
T2A_U11	is able to formulate and test	K2ENG_U07	S2CCK_U01		S2ENA_U01		
	hypotheses connected with		S2CCK_U07		S2ENA_U02		
	engineering problems and simple		S2CCK_U11		S2ENA_U03		
	research problems				S2ENA_U04		
					S2ENA_U05		
					S2ENA_U08		
					S2ENA_U09		
					S2ENA_U10		
T2A_U12	is able to assess the usefulness and		S2CCK_U03	S2ENJ_U03	S2ENA_U05	S2OZE_U01	S2RSE_U01
	possibilities of new achievements		S2CCK_U06		S2ENA_U10		
	(technological and technical) in the						
	field of the studied discipline						
T2A_U13	is prepared to work in an industry	K2ENG_U08		S2ENJ_U08			
	environment and knows safety rules in the workplace						

T2A_U14	is able to carry out primary economic analysis of undertaken		S2CCK_U06	S2ENJ_U05	S2ENA_U01 S2ENA_U02	S2OZE_U01	S2RSE_U01		
	engineering activities				S2ENA_U09				
	3) skills directly connected with solving engineering tasks								
T2A_U15	is able to carry out critical analysis of functioning and also assess – particularly in reference to the studied discipline- existing technical solutions, in particular devices, objects, systems, processes, and services	K2ENG_U08			S2ENA_U01 S2ENA_U02	S2OZE_U04 S2OZE_U05 S2OZE_U08 S2OZE_U09 S2OZE_U10	S2RSE_U04 S2RSE_U08 S2RSE_U09 S2RSE_U10		
T2A_U16	is able to plan improvements in existing technical solutions	K2ENG_U01			S2ENA_U08 S2ENA_U10				
T2A_U17	is able to identify and formulate specifications of complex engineering tasks specific for the studied discipline including untypical tasks considering their non-technical aspects	K2ENG_U07	S2CCK_U10 S2CCK_U12			S2OZE_U06 S2OZE_U10	S2RSE_U10		
T2A_U18	is able to assess the usefulness of methods and tools for solving an engineering task specific for the studied discipline, and notice limitations of these methods and tools; is able – by applying conceptually new methods- to solve complex engineering tasks specific for the studied discipline, including untypical tasks and tasks with a research component	K2ENG_U07				S2OZE_U06			
T2A_U19	is able – according to a given specification which considers non – technical aspects- to design a	K2ENG_U01	S2CCK_U10 S2CCK_U12		S2ENA_U03 S2ENA_U09	S2OZE_U12	S2RSE_U12		

	complex device, object, system or process specific for the studied discipline and complete this project – at least partially- using appropriate methods, techniques					
	and tools, adapting already existing tools or by creating new tools					
	tools of by creating new tools	SOCIAI	L COMPETENC	ES		
T2A_K01	understands the necessity of a lifetime learning process; is able to inspire and organize the process of learning for others	K2ENG_K01				
T2A_K02	realizes the significance and understands non-technical aspects and consequences of engineering activity and especially its influence on the natural environment and the related responsibility for decisions	K2ENG_K02				
T2A_K03	is able to cooperate and work in a group, taking up different roles	K2ENG_K03				
T2A_K04	is able to set clear priorities leading to the realization tasks set by himself or others	K2ENG_K04				
T2A_K05	identifies correctly and solves dilemmas connected with the profession	K2ENG_K01				
T2A_K06	is able to think and act in an entrepreneurial way	K2ENG_K05				
T2A_K07	realizes the social role of technical university graduates and especially understands the need to formulate information and share it with society, e.g. through mass media, in relation to achievements in	K2ENG_K02				

environmental engineering and			
other aspects of engineering			
activity; makes attempts at sharing			
such information and opinions in an			
understandable way			