LEARNING OUTCOMES FOR THE FIELD OF STUDY

(Assumed educational effects)

Faculty: Mechanical and Power Engineering Field of study: Power Engineering (ENG)

Level of study: II (post-graduate)

The area of study:

Field of study Power Engineering belongs to the domain of technical sciences and is related to such majors as *Mechanical Engineering and Machine Building, Environmental Engineering, Electrical Engineering, Process Engineering and Chemical Technology.*

An applicant for the admission to the Master's degree in Power Engineering must have undergraduate degree and possess competencies to continue education at post-graduate level in this field of study. The candidate should have in particular the following abilities:

- knowledge of physics and mathematics that enables understanding of the fundamentals of physical phenomena used in the power engineering sector and to formulate and solve simple design tasks in the field of power engineering,
- knowledge and skills in the field of mechanics, electronics, electrical engineering, materials science, metrology, fluid mechanics, thermodynamics and the basics of machine design, enabling the measurement, analysis and design of simple components and power systems,
- ability to use, to formulate and solve engineering tasks, experimental and design methods,
- knowledge and skills in methodology and design techniques, enabling the formulation of a simple engineering problem and develop the solution using appropriate information tools,
- skills of interpretation, presentation and documentation of the experiment results, and the presentation and documentation of the project tasks.

The candidate who on completion of first stage of study and other forms of education did not receive the above-mention competences, may take a second stage of study at the field of Power Engineering, if the deficiency of competences can be achieved by the completion of classes in dimension not more than 30 ECTS credits.

The reference to the learning outcomes for second stage of study in the area corresponding to an area of technical sciences

In view of the fact that a person who studies a second stage of study in Power Engineering gained on completion of first stage of study necessary competence to take it or - in the absence of some of the skills required - can be supplemented as a result of activities in dimension not more than 30 ECTS credits, description learning outcomes for the second stage of study does not necessarily refer to all the learning outcomes listed in the description of the qualifications of the second stage of study in the field of education corresponding to an area of technical sciences (second stage of study description includes the combined effects of education achieved at the undergraduate and postgraduate education).

Description of learning outcomes for the study of a second stage of study in Power Engineering does not apply to the following learning outcomes listed in the description of the qualifications of the second stage of study in the field of education corresponding to an area of technical sciences: T2A_W10.

A graduate of the second stage of study must have the competences defined by learning outcomes listed below. This does not mean, however, that all of these effects must be achieved from the implementation of the second stage of study, the part can be achieved at the undergraduate level, and - to a limited extent - as a result of non-formal and informal learning.

Explanation of symbols:

K – learning outcomes for the field of study

S – learning outcomes for specialization

W – category of knowledge

U – category of skill

K (after the underscore) – category of social competencies

T – the area of study in the field of technical sciences

2 – post-graduate studies,

A – general profile

Learning outcome for post-graduate	DESCRIPTION OF THE MAIN LEARNING OUTCOMES	Reference to learning outcomes for				
studies in the	After completion of the post-graduate studies in the	the area of				
field of study: ENG	field of Power Engineering, the graduate:	technical sciences (T)				
	KNOWLEDGE					
K2ENG_W01	has ordered knowledge of probabilistics useful to formulate and solve power engineering problems	T2A_W01				
K2ENG_W02	has ordered knowledge of numerical methods suitable to solve simple engineering problems	T2A_W01				
K2ENG_W03	has ordered knowledge of quantum physics needed to understand the processes used in the power engineering and cryogenics	T2A_W01 T2A_W03				
K2ENG_W04	has knowledge of the development trends and the most important achievements of the latest technologies used in the power industry, the development trends and problems in their implementation	T2A_W05 T2A_W08				
K2ENG_W05	knows the basic tools for the formulation of mathematical models describing the properties of power systems, their identification and optimization	T2A_W07				
K2ENG_W06	has knowledge necessary to understand the social, economic, legal and other non-technical considerations engineering activities, including the management and conduct of business, including in the area of individual entrepreneurship	T2A_W08 T2A_W09 T2A_W11				
K2ENG_W07	knows methods of planning of energy systems at the local and regional scale; knows diagnostic systems and network control systems; knows the technical and economic issues associated with the production and distribution of electricity	T2A_W03 T2A_W09				

	achieves results in the category KNOWLEDGE for one of the following specializations:	
	Refrigerating, Heating and Air Conditioning (CCK) -	
	Appendix 1Power Engineering and Air Protection (ENA) -	
	Appendix 2	
	• Nuclear Power Engineering (ENJ) - Appendix 3	
	• Renewable Sources of Energy (OZE) - Appendix 4	
	SKILLS	<u> </u>
K2ENG_U01	can obtain information from the literature and other	T2A_U01
	sources; can suggest improvements to existing solutions;	T2A_U16
***************************************	can design energy systems	T2A_U19
K2ENG_U02	is able to communicate using a variety of techniques in a	T2A_U02
	professional environment in the range of field study; can	T2A_U04
	predict the directions of self-study in connection with realization of the thesis	
K2ENG_U03	is able to obtain information from various sources, can	T2A_U03
_	make a preliminary economic analysis, is able to prepare	T2A_U05
	a study on the results of their own research	
K2ENG_U04	has language skills in the fields of science and scientific	T2A_U06
	disciplines relevant to the Power engineering in	
	accordance with the requirements for level B2 +	
MARNIG HOS	European Framework of Reference for Languages	TO 4 1100
K2ENG_U05	is able to - in formulating and solving engineering tasks -	T2A_U09
K2ENG_U06	integrate knowledge of power engineering and probability is able to - in formulating and solving engineering tasks -	T2A_U10 T2A_U08
K2ENG_000	integrate knowledge of power engineering and numerical	T2A_U10
	methods	12/1_010
K2ENG_U07	is able to plan and carry out computer modeling of energy	T2A_U08
	installations	T2A_U09
		T2A_U11
		T2A_U17
KOENC HOO		T2A_U18
K2ENG_U08	is able to plan energy systems on a local scale, and to	T2A_U10
	identify diagnostic systems and network control systems, and the technical and economic issues associated with the	T2A_U13 T2A_U15
	production and distribution of electricity	1211_015
K2ENG_U09	has language skills in the discipline of Power engineering	T2A_U02
	according to the requirements for level A1 or A2	
	European Framework of Reference for Languages	
	achieves results in the category SKILLS for one of the	
	following specializations:	
	Refrigerating, Heating and Air Conditioning (CCK) -	
	Appendix 1	
	 Power Engineering and Air Protection (ENA) - Appendix 2 	
	 Nuclear Power Engineering (ENJ) - Appendix 3 	
	 Renewable Sources of Energy (OZE) - Appendix 4 	
	Tenewhole boulees of Energy (OZE) - Appendix 4	
	<u>I</u>	I

SOCIAL COMPETENCIES			
K2ENG_K01	understands the need to improve professional, personal	T1A_K01	
	and social skills; identifies and resolves dilemmas	T1A_K05	
	associated with his profession		
K2ENG_K02	is aware of the importance of non-technical aspects and	T1A_K02	
	impacts of social engineering and the role of university	T1A_K07	
	graduates		
K2ENG_K03	is able to work in a group and assume different roles	T2A_K03	
K2ENG_K04	can properly identify priorities for implementation of self-	T2A_K04	
	defined or appointed tasks		
K2ENG_K05	is able to think and act in entrepreneurial manner	T2A_K06	

Faculty: Mechanical and Power Engineering Field of study: Power Engineering (ENG)

Level of study: II (post-graduate)

Specialization: REFRIGERATING, HEATING AND AIR-CONDITIONING (CCK)

Learning outcome for post-graduate studies in specialization: CCK	DESCRIPTION OF THE MAIN LEARNING OUTCOMES After completion of the post-graduate studies in the field of Power Engineering and specialization Refrigerating, Heating and Air-conditioning, the graduate:	Reference to learning outcomes for the area of technical sciences (T)
	KNOWLEDGE	
S2CCK_W01	has ordered and theoretically founded detailed knowledge related to the issues of the phenomena, processes and systems used in refrigeration as well as the most important new developments and trends of development in this area	T2A_W01 T2A_W04 T2A_W09
S2CCK_W02	has ordered and detailed knowledge of energy management, heating and cooling production for needs of professional and municipal power engineering	T2A_W02 T2A_W04 T2A_W07
S2CCK_W03	has detailed knowledge of the issues associated with air- conditioning technology, construction of heating systems, air conditioning, also has knowledge necessary to understand the determinants of non-technical activities related to thermal comfort	T2A_W02 T2A_W05 T2A_W08
S2CCK_W04	has an in-depth, ordered knowledge of the legal requirements and methodology for periodic measuring and monitoring pollutant emissions	T2A_W04 T2A_W08
S2CCK_W05	has theoretically founded detailed knowledge of the systems implementing refrigeration thermodynamic cycles for heating - heat pumps and transformers	T2A_W02 T2A_W05
S2CCK_W06	has theoretically founded detailed knowledge related to issues of sorption energy systems	T2A_W04 T2A_W07 T2A_W09
S2CCK_W07	has ordered knowledge of ventilation and air conditioning	T2A_W08
S2CCK_W08	an expanded knowledge of the techniques of environmental protection	T2A_W02 T2A_W03 T2A_W06
S2CCK_W09	an expanded knowledge of energy systems using renewable sources of energy and waste energy	T2A_W02 T2A_W04
S2CCK_W10	has ordered knowledge of thermodynamics and fluid mechanics necessary to understand the processes used in heating, cooling and air conditioning	T2A_W01 T2A_W02 T2A_W08 T2A_W09

S2CCK_W11	has ordered knowledge of heat carriers, refrigerants and heat accumulation	T2A_W05
S2CCK_W12	has theoretically founded detailed knowledge of	T2A_W04
SZCCK_W1Z	cryogenic installations for power engineering	T2A_W05
	SKILLS	1211_1103
S2CCK_U01	is able to plan and carry out experimental tests, including	T2A_U08
52CCK_001	measurements of basic performance parameters;	T2A_U11
	interprets the results and draws conclusions regarding the	12/1_011
	operation of refrigerating systems	
S2CCK_U02	is able to obtain data, formulate and execute tasks	T2A_U01
520011_002	thermal balance in the field of energy management and	T2A_U09
	heating and cooling for thermal and professional power	1211_00/
	engineering	
S2CCK_U03	is able to carry out calculations related to the production	T2A_U01
_	of heating and cooling for the power engineering	T2A_U09
	industry and municipal sorption systems and to interpret	T2A_U10
	the results and draw conclusions	T2A_U12
S2CCK_U04	is able to obtain and present in compact way reports and	T2A_U01
	information on heating and air conditioning systems;	T2A_U02
	presents an oral presentation on the detailed thermal	T2A_U03
	issues - air conditioning; is able to assess and formulate	T2A_U04
	proposals to be submitted for an opinion on the	
	construction and operation of thermal devices and air-	
COCCULATION	conditioning	TO 4 110.4
S2CCK_U05	is able to formulate the measuring specifications of the	T2A_U04
	elements periodic measurement and pollutant emissions	T2A_U07
S2CCK_U06	monitoring system is able to develop a conceptual technological design for	T2A_U08
32CCK_000	power system utilizing waste and law-parameter heat, to	T2A_U12
	provide the thermodynamic, energetic technical and	T2A_U14
	economic analysis for local technical conditions	1211_011
S2CCK U07	is able to formulate design specifications sorption	T2A_U03
22001_007	components of the energy system	T2A_U05
	gy system	T2A_U08
		T2A_U11
S2CCK_U08	is able to perform calculations of thermal and flow	T2A_U07
	components of the cooling system	T2A_U09
S2CCK_U09	is able to obtain and present in compact way study and	T2A_U01
	information on systems for environmental protection and	T2A_U02
	to present an oral presentation on detailed environmental	T2A_U03
	issues, to evaluate and formulate proposals to be	T2A_U04
	submitted for an opinion on the design and operation of	
COCCE IIIO	equipment used in the environment protection installation	TO A 1117
S2CCK_U10	is able to design a system using heat pumps in the power	T2A_U17
S2CCK_U11	engineering is able to formulate design specification and carry out a	T2A_U19 T2A_U09
SZCCK_UII	project of air conditioning systems	T2A_U10
	project of all conditioning systems	T2A_U11
S2CCK_U12	is able to formulate design specifications and carry out	T2A_U17
22011_012	project of cryogenic systems	T2A_U19
	Project of or or observe alternation	-

Faculty: Mechanical and Power Engineering Field of study: Power Engineering (ENG)

Level of study: II (post-graduate)

Specialization: POWER ENGINEERING AND AIR PROTECTION (ENA)

Learning	DESCRIPTION OF THE MAIN LEARNING	Reference to
outcome for	OUTCOMES	learning
post-graduate		outcomes for
studies in	After completion of the post-graduate studies in the	the area of
specialization:	field of Power Engineering and specialization Power	technical
ENA	Engineering and Air Protection, the graduate:	sciences (T)
	Wiedza	
S2ENA_W01	has ordered knowledge of the theoretical basis of the	T2A_W02
	separation process of solid and gaseous phase, which is the	T2A_W03
	starting point to draw conclusions about the utilitarian	T2A_W07
	nature of the optimization of constructional and operating	
	parameters of dedusting equipment	
S2ENA_W02	has knowledge of the technology to reduce gaseous	T2A_W02
	pollutants resulting from selected industrial processes	T2A_W07
		T2A_W08
S2ENA_W03	has knowledge of control systems used in power	T2A_W05
	engineering; has knowledge of the artificial neural	T2A_W07
	networks and fuzzy controllers	
S2ENA_W04	has ordered knowledge of the coal combustion technology;	T2A_W05
	has knowledge about the current technologies for coal	T2A_W07
	combustion facilities, its principles of design, operation	
	and selection	
S2ENA_W05	has ordered and detailed knowledge of production	T2A_W02
	technology, methods of preparation, purification of	T2A_W06
	hydrogen for professional power engineering	T2A_W07
S2ENA_W06	has ordered knowledge of the measurement and the control	T2A_W03
	of fundamental gaseous pollutants generated in combustion	T2A_W07
	processes, has knowledge of instrumental analytical	
COENIA MIOT	methods	TO A 11/0 4
S2ENA_W07	has ordered knowledge of the measurement properties of	T2A_W04
	the solid phase and the measurement and control of dust	T2A_W07
COENIA WIOO	pollution	T2 A W/01
S2ENA_W08	has knowledge of the type of gaseous pollutants emitted	T2A_W01
	from power stations, the mechanisms of their formation	T2A_W04
COENIA WIOO	and reduction	T2A_W07
S2ENA_W09	has ordered knowledge of solid fuel gasification	T2A_W01
	technology, knows properties of raw materials and	T2A_W05
	products derived from gasification process, is able to assess	T2A_W07 T2A_W08
	the effects of the economic and ecological use of the major	12A_WU0
	gasification technology	

r		
S2ENA_W10	has ordered knowledge in the use of biomass energy	T2A_W05
		T2A_W07
		T2A_W08
	SKILLS	
S2ENA_U01	is able to use theoretical knowledge to solve design	T2A_U07
	problems in the field of gas dedusting techniques	T2A_U11
		T2A_U15
S2ENA_U02	can make a technological and economical balance of	T2A_U11
	installation for reduction of gas pollution	T2A_U14
		T2A_U15
S2ENA_U03	can analyze the structure of the control system of a power	T2A_U08
	unit; knows criteria for the selection of individual elements	T2A_U11
	of the automation of power unit	T2A_U19
S2ENA_U04	can do balance calculations of boiler; is familiar with design of burners	T2A_U11
K2ENA_U05	can assess the efficiency of hydrogen production from the	T2A_U09
KZENA_003	gasification process, depending on the type of fuel and the	T2A_U11
	process conditions, is able to assess the efficiency of the	T2A_U12
	fuel cell	
S2ENA_U06	is able to perform fundamental measurements of gaseous	T2A_U09
	pollutants generated in combustion processes; can do	
	chromatographic analysis	
S2ENA_U07	is able to perform measurements of parameters describing	T2A_U09
	the properties of the solid phase and the basic parameters	
	of the dusty gas	
S2ENA_U08	is able to assess the impact of parameters such as fuel, the	T2A_U09
	process temperature, excess of air, the type of burner on	T2A_U11
	pollution emission; can evaluate the reactivity of the fuel	T2A_U16
	mixture	
S2ENA_U09	is able to perform a preliminary project of installation for	T2A_U11
	gasification of solid fuels	T2A_U14
		T2A_U19
S2ENA_U10	can perform calculations of devices for combustion and	T2A_U11
	gasification of biomass	T2A_U12
		T2A_U16

Faculty: Mechanical and Power Engineering Field of study: Power Engineering (ENG)

Level of study: II (post-graduate)

Specialization: NUCLEAR POWER ENGINEERING (ENJ)

outcome for post-graduate studies in After completion of the post-graduate studies in the specialization: ENJ OUTCOMES learning outcomes for the area of the area of technical sciences (T)	Learning	DESCRIPTION OF THE MAIN LEARNING	Reference to	
studies in specialization:After completion of the post-graduate studies in the field of Power Engineering and specialization Nuclear Power Engineering , the graduate:the area of technical sciences (T)	outcome for	OUTCOMES	O	
specialization: field of Power Engineering and specialization Nuclear Power Engineering , the graduate: technical sciences (T)	post-graduate		outcomes for	
ENJ Power Engineering, the graduate: sciences (T)	studies in	After completion of the post-graduate studies in the	the area of	
	specialization:	field of Power Engineering and specialization Nuclear	technical	
TAYOUT ED CE	ENJ	Power Engineering, the graduate:	sciences (T)	
KNOWLEDGE		KNOWLEDGE		
S2ENJ_W01 has knowledge of the conduction and heat transfer in fuel T2A_W01	S2ENJ_W01	has knowledge of the conduction and heat transfer in fuel	T2A_W01	
elements and coolant in one-and two-phase flow T2A_W07		elements and coolant in one-and two-phase flow	T2A_W07	
conditions, knows the basic criteria for the selection of		conditions, knows the basic criteria for the selection of		
coolant and cooling systems of reactors		coolant and cooling systems of reactors		
S2ENJ_W02 has knowledge of the nuclear processes occurring in the T2A_W01	S2ENJ_W02	has knowledge of the nuclear processes occurring in the	T2A_W01	
reactor core, and control the operation of the nuclear T2A_W04		reactor core, and control the operation of the nuclear	T2A_W04	
reactor T2A_W05		reactor	T2A_W05	
T2A_W08			T2A_W08	
S2ENJ_W03 has knowledge of the synthesis reaction that occurs in the T2A_W01	S2ENJ_W03	has knowledge of the synthesis reaction that occurs in the	T2A_W01	
hot plasma and the prospects for the use of this process in T2A_W04		hot plasma and the prospects for the use of this process in	T2A_W04	
fusion reactors T2A_W05		fusion reactors	T2A_W05	
S2ENJ_W04 has knowledge of the materials used in nuclear power T2A_W02	S2ENJ_W04	has knowledge of the materials used in nuclear power		
engineering and the impact of radiation on matter and the		engineering and the impact of radiation on matter and the		
formation of structural defects		formation of structural defects		
S2ENJ_W05 has knowledge of the mining and processing of uranium T2A_W04	S2ENJ_W05	has knowledge of the mining and processing of uranium	T2A_W04	
ore, fuel enrichment, production of the fuel assemblies,		ore, fuel enrichment, production of the fuel assemblies,		
management of spent fuel and radioactive waste		management of spent fuel and radioactive waste		
S2ENJ_W06 has ordered knowledge of the classification, construction T2A_W04	S2ENJ_W06	has ordered knowledge of the classification, construction	T2A_W04	
and the operation of the basic types of nuclear reactors T2A_W05		and the operation of the basic types of nuclear reactors	T2A_W05	
T2A_W06		-	T2A_W06	
S2ENJ_W07 has knowledge of the construction and the operation of T2A_W04	S2ENJ_W07	has knowledge of the construction and the operation of	T2A_W04	
the fundamental machinery and equipment used in the				
processes of nuclear fuel cycle		processes of nuclear fuel cycle		
S2ENJ_W08 has ordered knowledge of the types and sources of T2A_W03	S2ENJ_W08		T2A_W03	
ionizing radiation, radiation effects, dosimetric devices				
and the main principles and techniques of radiological				
protection		=		
S2ENJ_W09 has knowledge of the sources of danger in a nuclear T2A_W03	S2ENJ_W09	*	T2A_W03	
power plant, the use of nuclear safety principles and the	_			
assessment and verification of incidents at nuclear				
facilities by the international event scale		facilities by the international event scale		
SKILLS				
S2ENJ_U01 is able to solve tasks related to thermal and flow T2A_U09	S2ENJ_U01	is able to solve tasks related to thermal and flow	T2A_U09	

	processes in a nuclear reactor	
S2ENJ_U02	is able to solve tasks in the field of nuclear physics and	T2A_U09
	reactor theory	
S2ENJ_U03	is able to solve basic tasks in plasma physics	T2A_U09
		T2A_U12
S2ENJ_U04	is able to use a specialized methodology to study the	T2A_U08
	structure of materials and the analysis of structural	
	changes	
S2ENJ_U05	can make a balance of mass and energy in the selected	T2A_U09
	fuel cycle processes	T2A_U14
S2ENJ_U06	Can use special software for computer simulation of	T2A_U08
	nuclear power plants with the basic types of reactors and	
	has the ability to analyze and interpret the changing of	
	working parameters of the reactor during normal	
	operation and failure of power unit	
S2ENJ_U07	can use basic dosimetric instruments, calculate the	T2A_U08
	radiation dose and assess risks	
S2ENJ_U08	is able to present and discuss selected issues	T2A_U04
	of the safety engineering in nuclear power engineering	T2A_U07
		T2A_U13

Faculty: Mechanical and Power Engineering Field of study: Power Engineering (ENG)

Level of study: II (post-graduate)

Specialization: RENEWABLE SOURCES OF ENERGY (OZE)

Learning	DESCRIPTION OF THE MAIN LEARNING	Reference to
outcome for	OUTCOMES	learning
post-graduate		outcomes for
studies in	After completion of the post-graduate studies in the	the area of
specialization:	field of Power Engineering and specialization	technical
OZE	Renewable Sources of Energy, the graduate:	sciences (T)
	KNOWLEDGE	
S2OZE_W01	has ordered and theoretically founded detailed	T2A_W01
	knowledge related to matters relating to physical	T2A_W03
	phenomena and processes used in the renewable energy	T2A_W04
	sector as well as the most important new developments	T2A_W05
	and trends in the field of renewable energy sources	
S2OZE_W02	has ordered and detailed knowledge of production	T2A_W02
	technology, methods of preparation, purification of	T2A_W06
	hydrogen for professional power engineering	T2A_W07
S2OZE_W03	has detailed knowledge of issues related to hydropower	T2A_W02
	plants, hydropower plant construction, also has the	T2A_W07
	knowledge necessary to understand the ecological	T2A_W08
	conditions of engineering	
S2OZE_W04	has an in-depth, ordered knowledge of the legal	T2A_W04
	requirements and methodology for periodic measuring	T2A_W08
	and monitoring pollutant emissions	
S2OZE_W05	has theoretically founded a detailed knowledge of the	T2A_W02
	systems implementing thermodynamic cycle (for	T2A_W04
	heating) and methods of use of waste and low-	
	parameters heat sources	
S2OZE_W06	has theoretically founded detailed knowledge of issues	T2A_W04
	related to wind energy	T2A_W06
		T2A_W07
S2OZE_W07	has ordered knowledge of geothermal energy	T2A_W03
S2OZE_W08	has theoretically founded detailed knowledge in the field	T2A_W03
	of energy production from biomass	T2A_W04
S2OZE_W09	has an expanded knowledge of solar energy conversion	T2A_W02
	into heat and solar systems.	
	SKILLS	
S2OZE_U01	is able to obtain information from literature, databases and	T2A_U01
	other sources, is able to prepare (also in the group) a	T2A_U12
	computational design dossier of simple energy system	T2A_U14
	based on renewable energy sources, taking into account the	
	preliminary economic analysis; can do a critical	
	evaluation, draws conclusions and formulates and fully	
	justify opinions	

S2OZE_U02	is able to prepare and give a presentation on a topic	T2A_U01
	related to energy from renewable sources and lead a	T2A_U04
	discussion regarding the above presentation, as well as	T2A_U05
	to assess the discussion	
S2OZE_U03	is able to plan and carry out experiments related to the	T2A_U08
	production of hydrogen and to interpret the results and	
	draw conclusions	
S2OZE_U04	is able to specify the required parameters for various	T2A_U01
	types of hydropower stations	T2A_U07
		T2A_U09
		T2A_U15
S2OZE_U05	can formulate design specifications of components of	T2A_U01
	the hydropower station system	T2A_U07
		T2A_U09
		T2A_U15
S2OZE_U06	can formulate measuring specifications of components	T2A_U17
	of systems for measurement and monitoring of pollution	T2A_U18
S2OZE_U07	is able to design systems performing thermodynamic	T2A_U08
	cycle (for heating) and using the waste and low-	T2A_U09
	parameters heat sources; provides the thermodynamic,	
	energy, technical and economic analysis for local	
	technical conditions	
S2OZE_U08	can formulate design specifications of components of wind	T2A_U01
	power system	T2A_U07
		T2A_U09
		T2A_U15
S2OZE_U09	can formulate design specifications of components of	T2A_U01
	geothermal power plant	T2A_U07
		T2A_U09
		T2A_U15
S2OZE_U10	is able to identify and formulate specifications of complex	T2A_U07
	engineering tasks related to the use of biomass in power	T2A_U15
	engineering	T2A_U17
S2OZE_U11	is able to prepare and present an oral presentation on the	T2A_U04
	use of biomass for power engineering	
S2OZE_U12	can formulate design specifications of a system using	T2A_U19
	solar radiation for heating	
	·	· · · · · · · · · · · · · · · · · · ·

MATRIX OF CORRELATION BETWEEN EDUCATIONAL OUTCOMES/ EFFECTS IN THE FIELD OF TECHNICAL SCIENCES AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY

2nd level, main field of study *Power Engineering* (ENG), general academic profile

Legend: CCK – Refrigerating, Heating and Air-Conditioning, ENJ – Nuclear Power Engineering, ENA – Power Engineering and Air Protection, OZE – Renewable Sources of Energy (pl), RSE – Renewable Sources of Energy (English)

Symbol of the educational	Description of the educational outcomes/ effects in the field of	Reference to educational outcomes for 1st level, main field of study ENG					
outcome in the	technical sciences	Main field of	Specialization effects				
field of technical sciences		study effects	ССК	ENJ	ENA	OZE	RSE
		K	NOWLEDGE				
T2A_W01	has expanded and broadened knowledge of mathematics, physics and chemistry and other areas related to the studied discipline necessary to formulate and solve complex tasks in the field of the studied discipline	K2ENG_W01 K2ENG_W02 K2ENG_W03	S2CCK_W01 S2CCK_W10	S2ENJ_W01 S2ENJ_W02 S2ENJ_W03	S2ENA_W08 S2ENA_W09	S2OZE_W01	S2RSE_W01 S2RSE_W04
T2A_W02	has detailed knowledge in the field of study related to the studied discipline		S2CCK_W02 S2CCK_W03 S2CCK_W05 S2CCK_W08 S2CCK_W09 S2CCK_W10	S2ENJ_W04	S2ENA_W01 S2ENA_W02 S2ENA_W05	S2OZE_W02 S2OZE_W03 S2OZE_W05 S2OZE_W09	S2RSE_W02 S2RSE_W03 S2RSE_W05 S2RSE_W09
T2A_W03	has organized, general knowledge and theoretical grounding including key issues related to the studied discipline	K2ENG_W03 K2ENG_W07	S2CCK_W08	S2ENJ_W08 S2ENJ_W09	S2ENA_W01 S2ENA_W06	S2OZE_W01 S2OZE_W07 S2OZE_W08	S2RSE_W01 S2RSE_W04 S2RSE_W07 S2RSE_W08
T2A_W04	has detailed knowledge and		S2CCK_W01	S2ENJ_W02	S2ENA_W07	S2OZE_W01	S2RSE_W01

	theoretical grounding connected		S2CCK_W02	S2ENJ_W03	S2ENA_W08	S2OZE_W04	S2RSE_W04
	with the chosen issues in the field		S2CCK_W04	S2ENJ_W05		S2OZE_W05	S2RSE_W05
	of the studied discipline		S2CCK_W06	S2ENJ_W06		S2OZE_W06	S2RSE_W06
			S2OZE_W06	S2ENJ_W07		S2OZE_W08	S2RSE_W08
			S2CCK_W09				
			S2CCK_W12				
T2A_W05	has knowledge of trends in	K2ENG_W04	S2CCK_W03	S2ENJ_W02	S2ENA_W03	S2OZE_W01	S2RSE_W01
	development and the most crucial		S2CCK_W05	S2ENJ_W03	S2ENA_W04		S2RSE_W04
	and newest achievements in		S2CCK_W11	S2ENJ_W06	S2ENA_W09		
	scientific disciplines and fields of		S2CCK_W12		S2ENA_W10		
	study related to the studied						
	discipline and other related scientific disciplines						
T2A_W06	has fundamental knowledge of the		S2CCK_W08	S2ENJ_W06	S2ENA_W05	S2OZE_W02	S2RSE_W02
	lifecycle of devices, objects and					S2OZE_W06	S2RSE_W06
	technical systems						
T2A_W07	knows fundamental methods,	K2ENG_W05	S2CCK_W02	S2ENJ_W01	S2ENA_W01	S2OZE_W02	S2RSE_W02
	techniques, tools and materials used		S2CCK_W06		S2ENA_W02	S2OZE_W03	S2RSE_W03
	for solving simple engineering tasks in the field of the studied				S2ENA_W03	S2OZE_W06	S2RSE_W06
	discipline				S2ENA_W04		
	discipline				S2ENA_W05		
					S2ENA_W06		
					S2ENA_W07		
					S2ENA_W08		
					S2ENA_W09		
F10.1 VV10.0		*******	22 CCTT TT-0-		S2ENA_W10		225 25 1713 E
T2A_W08	has fundamental knowledge	K2ENG_W04	S2CCK_W03	S2ENJ_W02	S2ENA_W02	S2OZE_W03	S2RSE_W03
	necessary to understand social,	K2ENG_W06	S2CCK_W04		S2ENA_W09	S2OZE_W04	
	economical, legal and other non-		S2CCK_W07		S2ENA_W10		
	technical factors of engineering		S2CCK_W10				
	activities as well as taking them into consideration in engineering						
	into consideration in engineering						

	practice						
T2A_W09	has fundamental knowledge of	K2ENG_W06	S2CCK_W01				
	management, including quality	K2ENG_W07	S2CCK_W06				
	management and running a		S2CCK_W10				
	business						
T2A_W10	knows and understands basic						
	concepts and rules related to						
	industrial property protection and						
	copyright laws and knows the						
	necessity of these laws and rules in						
	managing intellectual property						
	resources; is able to use patent						
	information resources						
T2A_W11	knows general rules related to	K2ENG_W06					
	establishing and developing						
	individual entrepreneurial activity,						
	using knowledge of scientific						
	disciplines and fields of study						
	related to the studied discipline						
	4\	1 1 91 (4 1 4	SKILLS	1	4.		
TO A 1101		skills (not relate		ngineering educ	cation)	C207E 1101	CADGE HOL
T2A_U01	is able to obtain information from	K2ENG_U01	S2CCK_U02			S2OZE_U01	S2RSE_U01
	literature, databases and other		S2CCK_U03			S2OZE_U02	S2RSE_U02
	properly selected sources, either in		S2CCK_U04			S2OZE_U04	S2RSE_U04
	English or another foreign language		S2CCK_U09			S2OZE_U05	S2RSE_U05
	regarded as a language for					S2OZE_U08	S2RSE_U06
	international communication in the					S2OZE_U09	S2RSE_U08
	studied discipline; is able to						S2RSE_U09
	integrate obtained information,						
	interpret and critically evaluate it,						
	draw conclusions, formulate and						
T2A_U02	justify opinions in full is able to communicate in their	VOENC 1102	COCCE LIOA				
14A_UU4	professional environment and other	K2ENG_U02	S2CCK_U04				
	professional environment and other	K2ENG_U09	S2CCK_U09				

		1					
	environments using various						
	techniques, either in English or						
	another foreign language regarded						
	as a language for international						
	communication in the studied						
	discipline						
T2A_U03	is able to prepare a scientific study	K2ENG_U03	S2CCK_U04				
	in Polish language and also a short		S2CCK_U07				
	scientific report, with the results of		S2CCK_U09				
	own research, in a foreign						
	language regarded as a basic one in						
	the scientific disciplines and fields						
	of study related to the studied						
	discipline						
T2A_U04	is able to prepare and give an oral	K2ENG_U02	S2CCK_U04	S2ENJ_U08		S2OZE_U02	S2RSE_U02
	presentation concerning detailed		S2CCK_U05			S2OZE_U11	S2RSE_U06
	issues in the field of the studied		S2CCK_U09				S2RSE_U11
	discipline both in Polish and a		_				_
	foreign language						
T2A_U05	is able to establish directions of	K2ENG_U03	S2CCK_U07			S2OZE_U02	S2RSE_U02
	further education and follow the						S2RSE_U06
	process of self-learning						
T2A_U06	has language skills in scientific	K2ENG_U04					
	disciplines and fields of study						
	related to the studied discipline						
	according to CEFR requirements						
	for B2+ level						
		2) fundame	ental engineering	skills			
T2A_U07	is able to use information and		S2CCK_U05	S2ENJ_U08	S2ENA_U01	S2OZE_U04	S2RSE_U04
	communication technologies		S2CCK_U08			S2OZE_U05	S2RSE_U08
	necessary to perform tasks typical					S2OZE_U08	S2RSE_U09
	of engineering activities					S2OZE_U09	S2RSE_U10
						S2OZE_U10	
			J	l		2202E_010	

T2A_U08	is able to plan and run experiments	K2ENG_U06	S2CCK_U01	S2ENJ_U04	S2ENA_U03	S2OZE_U03	S2RSE_U03
_	including measurements and	K2ENG_U07	S2CCK_U06	S2ENJ_U06	_	S2OZE_U07	S2RSE_U07
	computer simulations, interpret	_	S2CCK_U07	S2ENJ_U07		_	_
	results and draw conclusions						
T2A_U09	is able to use analytical, simulation	K2ENG_U05	S2CCK_U02	S2ENJ_U01	S2ENA_U05	S2OZE_U04	S2RSE_U04
	and experimental methods to	K2ENG_U07	S2CCK_U03	S2ENJ_U02	S2ENA_U06	S2OZE_U05	S2RSE_U07
	formulate and solve engineering		S2CCK_U08	S2ENJ_U03	S2ENA_U07	S2OZE_U07	S2RSE_U08
	tasks as well as simple research problems		S2CCK_U11	S2ENJ_U05	S2ENA_U08	S2OZE_U08 S2OZE_U09	S2RSE_U09
T2A_U10	is able - while formulating and	K2ENG_U05	S2CCK_U03			S2022_00)	
_	solving engineering tasks- to	K2ENG_U06	S2CCK_U11				
	integrate knowledge of scientific	K2ENG_U08					
	disciplines and fields of studies	11221 (0_00					
	appropriate for the specialization						
	and apply the system approach						
	which also takes into account non-						
	technical aspects						
T2A_U11	is able to formulate and test	K2ENG_U07	S2CCK_U01		S2ENA_U01		
	hypotheses connected with		S2CCK_U07		S2ENA_U02		
	engineering problems and simple		S2CCK_U11		S2ENA_U03		
	research problems				S2ENA_U04		
					S2ENA_U05		
					S2ENA_U08		
					S2ENA_U09		
					S2ENA_U10		
T2A_U12	is able to assess the usefulness and		S2CCK_U03	S2ENJ_U03	S2ENA_U05	S2OZE_U01	S2RSE_U01
	possibilities of new achievements		S2CCK_U06		S2ENA_U10		
	(technological and technical) in the						
	field of the studied discipline						
T2A_U13	is prepared to work in an industry	K2ENG_U08		S2ENJ_U08			
	environment and knows safety rules						
	in the workplace		1				

T2A_U14	is able to carry out primary		S2CCK_U06	S2ENJ_U05	S2ENA_U01	S2OZE_U01	S2RSE_U01
	economic analysis of undertaken engineering activities				S2ENA_U02		
	8	211 - 1241	4 - 1		S2ENA_U09		
FO A 1115	· · · · · · · · · · · · · · · · · · ·	ills directly connec	tea with solving	engineering tas		G207E 1104	CODGE 1104
T2A_U15	is able to carry out critical analysis	K2ENG_U08			S2ENA_U01	S2OZE_U04	S2RSE_U04
	of functioning and also assess –				S2ENA_U02	S2OZE_U05	S2RSE_U08
	particularly in reference to the					S2OZE_U08	S2RSE_U09
	studied discipline- existing					S2OZE_U09	S2RSE_U10
	technical solutions, in particular					S2OZE_U10	
	devices, objects, systems,						
TO A TILC	processes, and services	IZOENIC LIO1			COENIA LICO		
T2A_U16	is able to plan improvements in	K2ENG_U01			S2ENA_U08		
	existing technical solutions	****	22 C C T T T T T C		S2ENA_U10	G4055 770 f	GAD GD 7110
T2A_U17	is able to identify and formulate	K2ENG_U07	S2CCK_U10			S2OZE_U06	S2RSE_U10
	specifications of complex		S2CCK_U12			S2OZE_U10	
	engineering tasks specific for the						
	studied discipline including						
	untypical tasks considering their						
TOO A TITO	non-technical aspects	MAENIG MAS				G2055 1104	
T2A_U18	is able to assess the usefulness of	K2ENG_U07				S2OZE_U06	
	methods and tools for solving an						
	engineering task specific for the						
	studied discipline, and notice						
	limitations of these methods and						
	tools;						
	is able – by applying conceptually						
	new methods- to solve complex						
	engineering tasks specific for the						
	studied discipline, including						
	untypical tasks and tasks with a						
T24 1110	research component	KOENC 1101	COCCE IIIO		COENIA LICO	C207E 1112	CODGE 1110
T2A_U19	is able – according to a given	K2ENG_U01	S2CCK_U10		S2ENA_U03	S2OZE_U12	S2RSE_U12
	specification which considers non –		S2CCK_U12		S2ENA_U09		
	technical aspects- to design a						

	complex device, object, system or						
	process specific for the studied						
	discipline and complete this project						
	- at least partially- using						
	appropriate methods, techniques						
	and tools, adapting already existing						
	tools or by creating new tools	COCIAI	COMPETENC	TC.			
T-0.4 T-7.0.1	1 1 1 1 2 6		COMPETENC	ES	1	1	
T2A_K01	understands the necessity of a	K2ENG_K01					
	lifetime learning process; is able to						
	inspire and organize the process of						
	learning for others						
T2A_K02	realizes the significance and	K2ENG_K02					
	understands non-technical aspects						
	and consequences of engineering						
	activity and especially its influence						
	on the natural environment and the						
	related responsibility for decisions						
T2A_K03	is able to cooperate and work in a	K2ENG_K03					
	group, taking up different roles						
T2A_K04	is able to set clear priorities leading	K2ENG_K04					
	to the realization tasks set by						
	himself or others						
T2A_K05	identifies correctly and solves	K2ENG_K01					
	dilemmas connected with the						
	profession						
T2A_K06	is able to think and act in an	K2ENG_K05					
	entrepreneurial way						
T2A_K07	realizes the social role of technical	K2ENG_K02					
	university graduates and especially						
	understands the need to formulate						
	information and share it with						
	society, e.g. through mass media, in						
	relation to achievements in						

environmental engineering and			
other aspects of engineering			
activity; makes attempts at sharing			
such information and opinions in an			
understandable way			