LEARNING OUTCOMES FOR THE FIELD OF STUDY

(Assumed educational effects)

Faculty: Mechanical and Power Engineering Field of study: Mechanical Engineering and Machine Building (MBM) Level of study: I (undergraduate)

The area of study

Field of study Mechanical Engineering and Machine Building belongs to the domain of technical studies and is related to such majors as Energy, Environmental Engineering, Electrical Engineering, Process Engineering and Aerospace Engineering.

Explanation of symbols

- \mathbf{K} learning outcomes for the field of study
- ${\bf S}-\text{learning}$ outcomes for specialization
- W category of knowledge
- U category of skill
- K (after the underscore) category of social competencies
- \mathbf{T} the area of study in the field of technical sciences
- 1 undergraduate studies,
- A general profile

Learning outcome for undergraduate studies in the field of study: MBM	DESCRIPTION OF THE MAIN LEARNING OUTCOMES After completion of the undergraduate studies in the field of Mechanics and Machine Design, the graduate:	Reference to learning outcomes for the area of technical sciences (T)
	KNOWLEDGE	
K1MBM_W01	has general knowledge of complex numbers,	T1A_W01
	polynomials, solution of systems of linear equations	T1A_W07
	using matrix algebra, analytic geometry on the plane	
	and in space, conic sections, necessary for	
	understanding of engineering math and sciences	
K1MBM_W02	has basic knowledge of the properties of functions	T1A_W01
	(trigonometric, exponential, exponential, logarithmic,	T1A_W07
	trigonometric and inverse thereof), single variable	
	calculus, indefinite integrals, definite integrals and	
	improper integrals, multivariable differential calculus,	
	double and triple integrals, number series, power series,	
	Fourier series and the basis of probability theory	
	necessary for understanding of engineering math and	
	sciences	
K1MBM_W03	has basic knowledge of classical mechanics, wave	T1A_W01
	motion and phenomenological thermodynamics,	

		1
	classical electrodynamics (electrostatics, electricity	
	magnetostatics, electromagnetic induction,	
	electromagnetic waves, optics), the special theory of	
	relativity, selected topics of physics: quantum physics,	
	physics of the solid, physics of the nucleus; astrophysics	
K1MBM_W04	has basic knowledge on the structure of matter, the	T1A_W01
	periodic table, types of chemicals and chemical	
	reactions	
K1MBM_W05	has general knowledge of engineering mechanics -	T1A_W02
_	statics, kinematics, dynamics – as well as knowledge of	T1A_W07
	material science that allows solving basic structure	_
	stability problems	
K1MBM_W06	has basic knowledge of construction, influence of	T1A_W01
	structure and properties as well as applicability of	T1A_W07
	various types of engineering materials such as steels,	1111 <u></u> ,,,,,,,
	non-ferrous alloys, polymers, ceramics and composites	
K1MBM_W07	has detailed knowledge on the drawing methods of	T1A_W04
	plane figures and solids; knows in depth the rules of	· · · · · · · · · · · · · · · · · · ·
	technical drawing	
K1MBM_W08	knows the basic techniques and tools that are useful in	T1A_W07
KIMDM_000	engineering work as well as in daily functioning in the	1111_007
	modern world	
K1MBM_W09	knows and understands the laws governing fluid flow	T1A_W03
	with accompanying transfer of heat; understands flow	11A_W03
	and thermodynamic processes occurring in fluids	
K1MBM_W10	has basic knowledge of the theory and techniques of	T1A_W02
	experimental measurement, characterization of	11A_W02
	properties of measuring instruments, presentation of the	
	results of measurement as well as the method of	
	calculation of its uncertainty and the interpretation of	
	its results	
K1MBM_W11	has basic knowledge of manufacturing techniques	T1A_W02
	(casting, welding, plastic working, abrasive and erosive	T1A_W05
VIMDM W12	machining) including workshop metrology	T1A W02
K1MBM_W12	has elementary knowledge of electrical and electronic	T1A_W02
	equipment construction, knows basic principles of the	
	automation of technical objects, understands the basic	
	control principles of the technical systems	
K1MBM_W13	has structured knowledge of the basic machinery and	T1A_W06
	equipment used in energy conversion, regarding their	T1A_W07
	function, structure and linkage	
K1MBM_W14	has structured knowledge of the construction and	T1A_W04
	operation of basic machine elements, knows the	T1A_W06
	principles of design and algorithms for engineering	T1A_W07
	calculations of these elements	
K1MBM_W15	has basic understanding of the physics and chemistry of	T1A_W02
	combustion and impurity formation mechanisms and the	
	knowledge of properties of gaseous fuels used in power	
	generation and aviation	
K1MBM_W16	has basic knowledge of the legal protection of various	T1A_W10
	categories of intellectual property, in particular,	T1A_W11

	· · · · · · · · · · · · · · · · · · ·	
	industrial intellectural property, as well as copyright and	
	related rights associated with engineering works	T1 A W/00
K1MBM_W17	understands ecological aspects of the environmental	T1A_W08
	anthropogenic actions, is aware of the legal and economic conditions the use of the environment	
K1MBM_W18	has basic knowledge necessary to understand the social,	T1A_W08
KINIDIVI_W IO	philosophical, economic and legal background of	T1A_W08
	engineering	T1A_W0
	achieves results in the category KNOWLEDGE for one	1111_011
	of the following specializations:	
	• Thermal Engineering (INC) - Appendix 1	
	Engineering of Aviation (ILO) - Appendix 2	
	SKILLS	T 1 A L 100
K1MBM_U01	is able to properly and effectively apply knowledge of	T1A_U09
	linear algebra and analytic geometry for qualitative and	T1A_U13
	quantitative analysis of mathematical problems related	T1A_U14
K1MBM U02	to engineering is able to properly and effectively apply the knowledge	T1A_U09
KINIDIVI_002	of differential and integral calculus of functions of one	T1A_U13
	and several variables, numerical series, power series and	T1A_U14
	Fourier series and probability for qualitative and	111_011
	quantitative analysis of mathematical problems related	
	to engineering	
K1MBM_U03	can properly and effectively apply principles and laws	T1A_U09
_	of physics to the qualitative and quantitative analysis of	T1A_U11
	physical problems in engineering and is able to plan and	T1A_U14
	safely perform measurements, develop measurement	
	results and evaluate the uncertainty of measured values	
K1MBM_U04	can properly understood and effectively apply the	T1A_U09
	principles and laws of chemistry for qualitative and	T1A_U11
	quantitative analysis of chemical problems in	
	engineering and is able to plan and safely perform	
	simple chemical experiments	T1A 1100
K1MBM_U05	with appropriate techniques and methods can carry out	T1A_U09
	calculation in the field of statics, kinematics and dynamics of rigid bodies, taking into account the	
	analysis of the stress and strain	
K1MBM U06	is able to analyze equilibrium charts and preform	T1A_U14
RIMBM_000	macroscopic and microscopic examination of metals	1111_011
K1MBM_U07	knows how to draw plane figures and solids, can	T1A_U02
	prepare in the form of technical drawing any component	T1A_U07
	of the machine using the CAx software for 2D and 3D	
K1MBM_U08	is able to apply basic information technologies for	T1A_U01
·	obtaining information and for the creation of electronic	T1A_U07
	documents	
K1MBM_U09	knows how to use knowledge of fluid mechanics and	T1A_U09
	thermodynamics in engineering calculations of	T1A_U10
	machinery, equipment and industrial installations	
K1MBM_U10	is able to plan and carry out experiments to develop the	T1A_U08
	results, including error analysis and drawing of	T1A_U11

	1 1]
	conclusions	
K1MBM_U11	is able to apply engineering technology to produce	T1A_U09
	metal or plastic product, as well as design technological	T1A_U11
	process of the device, including design of connections	T1A_U12
	and proper selection of the execution method; knows	T1A_U16
	how to use instruments to evaluate quality of realization	
	performance of the product	
K1MBM_U12	can measure, analyze, and calculate the basic	T1A_U08
	parameters of electrical circuits, electronic systems,	T1A_U09
	control, regulation and automation systems	T1A_U11
K1MBM_U13	based on various sources of knowledge, can use	T1A_U01
	appropriate methods for the design basic elements of	T1A_U05
	machines	T1A_U09
		T1A_U15
		T1A_U16
K1MBM_U14	is able to empirically identify basic parameters of	T1A_U11
	combustion process, graphically present and interpret	T1A_U13
	the results of measurements	
K1MBM_U15	has language skills in the discipline "design and	T1A_U06
	operation of machines," according to the requirements	
	for level B2 of the European Framework of Languages	
K1MBM_U16	has the ability to orally present specific engineering subjects	T1A_U04
K1MBM_U17	is able to prepare a coherent report, on carried out work	T1A_U03
	achieves results in the category SKILLS for one of the	
	following specializations:	
	• Thermal Engineering (INC) - Appendix 1	
	• Engineering of Aviation (ILO) - Appendix 2	
	SOCIAL COMPETENCIES	
K1MBM_K01	understands the need for continuous self-development	T1A_K01
K1MBM_K02	is aware of the importance and understanding of non-	T1A_K02
	technical aspects and impacts of engineering, including	
	its impact on the environment, as well as the associated	
	responsibility for decisions	
K1MBM_K03	is able to interact and work in a group, assuming different roles	T1A_K03
K1MBM_K04	can properly identify priorities for implementation of	T1A_K04
	self-defined or given tasks	11A_KU4
K1MBM_K05	is able to think and act in entrepreneurial manner	T1A_K06
K1MBM_K06	is aware of the social role that technical college	T1A_K05
—	graduates play in a modern world	T1A_K07
K1MBM_K07	is aware of needs for individual and group activities that	T1A_K04
	go beyond engineering	T1A_K06

LEARNING OUTCOMES FOR SPECIALIZATION

Faculty: Mechanical and Power Engineering Field of study: Mechanical Engineering and Machine Building (MBM) Level of study: I (undergraduate) Specialization: THERMAL ENGINEERING (INC)

outcome for	DESCRIPTION OF THE MAIN LEARNING	Reference to	
outcome for	OUTCOMES	learning	
undergraduate	undergraduatestudies inAfter completion of the undergraduate studies in the		
studies in			
specialization: field of Mechanics and Machine Design and		technical	
INC	INC specialization Thermal Engineering, the graduate:		
	KNOWLEDGE		
S1INC_W01	has structured and theoretically founded knowledge of	T1A_W03	
	stress analysis of multi-rod, plate and disc systems,	T1A_W04	
	including the influence of environmental conditions and		
	time		
S1INC_W02	has organized and theoretically founded knowledge of	T1A_W03	
—	basic processes in thermal machines	T1A_W04	
S1INC_W03	has structured basic knowledge of fluid mechanics used	T1A_W01	
_	in engineering, knows calculation method of actual fluid	T1A_W03	
	flow in hydraulic systems, has basic knowledge of the	T1A_W04	
	most common components of hydraulic systems,	—	
	devices and measurement methods		
S1INC_W04	has structured knowledge of the laws of heat transfer for	T1A_W01	
~ · • · · • ·	different types of baffles, is familiar with the basic	T1A_W03	
	theory of recuperative heat exchangers, can identify and	T1A_W04	
	describe typical cases of heat transfer and thermal		
	conductivity		
S1INC_W05	has base knowledge on how to lower the temperature,	T1A_W02	
—	understands condensation processes of gaseous mixtures	T1A_W03	
	and the use of LNG		
S1INC_W06	has structured knowledge of the theoretical framework	T1A_W02	
—	and basic principles of construction of thermal	T1A_W03	
	turbomachinery	T1A_W04	
S1INC_W07	knows classifications and physical operation principles	T1A_W02	
_	of displacement machines (pumps, compressors, fans),	T1A_W03	
	can describe their construction, understands the	T1A_W07	
	principles of its co-operation with the installation,	_	
	knows flow regulation principles of positive		
	displacement machines, defines losses in these machines		
S1INC_W08	has basic knowledge necessary for understanding of	T1A_W02	
	operations in process engineering, knows apparatus used		
	for their implementation		
S1INC_W09	has basic knowledge on reactor physics, nuclear energy	T1A_W02	
	technologies and nuclear safety	T1A_W03	

	1	1
S1INC_W10	has base knowledge of the structure and operation of	T1A_W02
	boilers and fuel preparation equipment, knows and	T1A_W04
	understands combustion methods of various fuels, can	T1A_W05
	identify and name risks associated with different types	
	of fuel combustion	
S1INC_W11	has structured knowledge of the flue gas cleaning	T1A_W02
	processes and operation principles of selected	T1A_W03
	atmospheric protection equipment	
S1INC_W12	has established knowledge on balancing of machinery	T1A_W02
	and equipment, knows and understands methods of	T1A_W03
	efficiency calculation of these devices, can identify and	T1A_W04
	name major energy losses in these devices	
S1INC_W13	has basic knowledge on construction and operation of	T1A_W02
	thermal power stations	T1A_W03
		T1A_W06
	SKILLS	
S1INC_U01	can perform endurance calculations and dimension	T1A_U08
	elements based on the stress and strain analysis and	T1A_U09
	taking under consideration time and temperature, can	T1A_U13
	perform tests of fundamental mechanical properties of	T1A_U14
	structural materials, take measurements of	
	displacements and strains, interpret the results and draw	
CINC LIO	conclusions	T1A 112
S1INC_U02	is able to analyze the relationship between process	T1A_U13
	parameters of gas or vapor flows and the performance of	T1A_U14
CINC UO2	thermal machines	
S1INC_U03	has the ability to use analytical and graphical methods to	T1A_U09
	calculate real fluid flow in hydraulic systems;	T1A_U13
	is able to experimentally determine the velocity profile	T1A_U16
	in straight-axis pipe, measure transfer characteristics	
	and hydraulic losses, plot diagram of the serial Ancona	
SINC U04	hydraulic system	T1A U12
S1INC_U04	is able to analyze and calculate heat flows and temperature gradients in bodies of different geometries	T1A_U13
	temperature gradients in bodies of different geometries,	T1A_U14
	can calculate heat transfer coefficient for different types of convective heat fluxes, is able to calculate heat fluxes	T1A_U16
	in thermal radiation and is able to calculate and design	
	heat exchangers	
S1INC_U05	is able to experimentally determine temperature,	T1A_U08
STINC_005	humidity and specific heat of gases and solids, perform	T1A_U08
	tests of heat transfer through the baffle and ribs, and	117_007
	determine temperature distribution in the rod	
S1INC_U06	calculates basic parameters of refrigeration and	T1A_U13
	cryogenic equipment and plants, uses phase diagrams of	T1A_U14
	refrigerants and cryogenic liquids	T1A_U15
S1INC_U07	can integrate the knowledge gained in previous courses	T1A_U13
	during the design of a single step rotary thermal	T1A_U14
	machine, is able to interpret the results and draw	T1A_U15
	conclusions	11/1_015
S1INC_U08	can design basic working elements of positive	T1A_U09
51110_000	displacement devices and flow devices, is able to select	T1A_U13
	proper machine for installation; is able to analyze the	T1A_U14
	proper machine for mistanation, is able to analyze the	117_014

	relationship between flow parameters of gas and vapor	T1A_U15
	and the performance of thermal machines	T1A_U16
S1INC_U09	can model unit processes in process engineering in order	T1A_U07
	to evaluate their operation and interpret the results	T1A_U09
		T1A_U15
S1INC_U10	using computer simulator can analyze parameters of the	T1A_U13
	nuclear power plant during normal operation and under	T1A_U14
	emergency conditions	T1A_U15
S1INC_U11	is able, in accordance with given requirements, to select	T1A_U14
	a boiler and other auxiliary equipment, knows how to	T1A_U16
	calculate heat transfer and can design a water heater or a	
	steam superheater	
S1INC_U12	is able to design a device for the removal of gaseous and	T1A_U14
	particulate pollutants taking under consideration	T1A_U16
	selected ecological and economic criteria	
S1INC_U13	can perform measurements and balances of selected	T1A_U08
	machines and power equipment, calculate their	T1A_U09
	efficiency, draw Sankey diagrams and estimate the	
	uncertainty of measurement	
S1INC_U14	Is able to assess functioning of selected systems such as	T1A_U09
	thermal power plants	T1A_U10

LEARNING OUTCOMES FOR SPECIALIZATION

Faculty: Mechanical and Power Engineering Field of study: Mechanical Engineering and Machine Building (MBM) Level of study: I (undergraduate) Specialization: ENGINEERING OF AVIATION (ILO)

Learning	DESCRIPTION OF THE MAIN LEARNING	Reference to
outcome for	OUTCOMES	learning
undergraduate		outcomes for
studies in		
specialization:	1 0	
INC		
	KNOWLEDGE	sciences (T)
S1ILO_W01	is familiar with the methodology of stress analysis of	T1A_W04
	structural elements that are typical of aircraft structures:	T1A_W07
	thin rods, plates and shells	
S1ILO_W02	describes basic thermodynamic processes occurring in	T1A_W04
	aircraft engine flow channels	
S1ILO_W03	identifies laws and explains phenomena associated with	T1A_W03
—	the flow around a body at different speeds, describes the	_
	flow around airfoil and wing	
S1ILO_W04	knows the purpose, construction and operating principles	T1A_W04
	of modern aircraft equipment and power systems	
S1ILO_W05	describes aircraft design procedures and explains	T1A_W03
	preliminary computation algorithms for the aircraft	T1A_W04
	design	T1A_W07
S1ILO_W06	explains the operation of aircraft piston engines with	T1A_W04
	regard to specific design solutions used in aviation	
S1ILO_W07	knows the purpose, construction and the operating	T1A_W03
	procedure of the aircraft equipment and accessories of the	
	modern aircraft avionics	
S1ILO_W08	has basic knowledge of transient and steady aircraft	T1A_W03
	flights, balance and stability, takeoff and landing	T1A_W04
		T1A_W07
S1ILO_W09	lists purposes, tasks and is able to characterize	T1A_W03
	construction of systems and installations bodied on an	T1A_W04
	aircraft	T1A_W05
S1ILO_W10	describes the construction of an aircraft, lists loads acting	T1A_W03
	on the airframe and describes the procedure for the	T1A_W04
	construction of aircraft components	T1A_W07
S1ILO_W11	explains the operation of aviation gas turbine engines and	T1A_W04
	their main components	
S1ILO_W12	defines the main diagnostic issues of an aircraft, explains	T1A_W07
	the methods of analysis and prediction of diagnostic	
	signals of the technical condition of aviation equipment	
S1ILO_W13	describes a process for the production of airframe,	T1A_W05

	characterizes technological processes used in its manufacture	T1A_W06
S1ILO_W14	knows the purpose, construction and basic operation of	T1A_W03
	the major components of aircrafts and helicopters	T1A_W04
S1ILO_W15	lays down rules for the safe operation of aircraft,	T1A_W04
	describes the operating systems and applies the basic concepts of exploitation	
S1ILO_W16	identifies the "human factor" limitations, at both the	T1A W04
_	individual and system level, that can affect the safety and	
	usefulness of the aircraft	
	SKILLS	1
S1ILO_U01	examines loads on aircraft components, perform	T1A_U14
_	calculations for different load cases on thin-walled	T1A_U15
	structures	
S1ILO_U02	is able to calculate basic parameters of flows in the flow	T1A_U05
21120_002	channels of aircraft engines	T1A U09
		T1A_U15
S1ILO_U03	calculates values of the gas flow around bodies, knows	T1A_U09
STILO_005	how to calculate relationships between parameters of gas	1111_009
	on both sides of the shock wave	
S1ILO_U04	performs basic measurements of the parameters of fluid	T1A_U08
STILO_004	flow through the channels and the flow around bodies	11A_008
S1ILO_U05	performs a preliminary design of aerodynamic body of	T1A_U01
STILO_005	the selected purpose aircraft	T1A_U09
	the selected purpose ancialt	
S1ILO_U06	is able to perform basic thermodynamic calculations of a	T1A_U15
STILO_000		T1A_U05
	piston engine, estimate loads acting on the components of	T1A_U09
	the crank-piston	T1A_U15
S1ILO_U07	is able to perform a preliminary design of avionics	T1A_U01
	equipment for the "general aviation" aircraft class	T1A_U03
S1ILO_U08	is able to determine the suitability of selected pilot -	T1A_U05
	navigation devices for use on board the aircraft	T1A_U08
S1ILO_U09	is able to calculate the basic parameters of the various	T1A_U05
	flight conditions	T1A_U09
		T1A_U15
S1ILO_U10	calculates aerodynamic and performance characteristics	T1A_U14
	of subsonic aircraft	T1A_U15
S1ILO_U11	performs basic parameter measurements aircraft systems	T1A_U01
	and system components	T1A_U08
		T1A_U13
S1ILO_U12	calculates loads and stresses in major airframe	T1A_U09
	components	T 1 A 1100
S1ILO_U13	designs the endurance structure of major airframe	T1A_U09
	components	T1A_U15
S1ILO_U14	is able to perform basic thermodynamic calculations	T1A_U05
	of the main components of aircraft turbine engine, as well	T1A_U09
	as its performance	T1A_U15
S1ILO_U15	is able to perform basic diagnostic tests of an aircraft	T1A_U09
	using visual methods	T1A_U13
S1ILO_U16	is able to carry out an initial verification of an airframe	T1A_U11
	and perform basic disassembly and assembly on the	T1A_U15

	aircraft	
S1ILO_U17	is able to carry out the basic maintenance on the aircraft	T1A_U08
		T1A_U11
		T1A_U13
S1ILO_U18	is able to develop a maintenance program for an aircraft	T1A_U02
		T1A_U05
		T1A_U16
S1ILO_U19	follows the principles of safe operation of an aircraft	T1A_U01
	taking under consideration the "human factor"	T1A_U04
		T1A_U10

MATRIX OF CORRELATION BETWEEN EDUCATIONAL OUTCOMES/ EFFECTS IN THE FIELD OF TECHNICAL SCIENCES AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY

1st level, main field of study *Mechanical Engineering and Machine Building* (MBM), general academic profile

Legend: INC – Thermal Engineering, ILO – Engineering of Aviation

Symbol of the educational	Description of the educational outcomes/ effects in the field of technical sciences	Reference to educational outcomes for 1 st leve main field of study MBM		for 1 st level,
outcome in the field of		Main field of	Specialization effects	
technical sciences		study effects	INC	ILO
	KNOWLEDGE			
T1A_W01	has knowledge of mathematics, physics and chemistry and other areas related to the studied discipline necessary to formulate and solve simple tasks in the field of the studied discipline	K1MBM_W01 K1MBM_W02 K1MBM_W03 K1MBM_W04 K1MBM_W06	S1INC_W03 S1INC_W04	
T1A_W02	has fundamental knowledge in the field of study related to the studied discipline	K1MBM_W05 K1MBM_W10 K1MBM_W11 K1MBM_W12 K1MBM_W15	S1INC_W05 S1INC_W06 S1INC_W07 S1INC_W08 S1INC_W09 S1INC_W10 S1INC_W11 S1INC_W12 S1INC_W13	
T1A_W03	has organized, general knowledge and theoretical grounding including key issues related to the studied discipline	K1MBM_W09	S1INC_W01 S1INC_W02 S1INC_W03 S1INC_W04	S1ILO_W03 S1ILO_W05 S1ILO_W07 S1ILO_W08

			S1INC_W05	S1ILO_W09
			S1INC_W06	S1ILO_W10
			S1INC_W07	S1ILO_W10
			S1INC_W09	STILO_W14
			S1INC_W11	
			S1INC_W12	
			S1INC_W13	
T1A_W04	has detailed knowledge connected with the chosen issues in the field of the studied	K1MBM_W07	S1INC_W01	S1ILO_W01
	discipline	K1MBM_W14	S1INC_W02	S1ILO_W02
			S1INC_W03	S1ILO_W04
			S1INC_W04	S1ILO_W05
			S1INC_W06	S1ILO_W06
			S1INC_W10	S1ILO_W08
			S1INC_W12	S1ILO_W09
				S1ILO_W10
				S1ILO_W11
				S1ILO_W14
				S1ILO_W15
				S1ILO_W16
T1A_W05	has fundamental knowledge of trends in development in scientific disciplines and	K1MBM_W11	S1INC_W10	S1ILO_W09
	fields of study related to the studied discipline			S1ILO_W13
T1A_W06	has fundamental knowledge of the lifecycle of devices, objects and technical	K1MBM_W13	S1INC_W13	S1ILO_W13
	systems	K1MBM_W14		
T1A_W07	knows fundamental methods, techniques, tools and materials used for solving	K1MBM_W01	S1INC_W07	S1ILO_W01
	simple engineering tasks in the field of the studied discipline	K1MBM_W02		S1ILO_W05
		K1MBM_W05		S1ILO_W08
		K1MBM_W06		S1ILO_W10
		K1MBM_W08		S1ILO_W12
		K1MBM_W13		
		K1MBM_W14		
T1A_W08	has fundamental knowledge necessary to understand social, economical ,legal and	K1MBM_W17		
I III _ 11 UU	has reneamental knowledge necessary to understand social, economical negal and			

	other non-technical factors of engineering activities	K1MBM_W18		
T1A_W09	has fundamental knowledge of management, including quality management and	K1MBM_W18		
	running a business			
T1A_W10	knows and understands basic concepts and rules related to industrial property	K1MBM_W16		
	protection and copyright laws; is able to use patent information resources			
T1A_W11	knows general rules related to establishing and developing individual	K1MBM_W16		
	entrepreneurial activity, using knowledge of scientific disciplines and fields of	K1MBM_W18		
	study related to the studied discipline			
	SKILLS			
	1) general skills (not related to the area of engineering			1
T1A_U01	is able to obtain information from literature, databases and other properly selected	K1MBM_U08		S1ILO_U05
	sources, either in English or another foreign language regarded as a language for	K1MBM_U13		S1ILO_U07
	international communication in the studied discipline ; is able to integrate obtained			S1ILO_U11
	information, interpret it and draw conclusions, formulate and justify opinions			S1ILO_U19
T1A_U02	is able to communicate in their professional environment and other environments	K1MBM_U07		S1ILO_U18
	using various techniques			
T1A_U03	is able to prepare a well documented study of problems in the field of studied	K1MBM_U17		S1ILO_U07
	discipline both in Polish and a foreign language regarded as a basic one in the			
	scientific disciplines and fields of study related to the studied discipline			
T1A_U04	is able to prepare and give an oral presentation concerning detailed issues in the	K1MBM_U16		S1ILO_U19
	field of the studied discipline both in Polish and a foreign language			
T1A_U05	has ability to self-learning	K1MBM_U13		S1ILO_U02
				S1ILO_U06
				S1ILO_U08
				S1ILO_U09
				S1ILO_U14
				S1ILO_U18
T1A_U06	has language skills in scientific disciplines and fields of study related to the studied	K1MBM_U15		
	discipline according to CEFR requirements for B2 level			
	2) fundamental engineering skills	·		
T1A_U07	is able to use information and communication technologies necessary to perform	K1MBM_U07	S1INC_U09	
	tasks typical of engineering activities	K1MBM_U08		
T1A_U08	is able to plan and run experiments including measurements and computer	K1MBM_U10	S1INC_U01	S1ILO_U04

	simulations, interpret results and draw conclusions	K1MBM_U12	S1INC_U05	S1ILO_U08
			S1INC_U13	S1ILO_U11
				S1ILO_U17
T1A_U09	is able to use analytical, simulation and experimental methods to formulate and	K1MBM_U01	S1INC_U01	S1ILO_U02
	solve engineering tasks	K1MBM_U02	S1INC_U03	S1ILO_U03
		K1MBM_U03	S1INC_U05	S1ILO_U05
		K1MBM_U04	S1INC_U08	S1ILO_U06
		K1MBM_U05	S1INC_U09	S1ILO_U09
		K1MBM_U09	S1INC_U13	S1ILO_U12
		K1MBM_U11	S1INC_U14	S1ILO_U13
		K1MBM_U12		S1ILO_U14
		K1MBM_U13		S1ILO_U15
T1A_U10	is able -while formulating and solving engineering tasks-to notice their system and non technical aspects	K1MBM_U09	S1INC_U14	S1ILO_U19
T1A_U11	is prepared to work in industry environment and knows safety rules in the	K1MBM_U03		S1ILO_U16
	workplace	K1MBM_U04		S1ILO_U17
		K1MBM_U10		
		K1MBM_U11		
		K1MBM_U12		
		K1MBM_U14		
T1A_U12	is able to carry out primary economic analysis of undertaken engineering activities	K1MBM_U11		
3) skills directly connected with solving engineering tasks				
T1A_U13	is able to carry out critical analysis of functioning and also assess – particularly in	K1MBM_U01	S1INC_U01	S1ILO_U11
	reference to the studied discipline- existing technical solutions, in particular	K1MBM_U02	S1INC_U02	S1ILO_U15
	devices, objects, systems, processes, and services	K1MBM_U14	S1INC_U03	S1ILO_U17
			S1INC_U04	
			S1INC_U06	
			S1INC_U07	
			S1INC_U08	
			S1INC_U10	
T1A_U14	is able to identify and formulate specifications of simple, practical engineering tasks	K1MBM_U01	S1INC_U01	S1ILO_U01
	specific for the studied discipline	K1MBM_U02	S1INC_U02	S1ILO_U10

		K1MBM_U03	S1INC_U04	
		K1MBM_U06	S1INC_U06	
		KIMDM_000	S1INC_U07	
			S1INC_U08	
			S1INC_U10	
			S1INC_U11	
			S1INC_U12	
T1A_U15	is able to assess the usefulness of routine methods and tools for solving a simple,	K1MBM_U13	S1INC_U06	S1ILO U01
	practical engineering task specific for the studied discipline and choose and apply a		S1INC_U07	S1ILO_U02
	proper method and tools		S1INC_U08	S1ILO_U05
			S1INC_U09	S1ILO_U06
			SIINC U10	S1ILO_U09
			511(0_010	S1ILO_U10
				SIILO U13
				S1ILO_U14
				S1ILO_U16
T1A_U16	is able – according to a given specification- to desing and complete a simple device,	K1MBM_U11	S1INC_U03	S1ILO_U18
	object, system or process specific for the studied discipline, using appropriate	K1MBM_U13	S1INC_U04	
	methods, techniques and tools		S1INC_U08	
			S1INC_U11	
			S1INC_U12	
	SOCIAL COMPETENCES			
T1A_K01	understands the necessity of a lifetime learning process; is able to inspire and	K1MBM_K01		
	organize the process of learning for others			
T1A_K02	realizes the significance and understands non-technical aspects and consequences	K1MBM_K02		
	of engineering activity and especially its influence on the natural environment and			
T1A 702	the related responsibility for decisions	KIMDM KO2		
T1A_K03	is able to cooperate and work in a group, taking up different roles	K1MBM_K03		
T1A_K04	is able to set clear priorities leading to the realizatione tasks set by himself or others	K1MBM_K04		
		K1MBM_K07		
T1A_K05	identifies correctly and solves dilemmas connected with the profession	K1MBM_K06		

T1A_K06	is able to think and act in an entrepreneurial way	K1MBM_K05	
		K1MBM_K07	
T1A_K07	realizes the social role of technical university graduates and especially understands	K1MBM_K06	
	the need to formulate information and share it with society, e.g. through mass		
	media, in relation to achievements in environmental engineering and other aspects		
	of engineering activity; makes attempts at sharing such information and opinions in		
	an understandable way		