LEARNING OUTCOMES FOR THE FIELD OF STUDY

(Assumed educational effects)

Faculty: Mechanical and Power Engineering

Field of study: Mechanical Engineering and Machine Building (MBM) Level of study: II (post-graduate)

The area of study:

Field of study Mechanical Engineering and Machine Building belongs to the domain of technical sciences and is related to such majors as Energy, Environmental Engineering, Electrical Engineering, Process Engineering and Aerospace Engineering.

Concept of the post-graduate studies and their relation to the undergraduate studies

An applicant for the admission to the Master's degree in Mechanical Engineering and Machine Building must have undergraduate degree and possess competencies to continue education at post-graduate level in this field of study. The candidate should have in particular the following abilities:

- knowledge of mathematics, physics and chemistry that enable understanding of the fundamentals of mechanics, material sciences and principles of machinery construction,
- knowledge of mechanics, strength of materials and the foundations of machine construction that enable understanding and design of the basic machine elements,
- ability to use analytical methods, simulation and experiment to formulate and solve engineering problems,
- knowledge on the flows of fluids, including all thermal processes,
- knowledge of 2D and 3D CAD design,
- ability to communicate in English, document and present experimental results, document and present the outcomes of a project,
- knowledge on thermal processes such as refrigeration, cryogenics, and incineration.

The candidate who on completion of undergraduate studies or other forms of education did not obtain the above competencies, may take a second degree in Mechanical Engineering and Machine Building, only if competence deficiencies can be completed by crediting classes that are worth no more than 30 ECTS points.

The reference to the learning outcomes for post-graduate level education in the area corresponding to the domain of technical sciences

Because a person who studies towards Master's degree in Mechanical Engineering and Machine Building obtained necessary expertise to undertake them on the completion of the undergraduate studies or - in the absence of some of the required competencies - can complement insufficiencies by implementation schedule of no more than 30 ECTS credits, the description of the learning outcomes for post-graduate studies does not necessarily refer to all the learning outcomes listed in the description of qualifications of the Master's degree in the field of study corresponding to given area of technical sciences (post-graduate level description includes combined effects of education achieved at both the undergraduate and post-graduate level of education).

Description of learning outcomes for Master's degree in Mechanical Engineering and Machine Building does not relate to the learning outcomes listed in the description of qualifications for Master's degree in the field of education corresponding to the domain of technical sciences: T2A_W10.

A graduate of the post-graduate studies must have the competencies defined by below listed learning outcomes. This does not mean, however, that all of these effects have to be achieved from the implementation of post-graduate studies program; a part of it can be obtained at the undergraduate level and - to a limited extent - as a result of informal learning.

Explanation of symbols:

- **K** learning outcomes for the field of study
- \mathbf{S} learning outcomes for specialization
- W category of knowledge
- U category of skill

K (after the underscore) – category of social competencies

 \mathbf{T} – the area of study in the field of technical sciences

- 2 post-graduate studies,
- A general profile

Learning	DESCRIPTION OF THE MAIN LEARNING	Reference to
outcome for	OUTCOMES	learning
post-graduate		outcomes for
studies in the	After completion of the post-graduate studies in the field	the area of
field of study:	of Mechanics and Machine Design, the graduate:	technical
MBM		sciences (T)
	KNOWLEDGE	
K2MBM_W01	has structured, theoretically founded knowledge of the theory and application of microprocessor electronics to control electromechanical and pneumatic systems; distinguishes microcontrollers and microprocessors and explains principles of their programming and coupling to the components of	T2A_W03
	mechatronic systems that are used in modern industrial machinery and power plants	
K2MBM_W02	has extended knowledge on shaping of the structure of modern engineering materials; describes phase equilibrium systems and phase transitions; can list selection principles of structural materials and their use in modern machine construction	T2A_W01 T2A_W03 T2A_W05
K2MBM_W03	has knowledge on mathematical description of the dynamics of mechanical systems represented by a finite number of material points; understands variation principles, invariants integral and the issues of small vibrations; recognizes canonical transformations and Hamilton-Jacobi equation; distinguishes stable and unstable equilibrium in mechanical systems and describes systems using cyclic coordinates	T2A_W01 T2A_W02 T2A_W04
K2MBM_W04	has knowledge of the structure of multidimensional real space and activities in this space; knows the theoretical basis of dimensional analysis as well as the rules for its use in the construction of mathematical models and moving the scale; understands the nature of optimization problems and the operation of certain optimization algorithms for functions of	T2A_W01 T2A_W03 T2A_W07

	one and several variables	
KOMDM WOF	one and several variables	T2 A W/02
K2MBM_W05	knows basic tools for failure analysis; has basic	T2A_W03
	understanding of the causes and consequences of failures in machinery	T2A_W06
K2MBM_W06	has knowledge of basic production processes and the	T2A_W03
	engineering platform that integrates business activities (CIM)	T2A_W06
	from concept, through the design processes, production	
	planning, manufacturing, resource management and recycling	
K2MBM_W07	has knowledge needed to understand the social, economic,	T2A_W08
	legal and other non-technical considerations of engineering	T2A_W09
	activities	
K2MBM_W08	knowledgeable about processes of business management	T2A_W09
		T2A_W11
	achieves results in the category KNOWLEDGE for one of the	
	following specializations:	
	• Process Systems Engineering (IAP) – Appendix 1	
	• Engineering of Aviation (ILO) - Appendix 2	
	Low Temperature Engineering (INN) - Appendix 3	
	 Refrigeration and Cryogenics (RAC) – Appendix 4 	
	 Engineering Machines and Devices (MUE) – Appendix 5 	
<u> </u>	SKILLS	1
K2MBM_U01	can build mechatronic systems that base on programmable	T2A_U08
	controllers and incorporate electric and electro-pneumatic	T2A_U12
	actuators; can write and run programs for programmable	1211_012
	controllers using ladder language, is able to create and test	
	programs with microcontroller development kits; can couple	
	microcontrollers with the elements of mechatronic system	
K2MBM_U02	is able to prepare samples of construction materials for	T2A_U08
_	testing, perform examinations and use results to identify	T2A_U18
	characteristics and qualities of modern construction materials	—
K2MBM_U03	can build mathematical and physical models of processes;	T2A_U07
	knows how to formulate objective functions and set up	T2A_U09
	constraints in engineering optimization problems; is able to	T2A_U10
	use numerical optimization methods to determine model	T2A_U11
	parameters and the optimal process conditions	T2A_U16
K2MBM_U04	can perform deductive process directed at finding the cause of	T2A_U01
	failure of the machine on the basis of failure reports and other	T2A_U10
	sources of knowledge	T2A_U11
		T2A_U13
		T2A_U15
K2MBM_U05	can carry out engineering activities, ranging from initial	T2A_U07
	design, through the stage of manufacturing process	T2A_U09
	simulation, using integrated engineering environment such as	T2A_U10
	CATIA.	T2A_U17
		T2A_U19
K2MBM_U06	has the ability to perform oral presentations on specific issues	T2A_U04
	in the field of studied engineering discipline	T2A_U05
K2MBM_U07	is able to prepare coherent report on the carried out work	T2A_U03
		T2A_U05
K2MBM_U08	has language skills in the discipline "design and operation of	T2A_U02

	machines " according to the requirements for level D2 of the	
	machines," according to the requirements for level B2 of the	T2A_U06
	European Framework of Languages	
K2MBM_U09	has language skills in the discipline "design and operation of	T2A_U02
	machines," according to the requirements for level A1 and A2	
	of the European Framework of Languages	
	achieves results in the category SKILLS for one of the	
	following specializations:	
	• Process Systems Engineering (IAP) – Appendix 1	
	• Engineering of Aviation (ILO) - Appendix 2	
	• Low Temperature Engineering (INN) - Appendix 3	
	• Refrigeration and Cryogenics (RAC) – Appendix 4	
	• Engineering Machines and Devices (MUE) – Appendix 5	
	SOCIAL COMPETENCIES	
K2MBM_K01	understands the need to improve professional, personal and	T1A_K01
	social skills; identifies and resolves dilemmas associated with	T1A_K05
	his profession	
K2MBM_K02	is aware of the importance of non-technical aspects and	T1A_K02
	impacts of social engineering and the role of university	T1A_K07
	graduates	
K2MBM_K03	is able to work in a group and assume different roles	T2A_K03
K2MBM_K04	can properly identify priorities for implementation of self-	T2A_K04
	defined or appointed tasks	
K2MBM_K05	is able to think and act in entrepreneurial manner	T2A_K06

LEARNING OUTCOMES FOR SPECIALIZATION

Faculty: Mechanical and Power Engineering Field of study: Mechanical Engineering and Machine Building (MBM) Level of study: II (post-graduate) Specialization: ENGINEERING OF AVIATION (ILO)

Learning outcome for	DESCRIPTION OF THE MAIN LEARNING OUTCOMES	Reference to learning				
post-graduate		outcomes for				
studies in	After completion of the post-graduate studies in the field	the area of				
specialization:	of Mechanics and Machine Design and specialization	technical				
ilo	ů l					
	KNOWLEDGE	sciences (T)				
S2ILO_W01	has basic knowledge of preliminary gas-dynamic	T2A_W07				
	calculations of turbine engines and their main components;					
	has knowledge on the strength calculations of the basic					
	structural components of gas turbine engines					
S2ILO_W02	identifies the design features of aircrafts; explains the	T2A_W03				
	methodology for determining loads on components of	T2A_W04				
	aircrafts; describes the structure of components and systems	_				
	of aircrafts					
S2ILO_W03	defines types of vibrations and vibration characteristics of	T2A_W01				
	aircraft components; is able to identify methods of	T2A_W04				
	preventing vibrations in aircraft components					
S2ILO_W04	characterizes advanced hydrodynamic phenomena occurring	T2A_W01				
	in flows; defines laws describing the flow around objects;	T2A_W03				
	explains methods for describing the turbulent flow;	T2A_W04				
	formulates the theory of boundary layer					
S2ILO_W05	describes how to derive the equations of motion for an	T2A_W01				
	aircraft; defines loads acting in flight; describes the aero-	T2A_W04				
	elasticity of the aircraft; identifies the impact of aero-					
	elasticity effects on the dynamics of motion of the aircraft					
	and the flight safety					
S2ILO_W06	lists the main documents underlying the regulation of	T2A_W03				
	aviation; explains concepts in the field of aviation law	T2A_W08				
S2ILO_W07	has knowledge of the life and reliability of the aircraft; is	T2A_W04				
	able to identify the determinants of the level of reliability of	T2A_W06				
	the aircraft; is able to describe the principles of forecasting					
	the reliability in the exploitation					
S2ILO_W08	lists the purpose and tasks of the energy systems of the	T2A_W03				
	aircraft; describes their design, explains the methodology of	T2A_W04				
	calculation of the energy systems of the aircraft	T2A_W06				
S2ILO_W09	explains the equations of motion of the helicopter; interprets	T2A_W03				
	helicopter flight from the equations of motion	T2A_W04				
S2ILO_W10	lists the main concepts of aviation safety; describes the	T2A_W04				
	methodology of accident investigation and explains ways to	T2A_W06				
	improve air safety					

	SKILLS	
S2ILO_U01	can perform the calculation of parameters of the stream in the flow channel in the turbine engine and its main units	T2A_U09
S2ILO_U02	is able to select parameters of the engine cycle; can design the flow channel geometry for the turbine engine and carry out preliminary strength calculations of basic gas turbine engine components	T2A_U14 T2A_U15
S2ILO_U03	performs strength calculations of the main components of an aircraft	T2A_U07 T2A_U14
S2ILO_U04	carries out the design process of the selected energy system of an aircraft	T2A_U09 T2A_U15
S2ILO_U05	is able to identify the type of vibration on aircraft components and calculate the natural frequency of the selected aircraft components	T2A_U09
S2ILO_U06	solves problems related to the similarity of flows, apply laws of fluid mechanics to determine parameters of flow	T2A_U01 T2A_U09 T2A_U10
S2ILO_U07	 analyzes and interprets velocity, pressure and temperature fields derived from commercial CFD software (Computational Fluid Dynamics); uses information provided by these programs 	T2A_U08 T2A_U09 T2A_U12
S2ILO_U08	calculates aerodynamic derivatives and analyzes vibration on aircraft components; can determine the critical speed of Flatter type vibration	T2A_U09
S2ILO_U09	uses advanced software engineering MES in designing aircraft structures	T2A_U07 T2A_U16
S2ILO_U10	search, interpret and properly apply the rules of the air	T2A_U01 T2A_U03
S2ILO_U11	calculates helicopter flight parameters on the basis of equations of motion	T2A_U09
S2ILO_U12	perform a preliminary design of the drive system for helicopter	T2A_U07

MATRIX OF CORRELATION BETWEEN EDUCATIONAL OUTCOMES/ EFFECTS IN THE FIELD OF TECHNICAL SCIENCES AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY

2nd level, main field of study *Mechanical Engineering and Machine Building* (MBM), general academic profile

Legend: IAP – Process Systems Engineering, ILO – Engineering of Aviation, INN – Low Temperature Engineering, RAC – Refrigeration and Cryogenics, MUE – Power Engineering Machines and Devices

Symbol of the educational outcome in the	Description of the educational outcomes/ effects in the field of technical sciences	Reference to educational outcomes for 1 st level, main field of study MBM					
field of		Main field of		S	pecialization eff	fects	
technical sciences		study effects	IAP	ILO	INN	RAC	MUE
		KNOWLED	GE				
T2A_W01	has expanded and broadened	K2MBM_W02	S2IAP_W01	S2ILO_W03			
	knowledge of mathematics, physics	K2MBM_W03	S2IAP_W03	S2ILO_W04			
	and chemistry and other areas	K2MBM_W04	S2IAP_W04	S2ILO_W05			
	related to the studied discipline		S2IAP_W08				
	necessary to formulate and solve						
	complex tasks in the field of the						
	studied discipline						
T2A_W02	has detailed knowledge in the field	K2MBM_W03	S2IAP_W02				S2MUE_W05
	of study related to the studied discipline		S2IAP_W07				
T2A_W03	has organized, general knowledge	K2MBM_W01	S2IAP_W01	S2ILO_W02	S2INN_W01	S2RAC_W01	S2MUE_W03
	and theoretical grounding including	K2MBM_W02	S2IAP_W02	S2ILO_W04			S2MUE_W04
	key issues related to the studied	K2MBM_W04	S2IAP_W03	S2ILO_W06			S2MUE_W10
	discipline	K2MBM_W05	S2IAP_W04	S2ILO_W08			S2MUE_W11
		K2MBM_W06	S2IAP_W07	S2ILO_W09			S2MUE_W13
T2A_W04	has detailed knowledge and	K2MBM_W03	S2IAP_W03	S2ILO_W02	S2INN_W02	S2RAC_W02	S2MUE_W01
	theoretical grounding connected		S2IAP_W05	S2ILO_W03	S2INN_W03	S2RAC_W03	S2MUE_W02
	with the chosen issues in the field of		S2IAP_W06	S2ILO_W04	S2INN_W04	S2RAC_W04	S2MUE_W06

	the studied discipline		S2IAP_W08	S2ILO_W05	S2INN_W05	S2RAC_W05	S2MUE_W07
			S2IAP_W09	S2ILO_W07	S2INN_W06	S2RAC_W06	S2MUE_W08
			S2IAP_W10	S2ILO_W08	S2INN_W07	S2RAC_W07	S2MUE_W09
				S2ILO_W09	S2INN_W08	S2RAC_W08	S2MUE_W12
				S2ILO_W10	S2INN_W09	S2RAC_W09	
					S2INN_W10	S2RAC_W10	
						S2RAC_W11	
						S2RAC_W12	
T2A_W05	has knowledge of trends in	K2MBM_W02			S2INN_W02	S2RAC_W02	
	development and the most crucial				S2INN_W03	S2RAC_W03	
	and newest achievements in				S2INN_W04	S2RAC_W04	
	scientific disciplines and fields of				S2INN_W06	S2RAC_W06	
	study related to the studied				S2INN_W10	S2RAC_W07	
	discipline and other related scientific					S2RAC_W08	
	disciplines					S2RAC_W09	
						S2RAC_W11	
T2A_W06	has fundamental knowledge of the	K2MBM_W05		S2ILO_W07	S2INN_W03	S2RAC_W10	
	lifecycle of devices, objects and	K2MBM_W06		S2ILO_W08	S2INN_W07		
	technical systems			S2ILO_W10	S2INN_W08		
T2A_W07	knows fundamental methods,	K2MBM_W01	S2IAP_W01	S2ILO_W01	S2INN_W07	S2RAC_W10	
	techniques, tools and materials used		S2IAP_W02				
	for solving simple engineering tasks		S2IAP_W05				
	in the field of the studied discipline		S2IAP_W06				
			S2IAP_W07				
			S2IAP_W08				
			S2IAP_W09				
			S2IAP_W10				
T2A_W08	has fundamental knowledge	K2MBM_W07		S2ILO_W06			
	necessary to understand social,						
	economical ,legal and other non-						
	technical factors of engineering						
	activities as well as taking them into						

	consideration in engineering					
	practice					
T2A_W09	has fundamental knowledge of	K2MBM_W07				
	management, including quality	K2MBM_W08				
	management and running a business					
T2A_W10	knows and understands basic					
	concepts and rules related to					
	industrial property protection and					
	copyright laws and knows the					
	necessity of these laws and rules in					
	managing intellectual property					
	resources; is able to use patent					
	information resources					
T2A_W11	knows general rules related to	K2MBM_W08				
	establishing and developing					
	individual entrepreneurial activity,					
	using knowledge of scientific					
	disciplines and fields of study					
	related to the studied discipline					
		SKILLS				
	1) general skills (n	ot related to the ar	ea of engineerin	g education)	1	
T2A_U01	is able to obtain information from	K2MBM_U04	S2IAP_U05	S2ILO_U06		
	literature, databases and other		S2IAP_U10	S2ILO_U10		
	properly selected sources, either in		S2IAP_U11			
	English or another foreign language					
	regarded as a language for					
	international communication in the					
	studied discipline ; is able to					
	integrate obtained information,					
	interpret and critically evaluate it,					
	draw conclusions, formulate and					
	justify opinions in full					
T2A_U02	is able to communicate in their	K2MBM_U08				
	professional environment and other	K2MBM_U09				
	environments using various					

	techniques, either in English or another foreign language regarded as a language for international communication in the studied						
T2 A 1102	discipline	KOMPN 1107					
T2A_U03	is able to prepare a scientific study in Polish language and also a short scientific report, with the results of own research, in a foreign language regarded as a basic one in the scientific disciplines and fields of study related to the studied discipline	K2MBM_U07		S2ILO_U10			S2MUE_U08
T2A_U04	is able to prepare and give an oral presentation concerning detailed issues in the field of the studied discipline both in Polish and a foreign language	K2MBM_U06			S2INN_U01 S2INN_U09	S2RAC_U01	
T2A_U05	is able to establish directions of further education and follow the process of self-learning	K2MBM_U06 K2MBM_U07					
T2A_U06	has language skills in scientific disciplines and fields of study related to the studied discipline according to CEFR requirements for B2+ level	K2MBM_U08					
	2)	fundamental engin	eering skills				
T2A_U07	is able to use information and communication technologies necessary to perform tasks typical of engineering activities	K2MBM_U03 K2MBM_U05	S2IAP_U01 S2IAP_U08 S2IAP_U09 S2IAP_U13	S2ILO_U03 S2ILO_U09 S2ILO_U12	S2INN_U06 S2INN_U11	S2RAC_U01 S2RAC_U11	
T2A_U08	is able to plan and run experiments including measurements and computer simulations, interpret	K2MBM_U01 K2MBM_U02	S2IAP_U07 S2IAP_U08 S2IAP_U09	S2ILO_U07	S2INN_U03 S2INN_U05	S2RAC_U03 S2RAC_U06	S2MUE_U01 S2MUE_U03 S2MUE_U04

	results and draw conclusions		S2IAP_U12				S2MUE_U05
T2A_U09	is able to use analytical, simulation	K2MBM_U03	S2IAP_U01	S2ILO_U01	S2INN_U02	S2RAC_U02	S2MUE_U07
	and experimental methods to	K2MBM_U05	S2IAP_U03	S2ILO_U04	S2INN_U04	S2RAC_U05	S2MUE_U09
	formulate and solve engineering		S2IAP_U07	S2ILO_U05		S2RAC_U08	S2MUE_U10
	tasks as well as simple research		S2IAP_U08	S2ILO_U06			S2MUE_U11
	problems		S2IAP_U09	S2ILO_U07			
			S2IAP_U12	S2ILO_U08			
				S2ILO_U11			
T2A_U10	is able - while formulating and	K2MBM_U03	S2IAP_U03	S2ILO_U06			S2MUE_U02
	solving engineering tasks- to	K2MBM_U04	S2IAP_U04				S2MUE_U06
	integrate knowledge of scientific	K2MBM_U05	S2IAP_U11				S2MUE_U09
	disciplines and fields of studies						S2MUE_U10
	appropriate for the specialization						
	and apply the system approach						
	which also takes into account non-						
	technical aspects						
T2A_U11	is able to formulate and test	K2MBM_U03					S2MUE_U02
	hypotheses connected with	K2MBM_U04					
	engineering problems and simple research problems						
T2A_U12	is able to assess the usefulness and	K2MBM_U01		S2ILO_U07			S2MUE U04
12A_012	possibilities of new achievements	K2WIDWI_001		321L0_007			52WOL_004
	(technological and technical) in the						
	field of the studied discipline						
	1 I						
T2A_U13	is prepared to work in an industry	K2MBM_U04					
	environment and knows safety rules						
	in the workplace						
T2A_U14	is able to carry out primary		S2IAP_U03	S2ILO_U02	S2INN_U08	S2RAC_U10	S2MUE_U06
	economic analysis of undertaken		S2IAP_U13	S2ILO_U03			
	engineering activities	/ - •·-					
TAA 114 F		y connected with s	<u> </u>		CODDI 1107		
T2A_U15	is able to carry out critical analysis	K2MBM_U04	S2IAP_U02		S2INN_U07	S2RAC_U04	
	of functioning and also assess –		S2IAP_U05	S2ILO_U04	S2INN_U08	S2RAC_U07	

	particularly in reference to the		S2IAP_U10		S2INN_U10	S2RAC_U09	
	studied discipline- existing technical		S2IAP_U11		52111_010	S2RAC_U10	
	solutions, in particular devices,		S2IAI_011 S2IAP_U13			52KAC_010	
	objects, systems, processes, and		52IAF_015				
	services						
T2A_U16	is able to plan improvements in	K2MBM_U03	S2IAP_U02	S2ILO_U09			S2MUE_U06
_	existing technical solutions						
T2A_U17	is able to identify and formulate	K2MBM_U05	S2IAP_U04		S2INN_U07	S2RAC_U07	
	specifications of complex				S2INN_U08	S2RAC_U10	
	engineering tasks specific for the				_		
	studied discipline including						
	untypical tasks considering their						
	non-technical aspects						
T2A_U18	is able to assess the usefulness of	K2MBM_U02	S2IAP_U01				
	methods and tools for solving an		S2IAP_U12				
	engineering task specific for the						
	studied discipline, and notice						
	limitations of these methods and						
	tools;						
	is able – by applying conceptually						
	new methods- to solve complex						
	engineering tasks specific for the						
	studied discipline, including						
	untypical tasks and tasks with a						
	research component						
T2A_U19	is able – according to a given	K2MBM_U05	S2IAP_U05		S2INN_U08	S2RAC_U04	S2MUE_U06
	specification which considers non –		S2IAP_U10		S2INN_U10	S2RAC_U07	S2MUE_U10
	technical aspects- to design a					S2RAC_U09	
	complex device, object, system or					S2RAC_U10	
	process specific for the studied						
	discipline and complete this project						
	- at least partially- using appropriate						
	methods, techniques and tools,						
	adapting already existing tools or by						
	creating new tools						

		SOCIAL COMPET	TENCES		
T2A_K01	understands the necessity of a	K2MBM_K01			
	lifetime learning process; is able to				
	inspire and organize the process of				
	learning for others				
T2A_K02	realizes the significance and	K2MBM_K02			
	understands non-technical aspects				
	and consequences of engineering				
	activity and especially its influence				
	on the natural environment and the				
	related responsibility for decisions				
T2A_K03	is able to cooperate and work in a	K2MBM_K03			
	group, taking up different roles				
T2A_K04	is able to set clear priorities leading	K2MBM_K04			
	to the realization tasks set by himself				
	or others				
T2A_K05	identifies correctly and solves	K2MBM_K01			
	dilemmas connected with the				
	profession				
T2A_K06	is able to think and act in an	K2MBM_K05			
	entrepreneurial way				
T2A_K07	realizes the social role of technical	K2MBM_K02			
	university graduates and especially				
	understands the need to formulate				
	information and share it with				
	society, e.g. through mass media, in				
	relation to achievements in				
	environmental engineering and other				
	aspects of engineering activity;				
	makes attempts at sharing such				
	information and opinions in an				
	understandable way				