Thermonuclear power generation

Faculty of	Mechanical and Power Engineering	
Name in English	Thermonuclear power generation	
Name in Polish	Energetyka termojądrowa	
Main field of study	Power Engineering	
Specialization	-	
Level of studies	II level	
Form of studies	full-time	
Kind of subject	optional-specialization	
Subject code	W09ENG-SM2357	
Group of courses	NO	

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15				
Number of hours of total student workload (CNPS)	25				
Form of crediting	Zaliczenie				
For group of courses mark final course with (X)					
Number of ECTS points	1				
including number of ECTS points for practical (P) classes					
including number of ECTS points for direct teacher-student contact (BU) classes	0,68				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Fundamentals of thermodynamics

SUBJECT OBJECTIVES

C1Acquiring knowledge of the basics of nuclear physics, nuclear fusion and plasma physicsC2Getting to know the various methods of controlled nuclear fusionC3Getting to know the results of the most important nuclear fusion experiments and applied engineering solutions

SUBJECT LEARNING OUTCOMES

relating to knowledge:		
PEU_W01	Knowledge and understanding of the basics of nuclear fusion	
PEU_W02	Familiarization with modern technologies of controlled nuclear fusion and the challenges associated with it	
relating to skills:		
PEU_U01		
relating to social competences:		
PEU_K01		

PROGRAMME CONTENT

	Form of classes - lecture	Number of hours
Wy1	Introduction to nuclear physics: binding energy, basic fusion reactions.	2
Wy2	Basics of nuclear fusion, cross-section of the atom, Coulomb potential, tunnel effect on the example of the Schrödinger equation, Lawson's criterion.	2
Wy3-4	Methods of controlling plasma. Fusion reactors using a magnetic trap (Tokamak, Stellarator); Inertial reaktors. Usage of a laser to perform controlled fusion.	4
Wy5	Discussion of selected experiments: ASDEX, JET, WEST, Wendelstein 7-X, NIF. Plasma heating technologies, plasma dynamics and related phenomena.	4
Wy6	ITER reactor: main engineering challenges, superconducting magnets, cryogenic cooling. Prospects for building a power plant based on a thermonuclear reactor.	2
Wy7	Final test	1
Suma goo	lzin	15

TEACHING TOOLS USED		
N1	Traditional lecture using multimedia tools	
N2	Consultations	

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F– forming (during semester), C– concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
P1	PEU_W01, PEU_W02	Final test

PRIMARY AND SECONDARY LITERATURE

Primary literature		
1	Kenro Miyamoto, Fundamentals of Plasma Physics and Controlled Fusion, NIFS-PROC-48 by National Institute of	
	Fusion Science (NIFS) in Tokio.	
2	B.K.Hodge, Alternative Energy Systems and Applications, John Wiley and Sons, 2009	
3	G. Neilson, Magnetic Fusion Energy: From Experiments to Power Plants, Woodhead Publishing	
Seco	ondary literaturę	
1	Steven Van Sciver, Hellium Cryogenics, Springer	
2	R.P.Feynman, R.B.Leighton, M.Sands, "The Feynmann Lecture of Physics"	

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Imię i nazwisko:	prof. dr hab. inż. Maciej Chorowski
E-mail:	maciej.chorowski@pwr.edu.pl